江苏南通市中考数学试题
南通数学中考试题及答案
南通数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 3.14D. 0.33333...答案:B2. 一个等腰三角形的底边长为6,高为4,那么它的周长是多少?A. 16B. 18C. 20D. 22答案:C3. 如果一个二次函数的图像开口向上,且顶点坐标为(1, -2),那么这个函数的解析式可能是?A. y = (x - 1)^2 - 2B. y = -(x - 1)^2 - 2C. y = (x + 1)^2 - 2D. y = -(x + 1)^2 - 2答案:B4. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为1, 2, 4,那么第四项可能是?A. 6B. 7C. 8D. 16答案:D6. 一个长方体的长、宽、高分别为3, 4, 5,那么它的体积是多少?A. 60B. 48C. 36D. 24答案:A7. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 一个函数y = 2x + 3的图象经过点(-1, 1),那么这个函数的斜率是多少?A. 2B. 3C. 4D. 5答案:A9. 一个扇形的圆心角为60°,半径为4,那么它的面积是多少?A. 4πB. 8πC. 6πD. 12π答案:A10. 一个数列的前三项为2, 4, 8,那么第四项可能是?A. 10B. 12C. 16D. 32答案:D二、填空题(每题4分,共20分)11. 一个圆的直径为10,那么它的周长是______。
答案:20π12. 一个等差数列的前三项为2, 5, 8,那么它的公差是______。
答案:313. 一个函数y = kx + b的图象经过点(2, 6)和(3, 9),那么k和b的值分别是______和______。
答案:3和314. 一个长方体的长、宽、高分别为2, 3, 4,那么它的表面积是______。
江苏省南通市2021年中考数学试题(解析版)
江苏省南通市2021年中考数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 计算,结果正确的是()A. 3B. 1C.D.【答案】C【解析】【分析】原式利用有理数的减法法则计算即可得到结果.【详解】解:,故选:C.【点睛】本题考查了有理数的减法,熟练掌握有理数的减法法则是解本题的关键.2. 据报道:今年“五一”期间,苏通大桥、崇启大桥、沪苏通大桥三座跨江大桥车流量约1370000辆次.将1370000用科学记数法表示为()A. B. C. D.【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1370000用科学记数法表示为:1.37×106.故选:D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. B. C. D.【答案】B【解析】【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. ,选项计算错误,不符合题意;B. ,选项计算正确,符合题意;C.,选项计算错误,不符合题意;D. ,选项计算错误,不符合题意;故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.4. 以下调查中,适宜全面调查的是()A. 了解全班同学每周体育锻炼的时间B. 调查某批次汽车的抗撞击能力C. 调查春节联欢晚会的收视率D. 鞋厂检测生产的鞋底能承受的弯折次数【答案】A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】解:A、了解全班同学每周体育锻炼的时间适合全面调查,符合题意;B、调查某批次汽车的抗撞击能力适合抽样调查,不符合题意;C、调查春节联欢晚会的收视率适合抽样调查,不符合题意;D、鞋厂检测生产的鞋底能承受的弯折次数适合抽样调查,不符合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5. 如图,根据三视图,这个立体图形的名称是()A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥【答案】A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱. 故选:A .【点睛】本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.6. 菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( ) A. 24 B. 20C. 10D. 5【答案】B 【解析】【分析】根据菱形的性质及勾股定理可直接进行求解. 【详解】解:如图所示:∵四边形ABCD 是菱形,BD=8,AC=6, ∴AC ⊥BD ,OA=OC=3,OD=OB=4,Rt △AOD 中,,∴菱形ABCD 的周长为:4×5=20, 故选B .【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.7. 《孙子算经》中有一道题,原文是“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,可列方程组为( ) A B. C. D.【答案】D在【解析】【分析】本题的等量关系是:绳长=木长+4.5;木长=绳长+1,据此可列方程组求解.详解】解:设木长x尺,绳长y尺,【依题意得,故选:D.【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.8. 若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A. B. C. D.【答案】C【解析】【分析】分别求出每一个不等式的解集,根据口诀不等式组的整数解个数即可得出答案.【详解】解:解不等式,得:,解不等式,得:,∵不等式组只有3个整数解,即5,6,7,∴,故选:C.【点睛】本题主要考查了一元一次不等式组的整数解,解题的关键是熟练掌握解一元一次不等式,并根据不等式组整数解的个数得出关于的不等式组.9. 如图,四边形中,,垂足分别为E,F,且,.动点P,Q均以的速度同时从点A出发,其中点P沿折线运动到点B停止,点Q沿运动到点B停止,设运动时间为,的面积为,则y与t对应关系的图象大致是()A. B.C. D.【答案】D【解析】【分析】分四段考虑,①点P在AD上运动,②点P在DC上运动,且点Q还未到端点B,③点P在DC 上运动,且点Q到达端点B,④点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象.【详解】解:在Rt△ADE中AD=(cm),在Rt△CFB中,BC=(cm),AB=AE+EF+FB=15(cm),①点P在AD上运动,AP=t,AQ= t,即0,如图,过点P作PG⊥AB于点G,,则PG=(0),此时y=AQ PG=(0),图象是一段经过原点且开口向上的抛物线;②点P在DC上运动,且点Q还未到端点B,即13,此时y=AQ DE=(13),图象是一段线段;③点P在DC上运动,且点Q到达端点B,即15,此时y=AB DE=(15),图象是一段平行于x轴的水平线段;④点P在BC上运动,PB=31-t,即18,如图,过点P作PH⊥AB于点H,,则PH=,此时y=AB PH=(18),图象是一段线段;综上,只有D选项符合题意,故选:D.【点睛】本题考查了动点问题的函数图象,解答本题的关键是分段讨论y与t的函数关系式,10. 平面直角坐标系中,直线与双曲线相交于A,B两点,其中点A在第一象限.设为双曲线上一点,直线,分别交y轴于C,D两点,则的值为()A. 2B. 4C. 6D. 8【答案】B【解析】【分析】根据直线与双曲线相交于A,B两点,其中点A在第一象限求得,,再根据为双曲线上一点求得;根据点A与点M的坐标求得直线AM解析式为,进而求得,根据点B与点M的坐标求得直线BM解析式为,进而求得,最后计算即可.【详解】解:∵直线与双曲线相交于A,B两点,∴联立可得:解得:或∵点A在第一象限,∴,.∵为双曲线上一点,∴.解得:.∴.设直线AM的解析式为,将点与点代入解析式可得:解得:∴直线AM的解析式为.∵直线AM与y轴交于C点,∴.∴.∴.∵,∴.设直线BM的解析式为,将点与点代入解析式可得:解得:∴直线BM的解析式为.∵直线BM与y轴交于D点,∴.∴.∴.∵,∴.∴=4.故选:B.【点睛】本题考查了一次函数和反比例函数的综合应用,涉及到分式方程,一元二次方程和二元一次方程组的求解,正确求出点的坐标和直线解析式是解题关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11. 分解因式:______________【答案】.【解析】【分析】根据平方差公式分解即可.【详解】解:.故答案为.【点睛】本题考查了多项式因式分解,熟练掌握分解因式的方法是关键.的12. 正五边形每个内角的度数是_______.【答案】【解析】【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵正多边形的内角和为,∴正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.13. 圆锥的母线长为,底面圆的半径长为,则该圆锥的侧面积为___________.【答案】【解析】【分析】利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可.【详解】解:依题意知母线长=2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故答案为:2π.【点睛】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.14. 下表中记录了一次试验中时间和温度的数据.若温度的变化是均匀的,则14分钟时的温度是___________℃.【答案】52【解析】【分析】根据表格中的数据,依据时间与温度的变化规律,即可用时间t的式子表示此时的温度T,利用一次函数的性质即可解决.【详解】解:设时间为t分钟,此时的温度为T,由表格中的数据可得,每5分钟,升高15℃,故规律是每过1分钟,温度升高3℃,函数关系式是T=3t+10;则第14分钟时,即t=14时,T=314+10=52℃,故答案为:52.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.15. 如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为___________海里(结果保留根号).【答案】.【解析】【分析】先作PC⊥AB于点C,然后利用勾股定理进行求解即可.【详解】解:如图,作PC⊥AB于点C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案为:.【点睛】此题主要考查了勾股定理的应用-方向角问题,求三角形的边或高的问题一般可以转化为用勾股定理解决问题,解决的方法就是作高线.16. 若m,n是一元二次方程的两个实数根,则的值为___________.【答案】3【解析】【分析】先根据一元二次方程的解的定义得到m2+3m-1=0,则3m-1=-m2,根据根与系数的关系得出m+n=-3,再将其代入整理后的代数式计算即可.【详解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的两个根,∴m+n=-3,∴,故答案为:3.【点睛】本题考查了根与系数关系:若x1,x2是一元二次方程()的两根时,的,.也考查了一元二次方程的解.17. 平面直角坐标系中,已知点,且实数m,n满足,则点P到原点O的距离的最小值为___________.【答案】【解析】【分析】由已知得到点P的坐标为(,),求得PO=,利用二次函数的性质求解即可.【详解】解:∵,∴,则,∴点P的坐标为(,),∴PO=,∵,∴当时,有最小值,且最小值为,∴PO的最小值为.故答案为:.【点睛】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.18. 如图,在中,,,以点A为圆心,长为半径画弧,交延长线于点D,过点C作,交于点,连接BE,则的值为___________.【答案】.【解析】【分析】连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,设AC=BC=a,求出AF=CF=,由勾股定理求出CE,再由勾股定理求出BE的长即可得到结论.【详解】解:连接AE,过作AF⊥AB,延长EC交AF于点F,过E作EG⊥BC于点G,如图,设AC=BC=a,∵∴,∴,∵∴∵∴∴∴设CE=x,则FE=在Rt△AFE中,∴解得,,(不符合题意,舍去)∴∵∴∴∴在Rt△BGE中,∴∴故答案为:.【点睛】此题主要考查了等腰直角三角形的判定与性质,勾股定理与圆的基本概念等知识,正确作出辅助线构造直角三角形是解答此题的关键.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)化简求值:,其中;(2)解方程.【答案】(1)原式=4;(2).【解析】【分析】(1)先用完全平方差公式与多项式乘法公式将原式化简为,再将已知条件代入即可;(2)根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1、检验依次进行求解即可.【详解】解:(1)==当时,原式==;(2),去分母得:,解得:,经检验,是原方程的解.则原方程的解为:.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.20. 如图,利用标杆测量楼高,点A,D,B在同一直线上,,,垂足分别为E,C.若测得,,,楼高是多少?【答案】楼高是9米.【解析】【分析】先求出AC的长度,由∥,得到,即可求出BC的长度.【详解】解:∵,,∴m,∵,,∴∥,∴△ADE∽△ABC,∴,∵,∴,∴;∴楼高是9米.【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定和性质是解题关键.21. 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1)___________,___________;(2)从方差的角度看,___________种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【答案】(1)a=88,b=90;(2)乙;(3)见解析【解析】【分析】(1)根据中位数、众数的意义求解即可;(2)根据数据大小波动情况,直观可得答案;(3)从方差、中位数、众数的比较得出答案.【详解】解:(1)甲品种西瓜测评得分从小到大排列处在中间位置的一个数是88,所以中位数是88,即a=88,将乙品种西瓜的测评得分出现次数最多的是90分,因此众数是90,即b=90,故答案为:a=88,b=90;(2)由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S乙2<S甲2,故答案为:乙;(3)小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.22. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4(1)随机摸取一个小球的标号是奇数,该事件的概率为___________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.【答案】(1);(2).【解析】【分析】(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球和是5的情况,再利用概率公式求解即可求得答案;【详解】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,“摸出的小球标号是奇数”的概率为:;故答案为:.(2)画树状图得:∴共有16种等可能的结果,两次取出小球标号的和等于5的情况有4种;∴两次取出小球标号的和等于5的概率为:.【点睛】此题考查了树状图法与列表法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,,连接.(1)求的度数;(2)若,求的长.【答案】(1)55°;(2).【解析】【分析】(1)连接OC,如图,利用切线的性质得到OC⊥CD,则判断OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度数,即可求解;(2)利用(1)的结论先求得∠AEO∠EAO70°,再平行线的性质求得∠COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴的长为.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.24. A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A超市的购物金额为:(元);去B超市的购物金额为:(元).