电力电子半导体器件GTR ppt课件

合集下载

电力电子半导体器件(GTR)

电力电子半导体器件(GTR)
第四章 电力晶体管
§4.1 GTR结构
双极型大功率、高反压晶体管——GTR (巨型晶体管) Giant Transistor 三层半导体材料,两个PN结(NPN型、PNP型)。
一、工艺特点
三重扩散;叉指型基极和发射极; 特点:发射区高浓度掺杂
基区很薄(几um—几十um)
N-掺杂浓度低,提高耐压能力 N+集电区收集电子
TC=250C VCE=2V
TC=250C,VCE=-2V
③管子温度相同时,VCE越大,β越大。
④β随温度增加而增加,大电流下,β随温度增加而减小。
⑤GTR反接时,β很小。
4.最大额定值——极限参数 由GTR材料、结构、设计水平、制造工艺决定。
①最高电压额定值: BVCEO,BVCBO,BVCES,BVCER,BVCEX
③快速保护功能: GTR故障时,自动关断基极驱动信号,保护GTR。 如:抗饱和、退抗饱和、过流、过压、过热、脉宽限制、 智能化自保护能力。
二、基极驱动电路基本形式
(一)恒流驱动电路:
基极电流恒定,不随IC电流变化而变化。 IB > ICmax / β 问题:空载、轻载时,饱和深度加剧,存储时间大,关断时间长。 改进:1.抗饱和电路(贝克嵌位电路)
③最高结温TJM 塑封,硅管:1250~1500C; 金属封装,硅管:1500~1750C; 高可靠平面管:1750~2000C;
④最大功耗PCM PCM = VCE• IC 受结温限制,使用时注意散热条件。
例:3DF20型GTR各最大额定值参数:
二、动态特性与参数 动态特性是GTR开关过程的瞬态性能,称开关特性;主要受
VD1引入,加速V2、V1的同时关断 ,引出B2极可另外控制。

电力电子半导体器件(IGBT)PPT课件

电力电子半导体器件(IGBT)PPT课件
第23页/共43页
二、驱动电路: 在满足上述驱动条件下来设计门极驱动电路,IGBT的输入特性与MOSFET几乎相
同,因此与MOSFET的驱动电路几乎一样。 注意: 1.IGBT驱动电路采用正负电压双电源工作方式。 2.信号电路和驱动电路隔离时,采用抗噪声能力强,信号
传输时间短的快速光耦。 3.门极和发射极引线尽量短,采用双绞线。 4.为抑制输入信号振荡,在门源间并联阻尼网络。
第29页/共43页
第30页/共43页
2.过电流的识别: 采用漏极电压的识别方法,通过导通压降判断漏极电流大小。进而切断门极控
制信号。 注意:识别时间和动作时间应小于IGBT允许的短路过电流时间(几个us),
同时判断短路的真与假,常用方法是利用降低门极电压使IGBT承受短路能力增加, 保护电路动作时间延长来处理。 3.保护时缓关断:
由于IGBT过电流时电流幅值很大,加之IGBT关断速度快。如果按正常时的关 断速度,就会造成Ldi/dt过大形成很高的尖峰电压,造成IGBT的锁定或二次击穿, 极易损坏IGBT和设备中的其他元器件,因此有必要让IGBT在允许的短路时间内采 取措施使IGBT进行“慢速关断”。
第31页/共43页
第32页/共43页
随导通时间的增加,损耗增大,发热严重,安全区逐步减小。 2.RBSOA: IGBT关断时反向偏置安全工作区。
随IGBT关断时的重加dVDS/dt改变,电压上升率dVDS/dt越大,安全工作区越小。通过 选择门极电压、门极驱动电阻和吸收回路设计可控制重加dVDS/dt,扩大RBSOA。
最大漏极电流
第16页/共43页
1.正偏电压VGS的影响
VGS增加时,通态压降下降,开通时间缩短,开通损耗减小,但VGS增加到一定 程度后,对IGBT的短路能力及电流di/dt不利,一般VGS不超过15V。(12V~15V)

电力晶体管GTR精品PPT课件

电力晶体管GTR精品PPT课件
第5章
电力晶体管(GTR)
5.1 GTR的结构和工作原理 5.2 GTR的基本特性 5.3 GTR的主要参数 5.4 GTR的驱动
5.1
GTR的结构和工作原理
➢ 术语用法:
• 电力晶体管(Giant TransistRr——GTR,直译为巨 型晶体管)
• 耐高电压、大电流的晶体管(BipRlar JunctiRn TransistRr——BJT),英文有时候也称为PRwer BJT。
饱和区
Ic 放大区
ib3 ib2
ib1 ib1<ib2<ib3
截止区 O
Uce 图1-16
图5.2 共发射极接法时GTR的输出特性
5.2
GTR的基本特性
(2) 动态特性
➢ 开通过程
ib
Ib1
90%Ib1
• 延迟时间td和上升时间tr, 二者之和为开通时间ton。
• 增大ib的幅值并增大dib/dt, 可缩短延迟时间,同时可缩 短上升时间,从而加快开通 过程 。
➢ GTR上电压超过规定值时会发生击穿
➢ 击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。
➢ 实际使用时,为确保安全,最高工作电压要比UceR低得多。
5.3
GTR的主要参数
2) 集电极最大允许电流IcM
➢ 通常规定为hFE下降到规定值的1/2~1/3时所对应的Ic ➢ 实际使用时要留有裕量,只能用到IcM的一半或稍多一点。
10%Ib1 0
t Ib2
ic 90%Ics
ton
td tr
Ics
toff
ts
tf
10%Ics 0
t0 t1 t2
t3
t4 t5

电力电子电源技术及应用1.2 电力晶体管GTR

电力电子电源技术及应用1.2 电力晶体管GTR
一般情况下,IB3≈IB1或更大一些。 GTR的驱动电路已经基本模块化。模块化的驱动 电路一般具有电流波形优化、过流保护、电源电压 监测以及过热保护等功能。
驱动电路举例
D2 A
I
C D1
B
D3
IB
GTR
D4 E
贝克箝位电路
C
D1为箝位二极管,保证GTR始 终处于准饱和状态。
D1
D2
D2和D3用来调整GTR的基极电
4.动态参数
开关时间:GTR的开关时间通常在几毫秒 之内。 电压上升率du/dt:为了抑止过高的du/dt 对GTR的危害,一般在集射极间并联一个 (RCD)缓冲网络。 开关损耗:GTR的开关损耗由开关过程中 集电极电流与电压的乘积决定。它的大小 与负载性质有关。
5.二次击穿与安全工作区
二次击穿特性:集射极间最高工作电压BUCEO,又 称为一次击穿电压值,发生一次击穿时不一定引起 晶体管特性变坏。所谓二次击穿是指器件发生一次 击穿后,集电极电流继续增加,在某电压电流点产 生向低阻抗区高速移动的负阻现象。二次击穿用符 号SB表示。二次击穿时间在纳秒至微秒数量级之内, 即使在这样短的时间内,它也能使器件内出现明显 的电流集中和过热点。
6.驱动电路举例
iB
3
2 IB1
1 IB2
-1
2us
-2 -3
5us t(us)
IB3
比较理想的基极驱动电流波形
IB1为过驱动电流,作用是保证GTR快速开通; IB2是GTR维持导通的驱动电流,应使GTR恰好维 持准饱和状态,以便缩短存储时间tS; 一般情况下,IB1≈3 IB2 IB3为快速抽走基区中载流子的电流,作用是缩短 关断时间,减小关断损耗。
3.极限参数

电力电子半导体器件GTO课件 (一)

电力电子半导体器件GTO课件 (一)

电力电子半导体器件GTO课件 (一)电力电子半导体器件GTO课件电力电子是一门学科,它旨在控制电力,使其尽可能地适应各种用途。

电力电子半导体器件GTO(Gate Turn-Off thyristor)是电力电子领域比较重要的器件之一,本文将从以下几点介绍电力电子半导体器件GTO课件。

一、GTO器件的概念及特点GTO器件是一种可控硅器件,其结构与普通的可控硅类似,但是比普通可控硅多了一个开关功能。

当把GTO的控制端关闭时,它就可以从导通状态转换到截止状态,从而达到开关的作用。

GTO器件具有结构简单、灵敏度高、操作方便等特点。

二、GTO器件的工作原理GTO器件是一种双向导通的器件,它有两个工作模式:正向导通和反向导通。

正向导通时,控制端导通,主电路中的正向电流可以通过GTO器件流过,从而实现GTO器件的导通;反向导通时,主电路中的电流方向与正向导通时相反,控制端不导通,从而实现GTO器件断路。