(1)设商品原价为x元,购物金额为y元,分别就两家超市的促销方式写出y关于x的函数解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.【答案】(1)A商场y关于x的函数解析式:;B商场y关于x的函数解析式:;(2)当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【解析】【分析】(1)利用促销方式,分别写出A、B两商场促销活动的情况,注意需要写出分段函数;(2)小刚一次购物的商品原价超过200元,则可以确定B的函数解析式,再分段求出A函数的解析式,比较两函数值即可,注意分段讨论.【详解】解:(1)A商场y关于x的函数解析式:,即:;B商场y关于x的函数解析式:,即:;(2)∵小刚一次购物的商品原价超过200元∴当时,,令,,所以,当时,即,去B超市更省钱;当时,,令,,所以,当时,即,此时去A、B超市一样省钱;当时,即,去B超市更省钱;当时,即,去A超市更省钱;综上所述,当时,去B超市更省钱;当时,去A、B超市一样省钱;当时,去A超市更省钱.【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意B 商场根据商品原价的取值范围分情况讨论.25. 如图,正方形中,点E在边上(不与端点A,D重合),点A关于直线的对称点为点F,连接,设.(1)求的大小(用含的式子表示);(2)过点C作,垂足为G,连接.判断与的位置关系,并说明理由;(3)将绕点B顺时针旋转得到,点E的对应点为点H,连接,.当为等腰三角形时,求的值.【答案】(1).(2)DG//CF.理由见解析.(3).【解析】【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为算出.(2)作辅助线BF、AC,先导角证明是等腰直角三角形、是等腰直角三角形.再证明、,最后用内错角相等,两直线平行,证得DG//CF.(3) 为等腰三角形,要分三种情况讨论:①FH=BH②BF=FH③BF=BH,根据题目具体条件,舍掉了②、③种,第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A关于直线BE的对称点为点FBE是AF的垂直平分线,AB=BF四边形ABCD是正方形AB=BC,.(2) 位置关系:平行.理由:连接BF,AC,DG设DC和FG的交点为点M,AF和BE相交于点N由(1)可知,是等腰直角三角形四边形ABCD是正方形是等腰直角三角形垂直平分AF在和中,在和中,CF//DG(3)为等腰三角形有三种情况:①FH=BH②BF=FH③BF=BH,要分三种情况讨论:①当FH=BH时,作于点M由(1)可知:AB=BF,四边形ABCD是正方形设AB=BF=BC=a将绕点B顺时针旋转得到FH=BH是等腰三角形,在和中,BM=AE=②当BF=FH时,设FH与BC交点为O绕点B顺时针旋转得到由(1)可知:此时,与重合,与题目不符,故舍去③当BF=BH时,由(1)可知:AB=BF设AB=BF=a四边形ABCD是正方形AB=BC=aBF=BHBF=BH=BC=a而题目中,BC、BH分别为直角三角形BCH的直角边和斜边,不能相等,与题目不符,故舍去.故答案为:【点睛】本题考查了三角形内角和定理(三角形内角和为 )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系()、正弦函数定义式(对边:斜边) .26. 定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;(3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.【答案】(1)函数y=x+2没有“等值点”;函数的“等值点”为(0,0),(2,2);(2)或;(3)或..【解析】【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求A(,),B(,),利用三角形面积公式列出方程求解即可;(3)由记函数y=x2-2(x≥m)的图象为W1,将W1沿x=m翻折后得到的函数图象记为W2,可得W1与W2的图象关于x=m对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y=x+2,令y=x,则x+2=x,无解,∴函数y=x+2没有“等值点”;∵函数,令y=x,则,即,解得:,∴函数的“等值点”为(0,0),(2,2);(2)∵函数,令y=x,则,解得:(负值已舍),∴函数的“等值点”为A(,);∵函数,令y=x,则,解得:,∴函数的“等值点”为B(,);的面积为,即,解得:或;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于对称,∴函数W的解析式为,令y=x,则,即,解得:,∴函数的“等值点”为(-1,-1),(2,2);令y=x,则,即,当时,函数W的图象不存在恰有2个“等值点”的情况;当时,观察图象,恰有2个“等值点”;当时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴,整理得:,解得:.综上,m的取值范围为或.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.。
2020年江苏省南通市中考数学试题(word版,含解析)
2020年江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算13--,结果正确的是( ) A .﹣4B .﹣3C .﹣2D .﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( ) A .6.8×104B .6.8×105C .0.68×105D .0.68×1063.下列运算,结果正确的是( ) A .532-=B .3+2=32C .623÷=D .6223⨯=4.以原点为中心,将点P (4,5)按逆时针方向旋转90°,得到的点Q 所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,已知AB ∥CD ,∠A =54°,∠E =18°,则∠C 的度数是( )A .36°B .34°C .32°D .30°6.一组数据2,4,6,x ,3,9的众数是3,则这组数据的中位数是( ) A .3B .3.5C .4D .4.57.下列条件中,能判定ABCD 是菱形的是( ) A .AC =BDB .AB ⊥BCC .AD =BDD .AC ⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )9.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B ﹣E ﹣D 运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1cm /s .现P ,Q 两点同时出发,设运动时间为x (s ),△BPQ 的面积为y (cm 2),若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .96cm 2B .84cm 2C .72cm 2D .56cm 210.如图,在△ABC 中,AB =2,∠ABC =60°,∠ACB =45°,D 是BC 的中点,直线l 经过点D ,AE ⊥l ,BF ⊥l ,垂足分别为E ,F ,则AE +BF 的最大值为( )A 6B .22C .3D .32二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分) 11.分解因式:22=xy y - .12.已知⊙O 的半径为13cm ,弦AB 的长为10cm ,则圆心O 到AB 的距离为 cm . 13.若271m m <<+,且m 为整数,则m = .14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 . 15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x 步,则可列方程为 .16.如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是 1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:(第14题) (第16题)17.若x 1,x 2是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于 .18.将双曲线3y x=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线()20y kx k k =-->相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)= .三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)()()()22322m n m n m n +-+-; (2)22x y y xy x x x ⎛⎫--÷+ ⎪⎝⎭.20.(11分)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC . (2)如图②,A 为⊙O 上一点,按以下步骤作图: ①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ; ③在射线OB 上截取BC =OA ; ④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:3y x =+与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示: 第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约 人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果; (2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.25.(13分)已知抛物线2y ax bx c =++经过A (2,0),B (3n ﹣4,y 1),C (5n +6,y 2)三点,对称轴是直线1x =.关于x 的方程2ax bx c x ++=有两个相等的实数根. (1)求抛物线的解析式;(2)若5n <-,试比较y 1与y 2的大小;(3)若B ,C 两点在直线x =1的两侧,且12y y >,求n 的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设AEuBE,点D的纵坐标为t,请直接写出u关于t的函数解析式.2020年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:原式=1﹣3=﹣2.故选:C.2.【解答】解:68000=6.8×104.故选:A.3.【解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.4.【解答】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.5.【解答】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.6.【解答】解:∵这组数据2,4,6,x,3,9的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,6,9,处于中间位置的两个数是3,4,∴这组数据的中位数是(3+4)÷2=3.5.故选:B.7.【解答】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.8.【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.9.【解答】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,由图2可知当x=14时,点Q与点C重合,∴BC=14,∴矩形的面积为14×6=84.故选:B.10.【解答】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.13.【解答】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.14.【解答】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.15.【解答】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.16.【解答】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.17.【解答】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.18.【解答】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.【解答】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.20.【解答】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.21.【解答】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).22.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.23.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.24.【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG =4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.25.【解答】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.26.【解答】解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∵∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),由(2)可知,BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).。
2023年江苏南通中考真题数学试卷(详解版)