GTO器件的工作原理可用三角形结表示。

三、GTO器件的应用领域GTO器件广泛应用于各种电力系统和电路中,包括电机控制、电源调节、换流器、逆变器甚至具有高电压和高功率的应用。

其中,逆变器是GTO 器件比较重要的应用领域之一,它可以将直流电源转换为交流电源,使得它可以更好的适应一些需要交流电源工作的设备。

四、GTO器件的发展历程和趋势GTO器件自1960年发明以来,不断得到完善和改进。

在20世纪80年代,IGBT逆变器逐渐替代了GTO逆变器,但GTO器件的低损耗、高晶体质量和低控制成本等特点,使得它仍然保持了一定的市场份额。

未来,随着新技术的发展,GTO器件仍将有进一步的发展和拓展。

总之,在电力电子领域,GTO器件是一种广泛应用的器件之一,具有灵敏、高效、质量好等特点,大力推广与广泛应用将对促进电力电子技术的发展起到积极的作用。

电力电子技术2.3GTO和GTR专题培训课件

电力电子技术2.3GTO和GTR专题培训课件

2.4.2 电力晶体管
术语用法:
电力晶体管(Giant Transistor——GTR,直 译为巨型晶体管) 。 耐高电压、大电流的双极结型晶体管( Bipolar Junction Transistor——BJT),英 文有时候也称为Power BJT。
应用
20世纪80年代以来,在中、小功率范围内取 代 晶 闸 管 , 但 目 前 又 大 多 被 IGBT 和 电 力 MOSFET取代。
图1-14 GTO的开通和关断过程电流波形
1-12
门极可关断晶闸管
3) GTO的主要参数
许多参数和普通晶闸管相应的参数意义相同, 以下只介绍意义不同的参数。
(1)开通时间ton
—— 延迟时间与上升时间之和。延迟时间一般约 1~2s,上升时间则随通态阳极电流的增大而增大。
(2) 关断时间toff
—— 一般指储存时间和下降时间之和,不包括 尾部时间。下降时间一般小于2s。
N K+-
再生机制中 断,基极开
路关断
VD
2000
1000
0 5
Ik 晶闸管导通区
10 IgΒιβλιοθήκη A GTR关断 P缓冲吸收
G-
N P
电路抑
N
制电压 K+-
晶体管关断区
15
20
上升率 t
25 s
门极分流 -1000 GTO的关断过程
1-8
门极可关断晶闸管
结论: GTO导通过程与普通晶闸管一样,只是导通时
左右,采用达林顿接法可有效增大电流增益。
1-21
2)GTR的基本特性
(1) 静态特性
共发射极接法时的典型输 出特性:截止区、放大区 和饱和区。

电力电子半导体器件(GTR)

电力电子半导体器件(GTR)

3.集电极电压上升率dv/dt对GTR的影响 .集电极电压上升率 对 的影响 用于桥式变换电路时, 当GTR用于桥式变换电路时,如图: 用于桥式变换电路时 如图:
C1 B1 E1 C
2
B2
E2
dv/dt产生的过损耗现象严重威胁器件和电路安全;当基极 产生的过损耗现象严重威胁器件和电路安全; 产生的过损耗现象严重威胁器件和电路安全 开路时, 通过集电结寄生电容产生容性位移电流, 开路时, dv/dt通过集电结寄生电容产生容性位移电流,注入 通过集电结寄生电容产生容性位移电流 发射结形成基极电流,放大β倍后,形成集电极电流, 发射结形成基极电流,放大β倍后,形成集电极电流,使GTR 进入放大区,因瞬时电流过大引起二次击穿。 GTR换流关断 进入放大区,因瞬时电流过大引起二次击穿。在GTR换流关断 dv/dt会引起正在关断的GTR误导通 造成桥臂直通。 会引起正在关断的GTR误导通, 时,dv/dt会引起正在关断的GTR误导通,造成桥臂直通。 抑制dv/dt,可在集射极间并联RCD缓冲网络进行吸收。 ,可在集射极间并联 缓冲网络进行吸收。 抑制 缓冲网络进行吸收
三、单管GTR 单管
采用三重扩散,台面型结构;可靠性高, 采用三重扩散,台面型结构;可靠性高,对二次击穿特性 有改善,易于提高耐压,易于耗散体内热量。 有改善,易于提高耐压,易于耗散体内热量。 增加N 漂移区,由它的电阻率和厚度决定器件阻断能力, 增加N-漂移区,由它的电阻率和厚度决定器件阻断能力, 但阻断能力提高,使饱和导通电阻增大,电流增益降低。 但阻断能力提高,使饱和导通电阻增大,电流增益降低。 一般: 10—20 一般: β 约10 20 工作状态:开关状态(导通、截止;开通、关断) 工作状态:开关状态(导通、截止;开通、关断)