123答案AA 选项:三棱柱的俯视图是三角形,故此选项符合题意;B 选项:圆柱体的俯视图是圆,故此选项不合题意;C 选项:四棱锥的俯视图是四边形(画有对角线),故此选项不合题意;D 选项:圆锥体的俯视图是圆(带圆心),故此选项不合题意.故选 A.4A.线段上B.线段上C.线段上D.线段上★★如图,数轴上,,,,五个点分别表示数,,,,,则表示数的点应在().C,而数轴上,,,,五个点分别表示数,,,,,表示数的点应在线段上.故选 C .5A.B.C.D.★★★如图,中,,顶点,分别在直线,上,若,,则的度数为().A 如图,2023年江苏南通中考真题第4题3分2023年江苏南通中考真题第5题3分,,,,,.故选 A .6A.B.C.D.★★★若,则的值为().D,,.故选 D .7★★★如图,从航拍无人机看一栋楼顶部的仰角为,看这栋楼底部的俯角为,无人机与楼的水平距离为,则这栋楼的高度为().2023年江苏南通中考真题第6题3分2023年江苏南通中考真题第7题3分A. B. C. D.B过点作,垂足为,在中,,,在中,,,,故选 B.8★★★2023年江苏南通中考真题第8题3分A.B.C.D.如图,四边形是矩形,分别以点,为圆心,线段,长为半径画弧,两弧相交于点,连接,,.若,,则的正切值为().C,,,,,四边形是矩形,,,,,,,设,则,,由勾股定理得:,,,.故选 C.9A.B.C.D.★★★★如图 1,中,,,.点从点出发沿折线运动到点停止,过点作,垂足为.设点运动的路径长为,的面积为,若与的对应关系如图 2所示,则的值为().B,,,,①当时,点在边上,如图所示,此时,,,,,,,,,,2023年江苏南通中考真题第9题3分当时,,,②当时,点在边上,如图所示,此时,,,,,,,,,当时,,,.故选 B .10A.B.C.D.★★★若实数,,满足,,则代数式的值可以是().D由题意可得,2023年江苏南通中考真题第10题3分解得:,则,,A ,B ,C 不符合题意,D 符合题意.故选 D .11★计算:.原式.故答案为:.12★★★分解因式:..13★★★2023年江苏南通中考真题第11题3分2023年江苏南通中考真题第12题3分2023年江苏南通中考真题第13题4分如图,中,,分别是,的中点,连接,则.,分别是,的中点,,又,,.故答案为:.14★★某型号汽车行驶时功率一定,行驶速度(单位:)与所受阻力(单位:)是反比例函数关系,其图象如图所示.若该型号汽车在某段公路上行驶时速度为,则所受阻力为.设功率为,由题可知,即,将,代入可得:,即反比例函数为:.当时,.胡答案为:.2023年江苏南通中考真题第14题4分15★★★如图,是⊙的直径,点,在⊙上,若,则度.如图,连接,,,,,.故答案为:.16★★★勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数,,,其中,均小于,,,是大于的奇数,则 (用含的式子表示).,,是勾股数,其中,均小于,,,2023年江苏南通中考真题第15题4分2023年江苏南通中考真题第16题4分,是大于的奇数,.故答案为:.17★★已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是.一次函数,随的增大而增大,对于范围内任意自变量的值,其对应的函数值都小于,,解得.故答案为:.18★★★★如图,四边形的两条对角线,互相垂直,,,则的最小值是.2023年江苏南通中考真题第17题4分2023年江苏南通中考真题第18题4分设,的交点为,,,,的中点分别是,,,,连接,,,,,,,如图:,互相垂直,和为直角三角形,且,分别为斜边,,,,当为最小时,为最小,根据“两点之间线段最短”得:,当点在线段上时,为最小,最小值为线段的长,点,分别为,的中点,为的中位线,,,同理:,,,,,,,,四边形为平行四边形,,,,,四边形为矩形,在中,,,由勾股定理得:,的最小值为,的最小值为.故答案为:.19(1)(2)★★(1)(2)(1)(2)解方程组:①②.计算:.①②,②①得:,把代入①得:,解得:,故原方程组的解是:..20★★某校开展以“筑梦天宫、探秘苍穹”为主题的航天知识竞赛,赛后在七、八年级各随机抽取名学生的竞赛成绩,进行整理、分析,得出有关统计图表.抽取的学生竞赛成绩统计表年级平均数中位数众数方差七年级八年级2023年江苏南通中考真题第19题12分2023年江苏南通中考真题第20题10分(1)(2)(1)(2)(1)(2)注:设竞赛成绩为(分),规定:90为优秀;为良好;60为合格;为不合格.若该校八年级共有名学生参赛,估计优秀等次的约有人.你认为七、八年级中哪个年级学生的竞赛成绩更好些?请从两个方面说明理由.八年级成绩较好,理由见解析若该校八年级共有名学生参赛,估计优秀等次的约有(人).故答案为:.八年级成绩较好,理由如下:因为七、八年级的平均数相等,而八年级的众数和中位数大于七年级的众数和中位数,所以八年级得分高的人数较多,即八年级成绩较好(答案不唯一).21★★★如图,点,分别在,上,,,相交于点,.求证:.2023年江苏南通中考真题第21题10分(1)(2)(1)(2)(1)(2)小虎同学的证明过程如下:证明:,.,.……第一步又,,.……第二步.……第三步小虎同学的证明过程中,第步出现错误.请写出正确的证明过程.二见解析小虎同学的证明过程中,第二步出现错误,故答案为:二.方法一:,,在和中,,,,在和中,,,.方法二:,,.22(1)(2)★★(1)(2)(1)(2)有同型号的,两把锁和同型号的,,三把钥匙,其中钥匙只能打开锁,钥匙只能打开锁,钥匙不能打开这两把锁.从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.从两把锁中随机取出一把锁,从三把钥匙中随机取出一把钥匙,求取出的钥匙恰好能打开取出的锁的概率.有同型号的,,三把钥匙,从三把钥匙中随机取出一把钥匙,取出钥匙的概率等于.故答案为:.画树状图如下:共有种等可能的结果,其中取出的钥匙恰好能打开取出的锁的结果有种,即、,取出的钥匙恰好能打开取出的锁的概率为.23★★★如图,等腰三角形的顶角,⊙和底边相切于点,并与两腰,分别相交于,两点,连接,.2023年江苏南通中考真题第22题10分2023年江苏南通中考真题第23题10分(1)(2)(1)(2)(1)(2)求证:四边形ODCE是菱形.若⊙的半径为,求图中阴影部分的面积.见解析连接,⊙和底边相切于点,,,,,,,和都是等边三角形,,,,四边形是菱形.连接交于点,四边形是菱形,,,,在中,,,,图中阴影部分的面积扇形的面积菱形的面积,图中阴影部分的面积为.24(1)(2)★★★(1)(2)答案(1)(2)解析为推进全民健身设施建设,某体育中心准备改扩建一块运动场地.现有甲、乙两个工程队参与施工,具体信息如下:信息一工程队每天施工面积(单位:)每天施工费用(单位:元)甲乙信息二甲工程队施工所需天数与乙工程队施工所需天数相等.求的值.该工程计划先由甲工程队单独施工若干天,再由乙工程队单独继续施工,两队共施工天,且完成的施工面积不少于.该段时间内体育中心至少需要支付多少施工费用?元根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:的值为.设甲工程队施工天,则乙工程队单独施工天,2023年江苏南通中考真题第24题12分根据题意得:,解得:,设该段时间内体育中心需要支付元施工费用,则,即,,随的增大而增大,当时,取得最小值,最小值.答:该段时间内体育中心至少需要支付元施工费用.25(1)(2)(3)★★★(1)(2)(3)(1)正方形中,点在边,上运动(不与正方形顶点重合).作射线,将射线绕点逆时针旋转,交射线于点.如图,点在边上,,则图中与线段相等的线段是.过点作,垂足为,连接,求的度数.在(2)的条件下,当点在边延长线上且时,求的值.或四边形是正方形,2023年江苏南通中考真题第25题13分(2),,,(全等),.故答案为:.当点在边上时,如图,过点作交于,延长交于点,,四边形是矩形,,,,,,,是等腰直角三角形,,,,,,,为等腰直角三角形,,;当点在边上时,如图,(3)过点作交于,延长交延长线于点,四边形是矩形,同理,,,为等腰直角三角形,,,综上所述:的度数为或.当点在边延长线上时,点在边上,设,则,,,,.26(1)(2)★★★定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由.点与其“级变换点”B分别在直线,上,在,上分别取点,.若,求证:.2023年江苏南通中考真题第26题13分(3)(1)(2)(3)(1)(2)(3)关于的二次函数的图象上恰有两个点,这两个点的“级变换点”都在直线上,求的取值范围.见解析且存在,理由:由题意得,的“级变换点”为:,将代入反比例函数表达式得:,解得:.由题意得,点的坐标为:,由点的坐标知,点在直线上,同理可得,点在直线,则,,则,,则,即.设在二次函数上的点为点、,设点,则其“级变换点”坐标为:,将代入得:,则,即点在直线上,同理可得,点在直线上,即点、所在的直线为;由抛物线的表达式知,其和轴的交点为:、,其对称轴为,当时,抛物线和直线的大致图象如下:直线和抛物线均过点,则点个点为点,如上图,联立直线和抛物线的表达式得:设点的横坐标为,则,则,解得:,此外,直线和抛物线在故,即且;当时,当时,直线不可能和抛物线在故该情况不存在,综上,且.。
南通九年级中考数学试卷【含答案】
南通九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 3C. 0D. 72. 若 a > b,则下列哪个选项一定成立?()A. a c > b cB. a + c > b + cC. ac > bcD. a/b > b/a3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是无理数?()A. √9B. √16C. √3D. √15. 下列哪个选项是代数式?()A. 2x + 3B. x = 5C. y 4 = 2D. 4 < 7二、判断题1. 任何数乘以0都等于0。
()2. 负数的平方是正数。
()3. 所有的偶数都是2的倍数。
()4. 两个负数相乘得到正数。
()5. 所有的正方形都是矩形。
()三、填空题1. 2的平方是______。
2. 若 a = 3,b = -2,则 a + b = ______。
3. 下列图形中,______是轴对称图形。
4. 若 3x + 5 = 14,则 x = ______。
5. 下列数中,______是素数。
四、简答题1. 解释什么是负数。
2. 解释什么是平行四边形。
3. 解释什么是无理数。
4. 解释什么是代数式。
5. 解释什么是因数分解。
五、应用题1. 小明有5个苹果,他吃掉了2个,还剩下几个苹果?2. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
3. 若 2x 3 = 7,求 x 的值。
4. 一个数的平方是16,求这个数。
5. 列出所有的2的倍数,从1到10。
六、分析题1. 解释为什么负数的平方是正数。
2. 解释为什么所有的偶数都是2的倍数。
七、实践操作题1. 画出一个边长为5cm的正方形。
2. 画出一个半径为3cm的圆。
八、专业设计题1. 设计一个三角形,其中两个角分别是30度和60度,求第三个角的大小。
2. 设计一个长方形,长是宽的两倍,如果长方形的周长是24cm,求长方形的长和宽。
2022南通中考数学试题及答案
2022南通中考数学试题及答案2022年南通中考数学试题一、选择题(每小题3分,共45分)1. 已知抛物线y = ax^2 + bx + c的顶点坐标为(1, 2),且经过点(2, 3),则a、b、c的值分别为()。
A. 1,1,1B. 1/2,3/2,1C. 2,1,-3D. 1,-3,22. 下列等式恒成立的是()。
A. 2^5 = 3^4B. 4^3 = 2^6C. 5^2 = 3^3D. 2^7 = 3^43. 五年前,甲的年龄是乙的2倍,五年后,甲的年龄是乙的$\frac{2}{3}$倍,那么现在甲的年龄是乙的()倍。
A. 3/4B. 4/3C. 2D. 34. 月宽度的南通标准时间(傲娇地)为29.53天.现有观察结果是:A月初是星期五,A月的天数是奇数.那么这个A月有()天。
A. 29B. 30C. 31D. 325. 矩形柱体的底面长为6cm,宽为4cm,体积是72cm^3,则高为()cm。
A. 2B. 3C. 4D. 6...42. 已知圆的半径为4cm,圆心角为$120^\circ$,则弧长是()cm.A. $8\pi$B. $4\pi$C. $2\pi$D. $\pi$43. 已知记录故事片时的手风琴是32cm长,录放电话机模型是藕节长的4.5倍,现有手风琴图片模型是藕节长的12倍,则这个图片模型长()cm.A. 216B. 172C. 144D. 139.544. 成员10元.团队中每个成员不同程度地患有胃病,需购买16盒胃药.若每盒胃药的价格相同,且处方由同一个团队发,今天药店出售胃药7. 5折,而芦山发生地震中的地点是芦山的甲地,在合同到期后半年又一次购买胃药.那么半年后每盒胃药的价格是原价的().A. $18\over32$B. $256\over432$C. $5\over8$D.$13\over18$45. 见数偶数框内线描的面积是10,木料表面积是75,该木料的宽比长小2,那么木料的长和宽是()和().A. 6和8B. 12和14C. 5和7D. 13和15二、非选择题(共55分)46. 2022南通中考数学试题的总分是150分,即使你全做对了,你只能得到55分,很遗憾你考试失败了。
2024年江苏省南通市部分学校中考数学一模试卷及答案解析
2024年江苏省南通市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列结果中,是负数的是()A.﹣(﹣2)B.﹣|﹣1|C.3×2D.0×(﹣4)2.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为()A.25.3×104B.2.53×104C.2.53×105D.0.253×106 3.(3分)如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.4.(3分)下列各图中,可看作轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,且AB∥CD,则添加下列一个条件能判定四边形ABCD是菱形的是()A.AC=BD B.∠ADB=∠CDB C.∠ABC=∠DCB D.AD=BC6.(3分)如图,直线l1∥l2,含有30°的直角三角板的一个顶点C落在l2上,直角边交l1于点D,连接BD,使得BD⊥l2,若∠1=72°,则∠2的度数是()A.48°B.58°C.42°D.18°7.(3分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.8.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣4<a≤﹣3D.﹣4≤a<﹣3 9.(3分)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q 从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,△BPQ的面积为S cm2,下列图象能正确反映出S与t的函数关系的是()A.B.C.D.10.(3分)已知实数a,b满足4a2+b=n,b2+2a=n,b≠2a.其中n为自然数,则n的最小值是()A.4B.5C.6D.7二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)因式分解:2x﹣8x3=.13.(4分)底面圆半径为10cm、高为的圆锥的侧面展开图的面积为cm2.14.(4分)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行秒才能停下来.15.(4分)如图,社小山的东侧炼A处有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,20min后到达点C处,此时热气球上的人测得小山西侧点B处的俯角为30°,则小山东西两侧A,B两点间的距离为.16.(4分)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为.17.(4分)若a,b是一元二次方程x2﹣5x﹣2=0的两个实数根,则的值为.18.(4分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:;(2)先化简,再求值:,其中x=3.20.(8分)如图,已知A,D,C,E在同一直线上,BC和DF相交于点O,AD=CE,AB ∥DF,AB=DF.(1)求证:△ABC≌△DFE;(2)连接CF,若∠BCF=54°,∠DFC=20°,求∠DFE的度数.21.(10分)某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用A、B、C、D表示)和4个化学实验考查内容(用E、F、G、H表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是;(2)用列表法或画树状图法中的一种方法,求小刚抽到物理实验B和化学实验F的概率.22.(10分)青年大学习是共青团中央为组织引导广大青年深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神持续引向深人组织的青年学习行动.某校举办了相关知识竞赛(百分制),并分别在七、八年级中各随机抽取20名学生的成绩进行统计、整理与分析,绘制成如图两幅统计图.成绩用x表示,并且分为A、B、C、D、E五个等级,并且分别是:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.七、八年级成绩的平均数、中位数众数如下表:平均数中位数众数七年级76m75八年级777678其中,七年级成绩在C等级的数据为77、75、75、78、79、75、73、75;八年级成绩在E等级的有3人.根据以上信息,解答下列问题:(1)扇形统计图中B等级所占圆心角的度数是,表中m的值为;(2)通过以上数据分析,你认为哪个年级对青年大学习知识掌握得更好?请说明理由;(3)请对该校学生“青年大学习”的掌握情况作出合理的评价.23.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=60°,⊙O的切线CD与AB的延长线相交于点D.(1)求证:BD=BC;(2)若⊙O的半径为6,求图中阴影部分的面积.24.(13分)随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?25.(13分)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.26.(14分)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“平衡点”.例如,点(﹣1,1)是函数y=x+2的图象的“平衡点”.(1)在函数①y=﹣x+3,②y=,③y=﹣x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的函数是;(填序号)(2)设函数y=﹣(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图象绕y轴上一点M旋转180°,M在(0,﹣1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.2024年江苏省南通市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】利用相反数的意义及绝对值的性质化简A、B,再利用乘法法则计算即可得到C、D.【解答】解:∵A、﹣(﹣2)=2,∴A项不符合题意;∵B、﹣|﹣1|=﹣1,∴B项符合题意;∵C、3×2=6,∴C项不符合题意;∵D、0×(﹣4)=0,∴D项不符合题意.故选:B.【点评】本题考查了相反数的意义,绝对值的性质,有理数的乘法法则,掌握绝对值的性质是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253000=2.53×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形,解题关键是抓住轴对称图形是指将一个图形沿着某条直线折叠,直线两旁的部分能够完全重合.5.【分析】根据菱形的判定方法分别对各个选项进行判定,即可得出结论.【解答】解:∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OA=OC,∴△AOB≌△COD(AAS),∴AB=CD,∴四边形ABCD是平行四边形,A、当AC=BD时,四边形ABCD是矩形;故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠CDB,∵∠ADB=∠CDB,∴∠ADB=∠ABD,∴AD=AB,∴四边形ABCD为菱形,故选项B符合题意;C、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠DCB∴∠ABC=∠DCB=90°,∴四边形ABCD是矩形;故选项C不符合题意;D、当AD=BC时,不能判定四边形ABCD为菱形;故选项D不符合题意.故选:B.【点评】本题考查了菱形的判定,平行四边形的判定和性质,等腰三角形的判定和性质,熟练掌握菱形的判定定理是解题的关键.6.【分析】根据平行的性质可得∠DEB=∠1=72°,根据三角形的外角的定义可得∠ADC=42°,再根据平角进行计算即可得到答案.【解答】解:如图,设AB与l1相交于点E,∵l1∥l2,∠1=72°,∴∠DEB=∠1=72°,∵∠A+∠ADC=∠DEB=72°,∠A=30°,∴∠ADE=42°,∵∠ADC+∠BDE+∠2=180°,BD⊥l2,∴∠2=48°.故选:A.【点评】本题主要考查了平行线的性质、三角形外角的定义,平角的定义,熟练掌握平行线的性质、三角形外角的定义,平角的定义是解题的关键.7.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.8.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后根据不等式组有且只有3个整数解,即可得到a的取值范围.【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>a,∴该不等式组的解集是a<x≤2,∵关于x的不等式组有且只有3个整数解,∴这三个整数解是0,1,2,∴﹣1≤a<0,故选:A.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.9.【分析】当0<t≤1时,点P在OE上,当1<t≤2时,点P在OF上,分别求出S与t 的函数关系,即可解答.【解答】解:如图,当0<t≤1时,由题得,PE=BQ=t cm,∵正方向ABCD是边长为2cm,∴P到BC的距离为(2﹣t)cm,∴S=t•(2﹣t)=﹣t2+t,如图,当1<t≤2时,由题得,PF=CQ=(2﹣t)cm,∴四边形CFPQ为矩形,∴PQ=CF=1cm,∴S=t•1=t,故选:D.【点评】本题考查了动点问题的函数图象应用,三角形面积的计算是解题关键.10.【分析】由原式知,(4a2+b)﹣(b2+2a)=0,进一步变形得(2a﹣b)(2a+b﹣)=0,因为b≠2a,所以2a+b﹣=0,得b=﹣2a,代入b2+2a=n得,(﹣2a)+2a=n,配方法求极值.【解答】解:由原式知,(4a2+b)﹣(b2+2a)=0,∴(4a2﹣b2)﹣(2a﹣b)=0∴(2a﹣b)(2a+b)﹣(2a﹣b)=0∴(2a﹣b)(2a+b﹣)=0∵b≠2a∴2a+b﹣=0,∴b=﹣2a,代入b2+2a=n得,(﹣2a)2+2a=n,整理,得n=4a2﹣2a+7=(2a﹣)2+5≥5,∴自然数n的最小值为6故选C.【点评】本题考查等式的基本性质,平方差公式、完全平方公式、配方法求极值;根据式子的具体特征,结合乘法公式对代数式作恒等变形是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x﹣8x3=2x(1﹣4x2)=2x(1+2x)(1﹣2x),故答案为:2x(1+2x)(1﹣2x).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.【分析】先求出圆锥的母线长,再根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面半径为10cm,高为10cm,∴圆锥的母线为=20(cm),∴圆锥的侧面展开图的面积为×(2π×10)×20=200π(cm2).故答案为:200π.【点评】本题考查圆锥的计算,解题的关键是求出圆锥的母线和掌握圆锥的侧面展开图的面积公式.14.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意得,S=﹣0.25t2+10t=﹣0.25(t2﹣40t+400﹣400)=﹣0.25(t﹣20)2+100,∵﹣0.25<0,∴t=20时,飞机滑行的距离最大,即当t=20秒时,飞机才能停下来.故答案为:20.【点评】本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.15.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600(米),∴AD=AC•sin45°=300(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=600(米).故答案为:600.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.16.【分析】证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴,∵DF=6,∴AF===8,∴,∴AE=5,∴EF=AF﹣AE=8﹣5=3,故答案为:3.【点评】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.【分析】先根据一元二次方程的解的定义及根与系数的关系得出a +b =5,a 2=5a +2,再将其代入整理后的代数式计算即可.【解答】解:∵a ,b 是一元二次方程x 2﹣5x ﹣2=0的两个实数根,∴a +b =5,a 2﹣5a ﹣2=0,即:a 2=5a +2,∴,故答案为:5.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,,x 1•x 2=.也考查了一元二次方程的解.18.【分析】过点B 作直线AC 的垂线交直线AC 于点F ,由△BCE 的面积是△ADE 的面积的2倍以及E 是AB 的中点即可得出S △ABC =2S △ABD ,结合CD =k 即可得出点A 、B 的坐标,再根据AB =2AC 、AF =AC +BD 即可求出AB 、AF 的长度,根据勾股定理即可算出k 的值,此题得解.【解答】解:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC =2BD ,又∵OC •AC =OD •BD ,∴OD =2OC .∵CD =k ,∴点A 的坐标为(,3),点B 的坐标为(﹣,﹣),∴AC =3,BD =,∴AB =2AC =6,AF =AC +BD =,∴CD =k ===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先化简,然后算加减法即可;(2)先算括号内的式子,再算括号外的除法,然后将x的值代入化简后的式子计算即可.【解答】解:(1)=3+﹣1﹣=+;(2)=•===,当x=3时,原式==﹣5.【点评】本题考查实数的运算、分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行线的性质得∠A=∠FDE,根据等式的性质可得AC=DE,再由SAS 证明△ABC≌△DFE即可;(2)先根据三角形的外角可得∠DOC=74°,由平行线的性质可得∠B=∠DOC,最后由全等三角形的性质可得结论.【解答】(1)证明:∵AB∥DF,∴∠A=∠EDF,∵AD=CE,∴AD+CD=CE+CD,即AC=DE,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);(2)解:∵∠BCF=54°,∠DFC=20°,∴∠DOC=∠BCF+∠DFC=54°+20°=74°,∵AB∥DF,∴∠B=∠DOC=74°,∵△ABC≌△DFE,∴∠DFE=∠B=74°.【点评】本题考查了全等三角形的判定与性质,平行线的性质,证明三角形全等是解题的关键.21.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出抽到B和F的结果数,然后根据概率公式计算.【解答】解:(1)小刚抽到物理实验A的概率是;故答案为:;(2)画树状图为:共有16种等可能的结果,其中抽到B和F的结果数为1,所以小刚抽到物理实验B和化学实验F的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【分析】(1)求出调查人数以及B等级的学生人数所占的百分比即可求出相应的圆心角度数,根据中位数的定义求出中位数即可得出m的值;(2)通过平均数、中位数、众数的大小比较得出答案;(3)根据平均数、中位数、众数综合进行判断即可.【解答】解:(1)由条形统计图可得,调查人数为2+5+8+2+3=20(人),扇形统计图中B等级所占圆心角的度数是360=90°,将七年级这20名学生的成绩从小到大排列,处在中间位置的两个数的平均数为=75,因此中位数是75分,即m=75,故答案为:90°,75;(2)八年级学生的成绩较好,理由:八年级学生成绩的平均数、中位数、众数均比七年级学生的平均数、中位数、众数大,所以八年级学生成绩较好;(3)青年学生对深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神掌握情况一般,还需要进一步加强学习和宣传.【点评】本题考查条形统计图、扇形统计图,平均数、中位数、众数,理解两个统计图中数量之间的关系以及中位数、众数、平均数的意义是正确解答的前提.23.【分析】(1)连接OC,可证明△BOC是等边三角形,则∠BOC=∠BCO=60°,由CD 与⊙O相切于点C,得∠OCD=90°,即可求得∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,所以∠BCD=∠D,则BD=BC;(2)作CE⊥OB于点E,则CE=OC•sin60°=3,可求得S阴影=S扇形BOC﹣S△BOC=6π﹣9.【解答】(1)证明:连接OC,则OC=OB,∵∠ABC=60°,∴△BOC是等边三角形,∴∠BOC=∠BCO=60°,∵CD与⊙O相切于点C,∴CD⊥OC,∴∠OCD=90°,∴∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,∴∠BCD=∠D,∴BD=BC.(2)解:作CE⊥OB于点E,则∠OEC=90°,∵OC=OB=6,∴CE=OC•sin60°=6×=3,∴S阴影=S扇形BOC﹣S△BOC=﹣×6×3=6π﹣9,∴阴影部分的面积是6π﹣9.【点评】此题重点考查切线的性质、等边三角形的判定与性质、等腰三角形的判定、锐角三角函数与解直角三角形、三角形的面积公式、扇形的面积公式等知识,正确地作出所需要的辅助线是解题的关键.24.【分析】(1)设A种羽毛球拍每副的进价为x元,根据用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A种羽毛球拍m副,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求解即可;(3)设总利润为w元,表示出w与m的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【点评】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,理解题意并根据题意建立相应的关系式是解题的关键.25.【分析】(1)由轴对称的性质可得∠DAP=∠EAP=70°,AD=AE,由等腰三角形的性质和三角形内角和定理可求解;(2)先求出∠AFE=45°,通过证明△CDF∽△BDE,可得BE=CF;(3)先确定点G在以O为圆心,1为半径的圆上运动,再根据等腰直角三角形的性质求解即可.【解答】解:(1)补全图形如图1所示;设∠BAP=x,∴∠DAP=90°﹣x,∵线段AE与AD关于直线AP对称,∴∠DAP=∠EAP=90°﹣x,AD=AE,∴∠BAE=90°﹣2x,AB=AE,∴∠E=∠ABE=45°+x,∴∠AFE=180°﹣(90°﹣x)﹣(45°+x)=45°;(2)BE=CF;证明:如图2,连接DF,DE,BD,∵四边形ABCD是正方形,∴BD=CD,∠CDB=45°,∵线段AE与AD关于直线AP对称,∴DF=EF,∠DFA=∠AFE=45°,∴∠DFE=90°,∴∠FDE=45°=∠CDB,DE=DF,∴∠CDF=∠BDE,,∴△CDF∽△BDE,∴,∴BE=CF;(3)如图3,连接AC,BD交于点O,连接OG,∵四边形ABCD是正方形,∴AO=CO,又∵G是CE中点,∴OG=AE=AD=1,∴点G在以O为圆心,1为半径的圆上运动,∴点P从点B运动到点C,点G的运动到BD上时DG的值最大,且DG的最大值为DO+OG,∵OD=AD=,∴DG的最大值为1.【点评】本题是四边形综合题,考查了正方形的性质,轴对称的性质,相似三角形的判断和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是本题的关键.26.【分析】(1)在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,可知y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;(2)在y=﹣中,令y=﹣x得A(2,﹣2)或(﹣2,2);在y=2x+b中,令y=﹣x 得B(﹣,),当A(2,﹣2)时,C(0,﹣2),可得AB2=2(2+)2,BC2=+(2+)2,AC2=4,分三种情况列方程可得答案;(3)设M(0,m),m<﹣1,求出抛物线y=x2+2x的顶点为(﹣1,﹣1),而点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),可得旋转后的抛物线解析式为y=﹣(x ﹣1)2+2m+1=﹣x2+2x+2m,令y=﹣x得x2﹣3x﹣2m=0,根据旋转后的图象上恰有1个“平衡点”,知x2﹣3x﹣2m=0有两个相等实数根,故9+8m=0,m=﹣,从而得M的坐标为(0,﹣).【解答】解:(1)根据“平衡点”的定义,“平衡点”的横、纵坐标互为相反数,在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,∴y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;故答案为:③;(2)在y=﹣中,令y=﹣x得﹣x=﹣,解得x=2或x=﹣2,∵x>0,∴A(2,﹣2);在y=2x+b中,令y=﹣x得﹣x=2x+b,解得x=﹣,∴B(﹣,),当A(2,﹣2)时,C(0,﹣2),∴AB2=2(2+)2,BC2=+(2+)2,AC2=4,若AB=BC,则2(2+)2=+(2+)2,解得b=﹣3;若AB=AC,则2(2+)2=4,解得b=﹣3﹣6或b=3﹣6;若BC=AC,则+(2+)2=4,解得b=0或b=﹣6(此时A,B重合,舍去);∴b的值为﹣3或﹣3﹣6或3﹣6或0;(3)设M(0,m),m<﹣1,∵y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点为(﹣1,﹣1),点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),∴旋转后的抛物线解析式为y=﹣(x﹣1)2+2m+1=﹣x2+2x+2m,在y=﹣x2+2x+2m中,令y=﹣x得:﹣x=﹣x2+2x+2m,∴x2﹣3x﹣2m=0,∵旋转后的图象上恰有1个“平衡点”,∴x2﹣3x﹣2m=0有两个相等实数根,∴Δ=0,即9+8m=0,∴m=﹣,∴M的坐标为(0,﹣).【点评】本题考查二次函数的综合应用,涉及新定义,等腰三角形,一元二次方程根的判别式,旋转变换等知识,解题的关键是读懂新定义,利用二次函数与一元二次方程的关系解决问题。
2021年江苏省南通市中考数学测试试卷附解析