电力电子半导体器件(GTR)

电力电子半导体器件(GTR)
集电极电流最大额定值ICM: ICM定义:a.以β值下降到额定值1/2到1/3时,对应IC值。 b.以结温和耗散功率为尺度确定ICM。
最大脉冲电流额定值:
直流ICM的1.5~3倍定额;引起内部引线熔断的集电极电流; 引起集电结损坏的集电极电流。
基极电流最大额定值IBM: 内部引线允许流过的最大基极电流,约为(1/2~1/6)ICM
③最高结温TJM 塑封,硅管:1250~1500C; 金属封装,硅管:1500~1750C; 高可靠平面管:1750~2000C;
④最大功耗PCM PCM = VCE• IC 受结温限制,使用时注意散热条件。
例:3DF20型GTR各最大额定值参数:
二、动态特性与参数 动态特性是GTR开关过程的瞬态性能,称开关特性;主要受
抑制dv/dt,可在集射极间并联RCD缓冲网络进行吸收。
三、二次击穿与安全工作区
(一)二次击穿现象
一次击穿电压BVCEO ;发生一次击穿后,电流急剧增大, 若外接有限流电阻,不会损坏GTR。否则,集电极电流继续增 大,在某电压、电流点产生向低阻抗区高速移动的负阻现象, 称为——二次击穿。用S/B表示。
结电容(势垒电容、扩散电容)充、放电和两种载流子运动影 响。 如图:TC40U—400型GTR动态特性实验电路和电流波形
电路参数: VCC=200V;RC=10Ω ; RB1=4.7Ω ; RB2=1.2Ω ;
1.开通时间ton: ton = td + tr (ns级,很小) td:延迟时间,基极电流向发射结电容充电。大小取决于结 电容大小、驱动电流大小和上升率,及反偏时电压大小。 tr:上升时间,取决于稳定电流和驱动电流大小。
①电流增益β增大: β ≈ β1 β2 ,达几十倍~几千倍; ②饱和压降VCES增大:VCES ≈ VCES1+VBES2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1
B1 E1C2
B2
单臂桥式电路模块
E2
单相桥式电路模块;三相桥式电路模块;
2020/12/12
9
§4.2 GTR特性与参数
一、静态特性与参数 1.共射输出特性:
临界饱和
发射结正偏 集电结反偏 VCES很小
放大区 严禁工作
断态,漏电流很小
2020/12/12
10
2.饱和压降: 如图:GTR深饱和时,等效电路; VBES:基极正向压降
3.大电流工作下,普通晶体管出现的新特点: ①基区大注入效应:引起电流增益下降。 ②基区扩展效应:使基区注入效率降低,增益β下降,fT减小。 ③发射极电流集边效应:引起电流局部集中,产生局部过热。
因此,GTR在结构上应采取适当措施,减小上述效应。
2020/12/12
5
三、单管GTR
采用三重扩散,台面型结构;可靠性高,对二次击穿特性 有改善,易于提高耐压,易于耗散体内热量。
2020/12/12
15
②最大电流额定值: 大电流下,三种物理效应会使GTR电气性能变差,甚至损坏器件。 集电极电流最大额定值ICM:
ICM定义:a.以β值下降到额定值1/2到1/3时,对应IC值。 b.以结温和耗散功率为尺度确定ICM。
最大脉冲电流额定值: 直流ICM的1.5~3倍定额;引起内部引线熔断的集电极电流; 引起集电结损坏的集电极电流。
PNP型
2020/12/12
7
特点:
①电流增益β增大: β ≈ β1 β2 ,达几十倍~几千倍; ②饱和压降VCES增大:VCES ≈ VCES1+VBES2
V2管无法饱和导通,VCE2=VCES1 ,反偏状态;导通损耗增大。 ③开关速度慢:开通时,V1驱动V2;
关断时,V1先关断,V2才能关断,且V2关断 无泻流通路。
VBES随IC电流增大而增大;小电流下,随温度增大而减小,
PN结负温度系数。大电流下,随温度增大而增大。
2020/12/12
12
3.共射电流增益 β:反映GTR的电流放大能力,IC与IB比值。
①GTR正向偏置时,βF随IC减 小而减小,基区复合电流占的
比例增大。