2021年江苏省南通市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知线段 AB=2,点 C 是 AB 的一个黄金分割点,且 AC>BC ,则 AC 的长是( ) A .512- B .51- C .352- D .35-2.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为( ) A .30°B .45°C .60°D .75°3.下列图形中,不是正方体的表面展开图的是( )4.小数表示2610-⨯结果为( ) A . 0.06 B . -0.006 C .-0.06 D .0.006 5.用平方差公式计算2(1)(1)(1)x x x -++的结果正确的是( )A .4(1)x -B .41x +C .41x -D .4(1)x + 6.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( ) A .6个 B .5个 C .4个 D .3个 7. 如图,△ABC 的两个外角平分线交于点O, 若∠BOC=76°,则∠A 的值为( ) A .76° B .52° C .28° D .38° 8.计算(2)(3)x x -+的结果是( )A .26x -B .26x +C . 26x x +-D .26x x --9.若关于x 的一元一次方程23=132x k x k---的解是1x =-,则k 的值是( ) A .27B .1C .1311-D . 010.计算222222113(22)(46)32a cb a bc +-+---的结果是( ) A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -11.与数轴上的点一一对应的数是( ) A . 自然数B .整数C .有理数D .实数二、填空题12.如图,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别以BA BC ,为半径的圆形成一圆环,则该圆环的面积为 .13.如图,⊙O 的直径为 10,弦AB= 8,P 是 AB 上的一个动点,那么OP 长的取值范围是 .14.一组数据35,35,36,36,37,38,38,38,39,40的极差是 .15.“含有相同的字母,并且相同字母的指数也相同的项,叫做同类项”是 的定义. 16.如图,∠1 和∠2 是一对 (填“同位角”;“内错角”或“同旁内角” ).17.如图所示,图①经过 变为图②,再经过 变为图③.解答题三、解答题18.如图,已知⊙O 1 与⊙O 2外切于A ,⊙O 1 的直径 CE 的延长线与⊙O 2相切于B ,过 C 作⊙O 1的切线与O 2O 1 的延长线相交于D ,⊙O 1和⊙O 的半径长分别是2和 3,求 CD 的长.19.如图,∠PAQ 是直角,⊙O 与 AP 相切于点 T ,与 AQ 交于B 、C 两点. (1)BT 是否平分∠OBA ?说明你的理由. (2)若已知 AT=4,弦 BC=6,试求⊙O 的半径R.20.已知锐角α的三角函数值,使用计算器求锐角α(精确到 1").(1) tanα= 1.6982;(2) sinα=0. 8792;(3) cosaα= 0.3469.21.某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量 y(张)之间有如下关系:x (元)3456y(张)20151210对(x,y)的对应点;(2)猜测并确定 y 与x 之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为ω元,试求ω与x之间的函数关系式,如果物价局规定此贺卡售价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润?22.长36cm的铝丝能否将其剪成相等的两段,用其中一段弯成一个长方形,另一段弯成一个底边为8cm的等腰三角形,且使长方形面积与等腰三角形面积相等,若能,求出长方形的边长,若不能,说明理由.23.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.24.如图,EF 过□ABCD 的对角线交点0,交AD 于点E ,交BC 于点F ,若AB=4,BC=5,OE=1.5,求四边形EFCD 的周长.25.计算:(1)41()[2()]2a b b a -÷-;(2)32(36246)6x x x x -+÷;(3)62(310)(610)⨯÷-⨯26.下列各个分式中的字母满足什么条件时,分式有意义? (1)251y -;(2)1|1|a -;(3)1||1b -27.利用图形变换,分析如图的花边图案是怎样形成的,请类似地利用图形变换设计一条花边图案.28.如图梯形的个数和周长的关系如下表所示1121112112112梯形个数 1 2 3 4 … n图形周长5811…(1)请将表中的空白处填上适当的数或代数式; (2)若n=20时,求图形的周长29.下面是小马虎解的一道数学题.30.在数轴上表示下列各数:0,-2.5,213,-2,+5,311,并按从大到小的顺序排列.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.A5.C6.D7.C8.C9.B10.C11.D二、填空题 12.9π 13.3≤OP ≤514.515.同类项16.同旁内角17.平移变换,轴对称变换三、解答题 18.连结O 2B ,则 O 2B ⊥BC ,∴2221122534BO O O O B =-=-=, 又∵CD 为⊙O 1的切线,∴CD ⊥BC ,∴CD ∥O 2B ,∴211O B BO CD O C=, ∴342CD =,∴CD=1.5. 19.(1) BT 平分∠OBA .理由如下:连结 OT ,则 OT ⊥AP.∵∠PAQ=90°,∴∠PAQ+∠OTA=180°∴OT ∥AQ ,∴∠OTB=∠ABT ,又∠OTB=∠OBT ,∴∠ABT=∠0BT ,∴BT 平分∠0BA (2)作 OE ⊥BC 于E 点,则 BE=3,四边形 AEOT 是矩形,∴ OE=AT=4, ∴22435R =+=20.(1)0593029α'''≈;(2)0613246α'''≈;(3)69428oα'''≈21.(1)如图,(2)是反比例函数,60y x= (x 为正整数)图象如解图.(3)12060w x=- ,当定价x 定为10元/张时,利润最大,为48 元.22.解:设矩形的长为xcm ,则宽为(9-x )cm由题意得(9-x )x =12 ×3×8,解得x 1=9+33 2 ,x 2=9-33 2 答:矩形的边长为9+33 2 cm 和9-33 2cm . 23.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)24.证△AOE ≌△COF(ASA),再得四边形EFCD 的周长=10.525.(1)31()4b a -;(2)641x x -+;3510-⨯26.(1)1y ≠±;(2)1a ≠;(3)1b ≠±27.略28.(1)14,3n+2;(2)6229.题目:在同一平面内,若∠BOA=70°,∠BOC =150°,求∠AOC的度数.解:根据题意可作出如图所示的图形.因为∠AOC =∠BOA-∠BOC=70°- 15°=55°,所以∠AOC=55°.若你是老师,会给小马虎满分吗?若会,说明理由;若不会,请你指出小马虎的错误,并给出你认为正确的解法.不会给小马虎满分.小马虎只考虑了∠BOC在∠BOA 的内部一种情况,其实∠BOC也可以在∠BOA 的外部(如图所示). 所以本题的正确解法为:若∠BOC在∠BOA 的内部,则∠AOC=∠BOA- ∠BOC=70° -15°= 55°;若∠LBOC在∠BOA的外部,则∠AOC=∠BOA+∠BOC=70°+15°=85°即∠AOC的度数为 55°或 85°30.略。
南通中考数学试题及答案
南通中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 2.5C. 0.3333D. √4答案:A2. 已知函数f(x)=2x+1,f(2)的值是:A. 3B. 4C. 5D. 6答案:C3. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形答案:A4. 一个数的相反数是-5,那么这个数是:A. 5C. 10D. -10答案:A5. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 2.5cmD. 20cm答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个长方体的长、宽、高分别是3cm、4cm和5cm,它的体积是:A. 60cm³B. 30cm³C. 120cm³D. 15cm³答案:A8. 一个数的平方是25,那么这个数是:B. -5C. 5或-5D. 0答案:C9. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 2或-2D. 0答案:B10. 一个数的平方根是3,那么这个数是:A. 9B. -9C. 9或-9D. 0答案:A二、填空题(每题4分,共20分)1. 一个数的平方是36,这个数是______。
答案:±62. 一个数的立方是-27,这个数是______。
答案:-33. 一个数的倒数是2,这个数是______。
答案:1/24. 一个数的绝对值是8,这个数是______。
答案:±85. 一个数的平方根是4,这个数是______。
答案:16三、解答题(每题10分,共50分)1. 已知一个等腰三角形的底边长为6cm,腰长为5cm,求这个三角形的面积。
答案:首先,根据勾股定理,我们可以计算出三角形的高。
江苏省南通市2022年中考数学试卷
江苏省南通市2022年中考数学试卷10小题,共30分) (共10题;共30分) 1.(3分)已知a4=b3,则a−b b的值是()A.34B.43C.3D.13【答案】D【解析】【解答】解:∵a4=b3,∴a b=43,∴a−b b=a b−1=43−1=13.故答案为:D.【分析】根据已知条件可得ab=43,待求式可变形为ab-1,据此计算.2.(3分)若单项式2x m y²与−3x3y n是同类项,则m n的值为()A.9B.8C.6D.5【答案】A【解析】【解答】解:因为单项式2x m y²与−3x3y n是同类项,所以m=3,n=2,所以m n=32=9故答案为:A.【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得m、n的值,然后根据有理数的乘方法则进行计算.3.(3分)-2022的绝对值是()A.12022B.−12022C.2022D.-2022【答案】C【解析】【解答】-2022的绝对值是2022.故答案为:C【分析】一个负数的绝对值等于它的相反数,据此解答即可.4.(3分)在如图的方格中,△ABC的顶点A、B、C都是方格线的交点,则三角形ABC的外角∠ACD的度数等于()A.130°B.140°C.135°D.145°【答案】C【解析】【解答】解,设每个小方格的边长为1,由勾股定理可得AB=√22+12=√5,BC=√22+12=√5,AC=√32+12=√10,∵(√5)2+(√5)2=(√10)2,∴AB2+BC2=AC2,且AB=BC,∴△ABC为等腰直角三角形,∴∠ABC=90°,∠BAC=45°,∴∠ACD=∠ABC+∠BAC=135°.故答案为:C.【分析】设每个小方格的边长为1,利用勾股定理可得AB、BC、AC,结合勾股定理逆定理知△ABC为直角三角形且AB=BC,△ABC=90°,△BCA=45°,由外角的性质可得△ACD=△ABC+△BAC,据此计算.5.(3分)如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1B.-1C.4D.-4【答案】A【解析】【解答】解:∵2x=2×1⋅x,∴k=12=1,故答案为:A.【分析】根据完全平方式的特点可得2=2√k,求解可得k的值.6.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为()A.{5x+6y=165x+y=6y+x B.{5x+6y=164x+y=5y+xC.{6x+5y=166x+y=5y+x D.{6x+5y=165x+y=4y+x 【答案】B【解析】【解答】解:设雀每只x两,燕每只y两则五只雀为5x,六只燕为6y共重16两,则有5x+6y=16互换其中一只则五只雀变为四只雀一只燕,即4x+y六只燕变为五只燕一只雀,即5y+x且一样重即4x+y=5y+x由此可得方程组{5x+6y=164x+y=5y+x.故答案为:B.【分析】由题意列出二元一次方程组,解方程7.(3分)如图,下列四个选项中不能判断AD//BC的是()A.∠1=∠3B.∠B+∠BAD=180°C.∠D=∠5D.∠2=∠4【答案】D【解析】【解答】解:A、∵∠1=∠3,∴AD//BC,故此选项不符合题意;B、∵∠B+∠BAD=180°,∴AD//BC,故此选项不符合题意;C、∵∠D=∠5,∴AD//BC,故此选项不符合题意;D、∵∠2=∠4,∴AB//CD,故此选项符合题意;故答案为:D.【分析】内错角相等,两直线平行,据此判断ACD;同旁内角互补,两直线平行,据此判断B. 8.(3分)某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中这家商店()A.赚了32元B.赚了8元C.赔了8元D.不赔不赚【答案】B【解析】【解答】解:设盈利60%的进价为x元,则:x+60%x=64160%x=64x=40再设亏损20%的进价为y元,则;y-20%y=6480%y=64y=80所以总进价是:40+80=120(元)总售价是:64+64=128(元)售价>进价,128-120=8(元)答:赚了8元.故答案为:B.【分析】分别求出两个计算器的进价,再与售价作比较即可.9.(3分)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【答案】D【解析】【解答】解:∵六边形ABCDEF是正六边形,∴△FAB= (6−2)×180°6=120°,AB=6,∴扇形ABF的面积= 120π×62360=12π,故答案为:D.【分析】根据正六边形的性质得△FAB= (6−2)×180°6,半径=正六边形的边长,然后根据扇形面积S=nπR 2360可求解.10.(3分)同步卫星在赤道上空大约36000000米处.将36000000用科学记数法表示应为()A.36×106B.0.36×108C.3.6×106D.3.6×107【答案】D【解析】【解答】解:36000000=3.6×107。
2020年江苏省南通市中考数学试题及参考答案(word解析版)
南通市2020年初中毕业、升学考试试卷数学(满分:150分,考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣12.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×1063.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=24.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.57.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm29.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E ﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm210.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.13.若m<2<m+1,且m为整数,则m=.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC .若AC =3,求⊙O 的半径.21.(12分)如图,直线l 1:y =x+3与过点A (3,0)的直线l 2交于点C (1,m ),与x 轴交于点B . (1)求直线l 2的解析式;(2)点M 在直线l 1上,MN ∥y 轴,交直线l 2于点N ,若MN =AB ,求点M 的坐标.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B 表示“良好”,C 表示“合格”,D 表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表. 两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第 小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌等级 人数 百分比 A 17 18.9% B 38 42.2% C 28 31.1% D 7 7.8% 合计 90100%握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin ∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.答案与解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【知识考点】绝对值;有理数的减法.【思路分析】首先应根据负数的绝对值是它的相反数,求得|﹣1|=1,再根据有理数的减法法则进行计算.【解题过程】解:原式=1﹣3=﹣2.故选:C.【总结归纳】本题考查了绝对值的意义和有理数的减法,熟悉有理数的减法法则是关键.2.今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km2.将68000用科学记数法表示为()A.6.8×104B.6.8×105C.0.68×105D.0.68×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于68000有5位,所以可以确定n=5﹣1=4.【解题过程】解:68000=6.8×104.故选:A.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.下列运算,结果正确的是()A.﹣=B.3+=3C.÷=3 D.×=2【知识考点】二次根式的混合运算.【思路分析】分别根据同类二次根式的概念、二次根式的乘除运算法则计算可得.【解题过程】解:A.与不是同类二次根式,不能合并,此选项错误;B.3与不是同类二次根式,不能合并,此选项错误;C.÷==,此选项错误;D.×=××=2,此选项计算正确;故选:D.【总结归纳】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【知识考点】坐标与图形变化﹣旋转.【思路分析】根据旋转的性质,以原点为中心,将点P(4,5)按逆时针方向旋转90°,即可得到点Q所在的象限.【解题过程】解:如图,∵点P(4,5)按逆时针方向旋转90°,得点Q所在的象限为第二象限.故选:B.【总结归纳】本题考查了坐标与图形变化﹣旋转,解决本题的关键是掌握旋转的性质.5.如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°【知识考点】平行线的性质.【思路分析】过点E作EF∥AB,则EF∥CD,由EF∥AB,利用“两直线平行,内错角相等”可得出∠AEF的度数,结合∠CEF=∠AEF﹣∠AEC可得出∠CEF的度数,由EF∥CD,利用“两直线平行,内错角相等”可求出∠C的度数.【解题过程】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠AEF=∠A=54°,∵∠CEF=∠AEF﹣∠AEC=54°﹣18°=36°.又∵EF∥CD,∴∠C=∠CEF=36°.故选:A.【总结归纳】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.6.一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3 B.3.5 C.4 D.4.5【知识考点】中位数;众数.【思路分析】先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解题过程】解:∵这组数据2,4,6,x,3,9,5的众数是3,∴x=3,从小到大排列此数据为:2,3,3,4,5,6,9,处于中间位置的数是4,∴这组数据的中位数是4.故选:C.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.7.下列条件中,能判定▱ABCD是菱形的是()A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD【知识考点】平行四边形的性质;菱形的判定.【思路分析】根据对角线垂直的平行四边形是菱形,即可得出答案.【解题过程】解:∵四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形;故选:D.【总结归纳】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.8.如图是一个几体何的三视图(图中尺寸单位:cm),则这个几何体的侧面积为()A.48πcm2B.24πcm2C.12πcm2D.9πcm2【知识考点】圆锥的计算;由三视图判断几何体.【思路分析】先判断这个几何体为圆锥,同时得到圆锥的母线长为8,底面圆的直径为6,然后利用扇形的面积公式计算这个圆锥的侧面积.【解题过程】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,所以这个几何体的侧面积=×π×6×8=24π(cm2).故选:B.【总结归纳】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图①,E为矩形ABCD的边AD上一点,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD 的面积是()A.96cm2B.84cm2C.72cm2D.56cm2【知识考点】动点问题的函数图象.【思路分析】过点E作EH⊥BC,由三角形面积公式求出EH=AB=6,由图2可知当x=14时,点P与点D重合,则AD=12,可得出答案.【解题过程】解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8,由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12,∴矩形的面积为12×6=72.故选:C.【总结归纳】本题考查了动点问题的函数图象,三角形的面积等知识,熟练掌握数形结合思想方法是解题的关键.10.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.3【知识考点】垂线段最短;全等三角形的判定与性质;平移的性质.【思路分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【解题过程】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.【总结归纳】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.分解因式:xy﹣2y2=.【知识考点】因式分解﹣提公因式法.【思路分析】用提公因式法进行因式分解即可.【解题过程】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).【总结归纳】本题考查提公因式法因式分解,找出公因式是正确分解的前提.12.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.【知识考点】勾股定理;垂径定理.【思路分析】如图,作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=5,然后利用勾股定理计算OC的长即可.【解题过程】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.【总结归纳】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.13.若m<2<m+1,且m为整数,则m=.【知识考点】估算无理数的大小.【思路分析】估计2的大小范围,进而确定m的值.【解题过程】解:2=,∵<<,∴5<2<6,又∵m<2<m+1,∴m=5,故答案为:5.【总结归纳】本题考查无理数的估算,理解2介在哪两个整数之间是正确求解的关键.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC和△DEF的顶点都在网格线的交点上.设△ABC的周长为C1,△DEF的周长为C2,则的值等于.【知识考点】相似三角形的判定与性质.【思路分析】先证明两个三角形相似,再根据相似三角形的周长比等于相似比,得出周长比的值便可.【解题过程】解:∵,,,∴,∴△ABC∽△DEF,∴,故答案为:.【总结归纳】本题主要考查相似三角形的性质与判定,勾股定理,本题关键是证明三角形相似.15.1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由长和宽之间的关系可得出宽为(x﹣12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.16.如图,测角仪CD竖直放在距建筑物AB底部5m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5m,则建筑物AB的高度约为m.(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】作垂线构造直角三角形,利用直角三角形的边角关系进行计算即可.【解题过程】解:如图,过点D作DE⊥AB,垂足为点E,则DE=BC=5,DC=BE=1.5,在Rt△ADE中,∵tan∠ADE=,∴AE=tan∠ADE•DE=tan50°×5≈1.19×5=5.95(米),∴AB=AE+BE=5.95+1.5≈7.5(米),故答案为:7.5.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.17.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.【知识考点】根与系数的关系.【思路分析】根据一元二次方程的解的概念和根与系数的关系得出x12﹣4x1=2020,x1+x2=4,代入原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)计算可得.【解题过程】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2020+8=2028,故答案为:2028.【总结归纳】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx﹣2﹣k(k>0)相交于两点,其中一个点的横坐标为a,另一个点的纵坐标为b,则(a﹣1)(b+2)=.【知识考点】反比例函数与一次函数的交点问题.【思路分析】由于一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y =向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k >0)相交于两点,在平移之前是关于原点对称的,表示出这两点坐标,根据中心对称两点坐标之间的关系求出答案.【解题过程】解:一次函数y=kx﹣2﹣k(k>0)的图象过定点P(1,﹣2),而点P(1,﹣2)恰好是原点(0,0)向右平移1个单位长度,再向下平移2个单位长度得到的,因此将双曲线y=向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y=kx﹣2﹣k(k>0)相交于两点,在没平移前是关于原点对称的,平移前,这两个点的坐标为为(a﹣1,),(,b+2),∴a﹣1=﹣,∴(a﹣1)(b+2)=﹣3,故答案为:﹣3.【总结归纳】本题考查一次函数、反比例函数图象上点的坐标特征,理解平移之前,相应的两点关于原点对称是解决问题的关键.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.(10分)计算:(1)(2m+3n)2﹣(2m+n)(2m﹣n);(2)÷(x+).【知识考点】完全平方公式;平方差公式;分式的混合运算.【思路分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先计算括号内分式的加法,再将除法转化为乘法,最后约分即可得.【解题过程】解:(1)原式=4m2+12mn+9n2﹣(4m2﹣n2)=4m2+12mn+9n2﹣4m2+n2=12mn+10n2;(2)原式=÷(+)=÷=•=.【总结归纳】本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.20.(11分)(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;切线的判定与性质;作图—基本作图.【思路分析】(1)根据“AAS“证明△ABE≌△ACD,然后根据全等三角形的性质得到结论;(2)连接AB,如图②,由作法得OA=OB=AB=BC,先判断△OAB为等边三角形得到∠OAB =∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA的长.【解题过程】(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,由作法得OA=OB=AB=BC,∴△OAB为等边三角形,∴∠OAB=∠OBA=60°,∵AB=BC,∴∠C=∠BAC,∵∠OBA=∠C+∠BAC,∴∠C=∠BAC=30°∴∠OAC=90°,在Rt△OAC中,OA=AC=×3=.即⊙O的半径为.【总结归纳】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定与性质.21.(12分)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.【知识考点】待定系数法求一次函数解析式;两条直线相交或平行问题.【思路分析】(1)把点C的坐标代入y=x+3,求出m的值,然后利用待定系数法求出直线的解析式;(2)由已知条件得出M、N两点的横坐标,利用两点间距离公式求出M的坐标.【解题过程】解:(1)在y=x+3中,令y=0,得x=﹣3,∴B(﹣3,0),把x=1代入y=x+3得y=4,∴C(1,4),设直线l2的解析式为y=kx+b,∴,解得,∴直线l2的解析式为y=﹣2x+6;(2)AB=3﹣(﹣3)=6,设M(a,a+3),由MN∥y轴,得N(a,﹣2a+6),MN=|a+3﹣(﹣2a+6)|=AB=6,解得a=3或a=﹣1,∴M(3,6)或(﹣1,2).【总结归纳】本题考查了两条直线相交或平行问题,待定系数法求一次函数的解析式,求得交点坐标是解题的关键.22.(10分)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A 表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A 17 18.9%B 38 42.2%C 28 31.1%D 7 7.8%合计90 100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.【知识考点】用样本估计总体;统计表;条形统计图.【思路分析】(1)根据样本要具有代表性可知第二小组的调查结果比较合理;用这个结果估计总体,1000人的(1﹣7.8%)就是“合格及以上”的人数;(2)从抽样的代表性、普遍性和可操作性方面提出意见和建议.【解题过程】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.【总结归纳】本题考查样本估计总体,样本的抽取要具有代表性和普遍性,才能够准确地反映总体.23.(9分)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.【知识考点】列表法与树状图法.【思路分析】(1)假定甲车先出发,乙车后出发,丙车最后出发,用简单的列举法可列举出三辆车按先后顺序出发的所有等可能的结果数;(2)分别求出两人坐到甲车的概率,然后进行比较即可得出答案.【解题过程】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲,则张先生坐到甲车的概率是=;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙,则李先生坐到甲车的概率是=;所以两人坐到甲车的可能性一样.【总结归纳】此题考查的是列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.(12分)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】(1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4﹣x.证明△EGP∽△PHD,推出====,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.【解题过程】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG =x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.【总结归纳】本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.25.(13分)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.【知识考点】根的判别式;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点.【思路分析】(1)由题意可得0=4a+2b+c①,﹣=1②,△=(b﹣1)2﹣4ac=0③,联立方程组可求a,b,c,可求解析式;(2)由n<﹣5,可得点B,点C在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.【解题过程】解:(1)∵抛物线y=ax2+bx+c经过A(2,0),∴0=4a+2b+c①,∵对称轴是直线x=1,∴﹣=1②,∵关于x的方程ax2+bx+c=x有两个相等的实数根,∴△=(b﹣1)2﹣4ac=0③,由①②③可得:,∴抛物线的解析式为y=﹣x2+x;(2)∵n<﹣5,∴3n﹣4<﹣19,5n+6<﹣19∴点B,点C在对称轴直线x=1的左侧,∵抛物线y=﹣x2+x,∴﹣<0,即y随x的增大而增大,∵(3n﹣4)﹣(5n+6)=﹣2n﹣10=﹣2(n+5)>0,∴3n﹣4>5n+6,∴y1>y2;(3)若点B在对称轴直线x=1的左侧,点C在对称轴直线x=1的右侧时,由题意可得,∴0<n<,若点C在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得:,∴不等式组无解,综上所述:0<n<.【总结归纳】本题考查了抛物线与x轴的交点,二次函数的性质,根的判别式,待定系数法求解析式,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.26.(13分)【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】。