②随IC增大,β增大,IC增大 到一定程度β=βmax,IC再增 大,由于基区大注入效应、基 区扩展效应,β开始下降。
N+集电区收集电子
使用时要求:发射结正偏,集电结反偏。
2020/12/12
2Байду номын сангаас
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
通态下,B-E极电压;
VCES:饱和压降 通态下,C-E极电压;
一般,由于发射区高浓度掺杂,rES可忽略; VCES的大小, 关系器件导通功率损耗。达林顿管,VCES、VBES较大。
2020/12/12
11
饱和压降特性曲线
基极正向压降特性曲线
TC35-400型GTR:电流50A, β = 5;
VCES随IC电流增大而增大;IC不变时,随温度增加而增加。
TC=1250C,VCE=2V
TC=250C VCE=400V
TC=250C VCE=2V
TC=250C,VCE=-2V
③管子温度相同时,VCE越大,β越大。
④β随温度增加而增加,大电流下,β随温度增加而减小。
⑤GTR反接时,β很小。
2020/12/12
13
4.最大额定值——极限参数 由GTR材料、结构、设计水平、制造工艺决定。
例:3DF20型GTR各最大额定值参数:
2020/12/12
17
二、动态特性与参数
动态特性是GTR开关过程的瞬态性能,称开关特性;主要受 结电容(势垒电容、扩散电容)充、放电和两种载流子运动影 响。 如图:TC40U—400型GTR动态特性实验电路和电流波形
改进:
R1、R2稳定电阻,提高温度稳定 性和电流通路。
VD1引入,加速V2、V1的同时关断, 引出B2极可另外控制。
2020/12/12
8
五、GTR模块
将GTR管芯、稳定电阻R1R2、加速二极管VD1、续流二极管VD2 组成一个单元。将几个单元组合在一个外壳内——模块。
利用集成工艺将上述单元集成于同一硅片上,器件集成度高, 小型轻量化,性能/价格比高。
增加N-漂移区,由它的电阻率和厚度决定器件阻断能力, 但阻断能力提高,使饱和导通电阻增大,电流增益降低。
一般: β 约10—20
工作状态:开关状态(导通、截止;开通、关断)
饱和压降低 漏电流小
时间短
2020/12/12
6
四、达林顿GTR
为提高电流增益,由两个或两个以上晶体管复合组成。
驱动管
输出管
NPN型
①最高电压额定值: BVCEO,BVCBO,BVCES,BVCER,BVCEX
O:另一极开路;S:短路;R:外接电阻;X:反向偏置;
2020/12/12
14
Va::IB=0时,IC电流急剧 增加时电压;
Vb::IE=0时,IC电流急剧 增加时电压;
一般:
另:BVEBO集电极开路时,发射结最高反向偏置电压。 几伏,典型值8V。
第四章 电力晶体管
2020/12/12
1
§4.1 GTR结构
双极型大功率、高反压晶体管——GTR (巨型晶体管) Giant Transistor 三层半导体材料,两个PN结(NPN型、PNP型)。
一、工艺特点
三重扩散;叉指型基极和发射极; 特点:发射区高浓度掺杂
基区很薄(几um—几十um)
N-掺杂浓度低,提高耐压能力
基极电流最大额定值IBM: 内部引线允许流过的最大基极电流,约为(1/2~1/6)ICM
2020/12/12
16
③最高结温TJM 塑封,硅管:1250~1500C; 金属封装,硅管:1500~1750C; 高可靠平面管:1750~2000C;
④最大功耗PCM PCM = VCE• IC 受结温限制,使用时注意散热条件。
• “太阳当空照,花儿对我笑,小鸟说早早早……”
二、GTR与普通晶体管区别
1.普通晶体管:信号晶体管,用于放大信号; 要求增益适当,fT高,噪声系数低,线性度好,温度漂移 和时间漂移小。工作于放大区,以载流子运动为出发点, 分析载流子扩散、漂移、复合现象。电流控制特性为线性 关系。
2.GTR:用于功率开关; 要求容量足够大,高电压,大电流,适当增益,较高工作 速度,较低功率损耗。
相关文档
最新文档