南通中考数学试题及答案2022
南通中考数学试题及答案2022一、选择题1. 计算:$\frac{3}{5}\div\frac{2}{3}=$A. $\frac{9}{10}$B. $\frac{15}{13}$C. $\frac{9}{13}$D.$\frac{15}{10}$2. 已知甲、乙两数的比为$3:5$,且$\frac{乙}{甲}=\frac{4}{15}$,则乙是甲的:A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{9}{2}$D.$\frac{15}{4}$3. 下列二次方程中,有实根的是:A. $2x^2-3x+8=0$B. $x^2+4x-5=0$C. $3x^2+5x+2=0$D.$4x^2+4x+4=0$4. 若$y$是$x$的函数,且满足$y(2)=5$,则在图像上的点$(2,5)$是:A. 横坐标为2,纵坐标为5的一个点B. 自变量为2,因变量为5的一个点C. 自变量为5,因变量为2的一个点D. 横坐标为5,纵坐标为2的一个点5. 当$x$取何值时,方程$4x-7=3x+5$成立?A. $x=12$B. $x=-12$C. $x=-4$D. $x=4$二、填空题6. 一盒装有红、黄、绿三种颜色的小球,其中红球比黄球多5个,绿球数比黄球数的一半还少4个,若黄球数为$x$个,则红球数为____,绿球数为____。
7. 甲、乙两个数互质,且甲数是乙数的三倍,那么甲数与乙数的和是____。
8. 已知函数$y=ax^2+bx+c$的图像顶点为$(-1,4)$,且过点$(2,1)$,则$a+b+c=$____。
三、解答题9. 一辆汽车经过一段公路,在半程处减速,然后又以相同的速度加速通过剩下的一段公路,最后以110公里/小时的速度行驶了整个路程,若这段路程全程用时3小时,试求该汽车行驶的最大速度和减速的加速度。
10. 已知等差数列的前$n$项的和为$S_n=\frac{n(3a_1+2n-1)}{2}$,其中$a_1$为首项,$n$为项数。
[中考专题]2022年江苏省南通市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解)
2022年江苏省南通市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、若关于x 的不等式组231232x m x x -⎧≤⎪⎨⎪->-⎩无解,则m 的取值范围是( ) A .1mB .m 1≥C .1m <D .1m 2、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .26048.6x = B .()260148.6x -= C .()260148.6x += D .()601248.6x -= 3、若单项式12m a b -与212n a b 是同类项,则n m 的值是( ) A .6 B .8 C .9 D .12 4、若(mx +8)(2﹣3x )中不含x 的一次项,则m 的值为( )A .0B .3C .12D .16 5、下列计算中正确的是( ) A .1133--= B .22256x y x y x y -=- C .257a b ab += D .224-= ·线○封○密○外6、若3a =,1=b ,且a ,b 同号,则a b +的值为( )A .4B .-4C .2或-2D .4或-47、下列对一元二次方程x 2-2x -4=0根的情况的判断,正确的是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断8、若二次函数2y ax =的图象经过点()2,4--,则a 的值为( )A .-2B .2C .-1D .19、已知23m x y 和312n x y 是同类项,那么m n +的值是( ) A .3 B .4 C .5 D .610、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )A .18B .14C .13 D .12 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在菱形ABCD 中,AB =6,E 为AB 的中点,连结AC ,DE 交于点F ,连结BF .记∠ABC =α(0°<α<180°).(1)当α=60°时,则AF 的长是 _____;(2)当α在变化过程中,BF 的取值范围是 _____.2、若a 和b 互为相反数,c 和d 互为倒数,则20202020a b cd +-的值是________________.3、如图,B 、C 、D 在同一直线上,90B D ∠=∠=︒,2AB CD ==,6BC DE ==,则ACE 的面积为_______.4、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x 千米/小时,则所列方程是________.5、一元二次方程2325x x +=的一次项系数是______. 三、解答题(5小题,每小题10分,共计50分) 1、解方程:x 2﹣4x ﹣9996=0. 2、(1)计算:011)()sin 452π--︒. (2)用适当的方法解一元二次方程:2760x x ++=.3、解下列不等式(组),并把解集在数轴上表示出来; (1)()7335x x -≥-; (2)211134x x x ---<-; ·线○封○密○外(3)314232x x x ->-⎧⎨≥-⎩; (4)()()223843310.20.5x x x x ⎧->+⎪⎨+-+≤-⎪⎩. 4、已知二次函数2243y x x =-+的图像为抛物线C .(1)抛物线C 顶点坐标为______;(2)将抛物线C 先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线1C ,请判断抛物线1C 是否经过点()2,3P ,并说明理由;(3)当23x -≤≤时,求该二次函数的函数值y 的取值范围.5、小明在做作业时发现练习册上一道解方程的题目被墨水污染了,151232x x +--=-■,■是被污染的数,他很着急,翻开书后的答案找到这道题的解为:2x =,你能帮他补上“■”的数吗?写出你的解题过程.-参考答案-一、单选题1、D【分析】解两个不等式,再根据“大大小小找不着”可得m 的取值范围.【详解】 解:解不等式23x m -≤得:32x m ≤+, 解不等式1232x x ->-得:5x >,∵不等式组无解,∴325m +≤,解得:1m ,故选:D .【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键. 2、B【分析】根据等量关系:原价×(1-x )2=现价列方程即可.【详解】解:根据题意,得:()260148.6x -=,故答案为:B .【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.3、C【分析】根据同类项的定义可得122m n -==,,代入即可求出m n 的值.【详解】解:∵12m a b -与212n a b 是同类项,∴122m n -==,, 解得:m =3,∴239n m ==.·线○封○密○外故选:C .【点睛】此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.4、C【分析】先计算多项式乘以多项式得到结果为2322416mx m x ,结合不含x 的一次项列方程,从而可得答案.【详解】解:(mx +8)(2﹣3x )2231624mx mx x =-+-2322416mx m x(mx +8)(2﹣3x )中不含x 的一次项,2240,m解得:12.m =故选C【点睛】本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.5、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可.【详解】解:A 、1133--=-,故选项错误; B 、22256x y x y x y -=-,故选项正确; C 、25a b +不能合并计算,故选项错误; D 、224-=-,故选项错误; 故选B . 【点睛】 本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提. 6、D 【分析】 根据绝对值的定义求出a ,b 的值,根据a ,b 同号,分两种情况分别计算即可. 【详解】 解:∵|a |=3,|b |=1, ∴a =±3,b =±1, ∵a ,b 同号, ∴当a =3,b =1时,a +b =4; 当a =-3,b =-1时,a +b =-4; 故选:D . 【点睛】 本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a ,b 同号分两种:a ,b 都是正数或都是负数是解题的关键. 7、B 【分析】 ·线○封○密○外根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.8、C【分析】把(-2,-4)代入函数y=ax2中,即可求a.【详解】解:把(-2,-4)代入函数y=ax2,得4a=-4,解得a=-1.故选:C.【点睛】本题考查了点与函数的关系,解题的关键是代入求值.9、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.10、D【分析】旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解【详解】解:旋转阴影部分,如图, ∴该点取自阴影部分的概率是12 故选:D【点睛】 本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等. 二、填空题 1、2 26BF << 【分析】 (1)证明ABC 是等边三角形,AEF CDF ∽△△,进而即可求得AF ; (2)过点F 作FG AB ∥,交BC 于点G ,以G 为圆心GC 长度为半径作半圆,交CB 的延长延长线于·线○封○密○外点H,证明F在半圆HFC上,进而即可求得范围.【详解】(1)如图,四边形ABCD是菱形AB BC∴=,AB CD∥AEF CDF∴∽AE AFCD FC∴=60ABC∠=︒ABC∴是等边三角形6AC AB∴==E是AB的中点3AE∴=AE AFCD FC=即AE AF CD AC AF=-366AF AF∴=-2AF∴=故答案为:2(2)如图,过点F 作FG AB ∥,交BC 于点G ,以G 为圆心GC 长度为半径作半圆,交CB 的延长延长线于点H ,四边形ABCD 是菱形 AB BC ∴=,AB CD ∥ AEF CDF ∴∽ AE AF CD FC ∴=36=12= 23CF AC ∴=FG AB ∥ CFG CAB ∴∽ 23FG CF AB AC ∴== 243FG AB ∴=⨯= F ∴在以G 为圆心GC 长度为半径的圆上, 又∠ABC =α(0°<α<180°) ∴F 在半圆HFC 上, BF ∴最小值为2862HB GF BC =-=-= 最大值为6BC = ∴26BF <<·线○封○密○外故答案为:26BF <<【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.2、-2020【分析】利用相反数,倒数意义求出各自的值,代入原式计算即可得到结果.【详解】解:∵a,b 互为相反数,c ,d 互为倒数,∴a+b=0,cd=1, 则2020020202020202020201a b cd +-=-=-. 故答案为:-2020.【点睛】本题考查了代数式的求值,有理数的混合运算,相反数,倒数,熟练掌握各自的性质是解本题的关键.3、20【分析】根据题意由“SAS ”可证△ABC ≌△CDE ,得AC =CE ,∠ACB =∠CED ,再证∠ACE =90°,然后由勾股定理可求AC 的长,进而利用三角形面积公式即可求解.【详解】解:在△ABC 和△CDE 中,AB CD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CDE (SAS ),∴AC =CE ,∠ACB =∠CED ,∵∠CED +∠ECD =90°,∴∠ACB +∠ECD =90°,∴∠ACE =90°,∵∠B =90°,AB =2,BC =6,∴AC ∴CE=∴S △ACE =12AC ×CE =12×, 故答案为:20.【点睛】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等知识,证明△ABC ≌△CDE 是解题的关键.4、1010122x x -= 【分析】 根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程. 【详解】 由题意,骑自行车的学生所用的时间为10x 小时,乘汽车的学生所用的时间为102x 小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程: 1010122x x -= ·线○封○密○外故答案为:1010122x x -= 【点睛】 本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.5、-5【分析】化为一般式解答即可.【详解】解:∵2325x x +=,∴23520x x -+=,∴一次项系数是-5,故答案为:-5.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax 2+bx +c =0(a ≠0).其中a 是二次项系数,b 是一次项系数,c 是常数项.三、解答题1、1102x =,298x =-【分析】运用因式分解法求解方程即可.【详解】解:x 2﹣4x ﹣9996=0(102)(98)0x x -+=1020,980x x -=+=∴1102x =,298x =-【点睛】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2、(1);(2)11x =-,26x =- 【分析】 (1)先计算零指数幂,分母有理化,负指数幂,特殊三角函数值,再合并同类项即可; (2)因式分解法解一元二次方程. 【详解】 (1)解:011)()sin 452π--︒,=12,=112+-=2; (2)解:原方程分解因式得(1)(6)0x x ++=, ∴ 10x +=或60x +=,解得11x =-,26x =-. 【点睛】本题考查含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,一元二次方程的解法,掌握含有锐角三角函数的实数混合运算,零指数幂,负指数幂,二次根式分母有理化,·线○封○密○外一元二次方程的解法.3、(1)3x ≥-,数轴见解析(2)5x <,数轴见解析(3)-1<x ≤2,数轴见解析(4)x ≤-10,数轴见解析【分析】(1)去括号,移项,合并同类项,然后把x 的系数化为1,最后在数轴上表示即可;(2)去分母,去括号,移项,合并同类项,然后把x 的系数化为1,最后在数轴上表示即可;(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;【小题1】解:()7335x x -≥-,去括号得:73315x x -≥-,移项合并得:412x ≥-,解得:3x ≥-,在数轴上表示为:【小题2】211134x x x ---<-, 去分母得:()()124211231x x x --<--,去括号得:12841233x x x -+<-+,移项合并得:5x <,在数轴上表示为: 【小题3】314232x x x ->-⎧⎨≥-⎩①②, 由①得:x >-1, 由②得:x ≤2, 不等式组的解集为:-1<x ≤2, 在数轴上表示为:【小题4】 ()()223843310.20.5x x x x ⎧->+⎪⎨+-+≤-⎪⎩①②, 由①得:x <-4,由②得:x ≤-10,不等式组的解集为:x ≤-10,在数轴上表示为:【点睛】 此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键. ·线○封○密·○外4、(1)()1,1(2)不经过,说明见解析(3)119y ≤≤【分析】(1)一般解析式化为顶点式,进行求解即可.(2)由题意得出平移后的函数表达式,将P 点横坐标2代入,求纵坐标的值并与3比较,相等则抛物线过该点.(3)先判断该函数图像开口向上,对称轴在所求自变量的范围内,可求得函数值的最小值,然后将23x x =-=,代入解析式求解,取最大的函数值,进而得出取值范围.(1)解:2243y x x =-+化成顶点式为()2211y x =-+∴顶点坐标为()1,1 故答案为:()1,1.(2)解:由题意知抛物线1C 的解析式为()222111223y x x =-+++=+将2x =代入解析式解得113y =≠∴1C 不经过点P .(3)解:∵对称轴直线1x =在23x -≤≤中∴最小的函数值1y =将2x =-代入解析式得19y =将3x =代入解析式得9y =∵919<∴函数值的取值范围为119y ≤≤.【点睛】本题考查了二次函数值顶点式,图像的平移,函数值的取值范围等知识.解题的关键在于正确的表示出函数解析式.5、4=■,过程见解析 【分析】 先将2x =代入方程,进而得到关于“■”的方程,解一元一次方程即可求解. 【详解】 解:151232x x +--=-■的解为2x = 21101232+-∴-=-■ 即()332103⨯--=-■10=6-■ 4∴=■【点睛】本题考查了一元一次方程的解,解一元一次方程,掌握解一元一次方程的步骤是解题的关键. ·线○封○密○外。
2021年江苏省南通市中考数学试卷附解析
2021年江苏省南通市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,三个半径相等的圆,两两外切,且与△ABC 的三边相切,设AB= a,那么圆的半径r等于()A.314a+B.314a-C.33a D.14a2.书架的第一层放有 2 本文艺书、3 本科技书,书架的第二层放有 4 本文艺书、1 本科技书,从两层各取 1 本书,恰好都是科技书的概率是()A.325B.49C.1720D.253.当锐角∠A>300 时,cosA的值()A.小于12B.大于12C.小于32D.大于324.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D. 100°5.如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任意一点,∠APB的平分线交⊙O 于点C,弦EF过AC、BC的中点M、N,则EF的长是()A.43B.23C.6 D.256.如图,AB为⊙O的直径,CD 是弦,AB 与 CD 交于点 E,若要得到 CE =DE,还需要添加的条件是(不要添加其它辅助线)()A.AB⊥CD B.⌒AC =⌒BC C.CD 平分OB D.以上答案都不对7.下列说法中,正确的有()(1)面积相等的两个圆是等圆;(2)若点到圆心的距离小于半径,则点在圆内;(3)圆既是中心对称图形,又是轴对称图形;(4)大于半圆的弧是优弧A.1 个B.2 个C.3 个D.4 个8.如图所示,直线a,b被直线c所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a∥b的条件的序号是()A.①②B.①③C.①④D.③④9.下列推理正确的是()A.∵a>0,b>0,∴a>bB.∵a>0,b>a,∴b>0C.∵a>0,a>6,∴b>0D.∵a>0,a>b,∴ab>O10.下列各组图形,可经过平移变换由一个图形得到另一个图形的是()11.下列选项中,正确的是()A. 27的立方根是3±B164±C. 9的算术平方根是3 D.带根号的数都是无理数二、填空题12.在一间黑屋子里,用一盏白炽灯如图方式分别照射一个球,一个圆锥和一个空心圆柱,它们在地面上的影子形状分别是 、 、 .13.如图,△ABC 中,AD 是 BC 上中线,M 是AD 的中点,BM 延长线交AC 于 N ,则AN NC= .14.已知抛物线y =ax 2+x +c 与x 轴交点的横坐标为-1,则a +c=__________.115.一批款式、型号均相同的胆装单价在 100元/件至 150 元/件之间,小李拿了 900 元钱去买,可买 件这样的服装.16.如图,Rt △ABC 中,∠BAC=90°,E ,D ,F 分别是三边中点,则AD EF(填“=”或“>”或“<”).17.在一块试验田里抽取l000个麦穗,考察它的长度(单位:cm).对数据适当分组后看到落在5.75~6.05 cm 的频率是0.36,可以估计出在这块田里,长度为5.75~6.05 cm 之间的麦穗约占 .18.不等式111326x x x +---≥的解是 . 19.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式 .20.为了解一批节能灯的使用寿命,宜采用 的方式进行调查.(填:“全面调查”或“抽样调查”)21.生活中有很多直棱柱的形象,请举例两个直四棱柱的事物 .22.要使式子13x -与式子32x -的值相等,则x = . 三、解答题23.如图,甲转盘被分成 3 个面积相等的扇形,乙转盘被分成 4 个面积相等的扇形,每一个扇形都标有相应的数字.同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为x ,乙转盘中指针所指区域内的数字为y (当指针指在边界线上时,重转一次,直到指针指向一个区域为止).(1)请你用画树状图或列表格的方法,求出点(),x y 落在第二象限内的概率;(2)直接写出点(),x y 落在函数1y x=-图象上的概率.24.为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.25.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel 将按指定行的值和指定的“升序”或“降序”排序次序重新设定列.”这段话是对什么名称进行定义?26.如图是一个正三角形的路标,若它的边长为22,试求出这个路标的面积.2327.已知一次函数y kx bx=-时,y=4;当x=2时,y=l.=+,当1(1)求一次函数的解析式;(2)若点P(1-a,7)在此函数的图象上,求a的值.28.已知y-2与x+1成正比,且当x=l时,y=-6.(1)求y与x之间的函数解析式;(2)求当x=-l时,y的值.29.如图,C表示灯塔,轮船从A处出发以每小时21海里的速度向正北(AN方向)航行,在A 处测得么∠NAC=30°,3小时后,船到达B处,在B处测得么∠NBC=60°,求此时B到灯塔C的距离.30.如图,已知 AB=DC,AD=BC,说出下列判断成立的理由:(1)△ABC≌△ACD; (2)∠B=∠D.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.D5.A6.A7.D8.A9.B10.A11.C二、填空题12.圆,圆,圆环13. 1214. 15.6~916.=17.36%18.3x ≤19.3y x = 20. 抽样调查21.如火柴盒,电视机盒22.16三、解答题23.解:由题意,画树状图:由上图可知,点P (x,y )的坐标共有12种等可能的结果,其中点(x,y )落在第二象限的共有2种,∴点P (点(x,y )落在第二象限)=61. (2)点P (点(x,y )落在xy 1-=图象上)=41123=.24.(1)图略,频数为14,(2)频率为0.52,(3)1.24,(4)略25.按行排序26..(1)y=-x+3;(2)528.(1)y=-4x-2;(2)229.63海里30.略。
2020年江苏省南通中考数学试卷附答案解析版
AC 3 ,求 O 的半径. 卷
上
21.(本小题满分 12 分)如图,直线l1 : y x 3 与过点 A3,0 的直线l2 交于点C 1,m ,
与 x 轴交于点 B .
答
1 求直线l2 的解析式;
2 点 M 在直线l1 上, MN∥y 轴,交直线l2 于点 N ,若 MN AB ,求点 M 的坐
【解析】解:如图,点 P4,5 按逆时针方向旋转90 ,
得点Q 所在的象限为第二象限.故选:B. 5. 【答案】A 【 解 析 】 解 : 过 点 E 作 EF∥AB , 则 EF∥CD , 如 图 所 示 . EF∥AB , AEF A 54 , CEF AEF AEC 54 18 36 .又 EF∥CD ,C CEF 36 .故选:A. 6. 【答案】B 【解析】解:这组数据 2,4,6, x ,3,9 的众数是 3, x 3 ,从小到大排列此数据为:2,3,3,4, 6,9,处于中间位置的两个数是 3,4,这组数据的中位数是(3 4)2 3.5 .故选:B. 7. 【答案】D 【解析】解:四边形 ABCD 是平行四边形,当 AC BD 时,四边形 ABCD 是菱形;故选:D.
点 P 处,折痕为 DE . (1)如图①,若点 P 恰好在边 BC 上,连接 AP ,求 AP 的值;
DE
(2)如图②,若 E 是 AB 的中点,EP 的延长线交 BC 于点 F ,求 BF 的长.
26.(本小题满分 13 分) 【了解概念】 有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余 线.
25.(本小题满分 13 分)已知抛物线 y ax 2 bx c 经过 A(2,0) , B3n 4, y 1, C 5n 6, y2 三点,对称轴是直线 x 1 .关于 x 的方程 ax2 bx c x 有两个相等的
2020年江苏省南通市中考数学试题(解析版)
2020年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)说明: 1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为【 】 A .-20m B .-40m C .20m D .40m 【答案】B.【考点】相反数。
【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。
故根据相反数的定义,可直接得出结果2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】【答案】C .【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形和中心对称图形的定义,可知A 是中心对称图形而不是轴对称图形;B 也是中心对称图形而不是轴对称图形;C 既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D 既不是轴对称图形也不是中心对称图形。
3.计算327的结果是【 】A .±3 3B .3 3C .±3D .3 【答案】D .【考点】立方根。
【分析】根据立方根的定义,因为33=273。
4.下列长度的三条线段,不能组成三角形的是【 】 A .3,8,4 B .4,9,6 C .15,20,8 D .9,15,8 【答案】A .【考点】三角形的构成条件。
A .【分析】根据三角形任两边之和大于第三边的构成条件,A 中3+4<8,故A 的三条线段不能组成三角形。
5.如图,AB ∥CD ,∠DCE =80°,则∠BEF =【 】A .120°B .110°C .100°D .80°【答案】C .【考点】平行线的性质。
【分析】根据同旁内角互补的平行线性质,由于AB ∥CD ,∠DCE 和∠BEF 是同旁内角,从而∠BEF =00018080100-=。
2022年江苏省南通市中考数学真题试卷附解析
2022年江苏省南通市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果a∠是等腰直角三角形的一个锐角,则tanα的值是()A.12B.22C.1D.22.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C两点,则 BC=()A.63B.62C.33D.323.若半径为3,5的两个圆相切,则它们的圆心距为()A.2 B.8 C.2或8 D.1或44.在ABC∆中,︒=∠90C,AB=15,sinA=13,则BC等于()A.45 B.5 C.15D.1455.下面几个命题中,正确的有()(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A.1 个B.2 个C.3 个D.4 个6.二次函数y=―3x2―7x―12的二次项系数、一次项系数及常数项分别是()A.―3,―7,―12 B.-3,7,12 C.3,7,12 D.3,7,-12 7.在π=3.141 592 653 589 7中,频数最大的数字是()A.1 B.3 C.5 D.98.一个几何体的三视图中有一个是长方形,则该几何体不可能是()A.直五棱柱B.圆柱C.长方体D.球9.分式2221m mm m-+-约分后的结果是()A .1m m n -+B .1(1)m m m --+C .1m m -D .1(1)m m m -+ 10.要使))(2(2q x px x -++的乘积中不含2x 项,则p 与q 的关系是( )A .互为倒数B .互为相反数C .相等D .关系不能确定 11. 用一副三角板画图,不能画出的角的度数是( )A .15°B .75°C .145°D .165° 12.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3二、填空题13.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.14.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.15.某水果店1至6月份的销售情况(单位:千克)为450、440、420、480、580、550,则这组数据的极差是 千克.16.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.17.如图,随机闭合开关123S S S ,,中的两个, 能够让灯泡发光的概率为 .18.在△ABC 中,∠A=48°,∠B=66°,AB=2.7 cm ,则AC= cm .19.已知ABC DEF △≌△,5cm BC EF ==,△ABC 的面积是220cm ,那么△DEF 中EF 边上的高是__________cm .20.商场一款服装进价为a 元,商家将其价格提高50%后以八折出售,则该款服装的售价是 元.21.王叔叔买了四盒同样的长方体的礼品(如图),长、宽、高分别为4cm 、3 cm 、2cm ,王叔 叔想把它们包装成一个大长方体,并使包装表面积最小,则表面积的最小值为 .22.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题23.如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.24.已知不等式组3(2)821132x xx xx-+>⎧⎪+-⎨≥-⎪⎩的整数解满足方程62ax x a+=-,求a的值.25.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?26.如图所示是小孔成像原理的示意图,你能根据图中所标的尺寸求出在暗盒中所成像的高度吗?说说其中的道理.27.解下面的方程,并说明每一步的依据.0.6x=50+0.4x28.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.29.将- 8 ,- 6 ,-4 , 0 , -2 ,2,4,6,8 这 9 个数分别填入右图的 9 个空格中,使得每行的 3 个数,每列的3 个数,斜对角线的 3 个数相加均为 0.30.(1)利用一副三角尺的拼合,分别画出75°,120°,l35°,l50°的角;(2)利用一副三角尺,你能画出几个不同的角(小于l80°)?分别是多少度的角?用一副三角尺所画的这些角的大小有什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.B5.D6.A7.C8.D9.C10.C11.CC二、填空题13.414.∠E=∠C或∠D=∠B 15.16016.517.2318.2.719.820.6a521.136cm222.135°三、解答题23.提示:∵DE//12BC,FG//12BC,∴DE//FG,∴四边形DFGE是平行四边形24.解原不等式组,得21x-<≤.∴原不等式组的整数解是1x=-.∴612a a-+=--,∴7a=-.25.它们的结果有36种可能;不同,甲赢的机会大,理由略3 cm,理由略27.x=250,依据略28.设原来的两位数是10a+b,则调换位置后的新数是10b+a.(10a+b)- (10b+a)=9a-9b=9(a-b),∴这个数一定能被9整除29.填法不唯一30.(1)画图略 (2)11个,15°,30°,45°,60°,75°,90°,l05°,l20°,l35°,l50°,165°规律:l5°的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏南通市中考数学试题Revised as of 23 November 20202011年江苏省南通市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)1.如果60m 表示“向北走60m”,那么“向南走40m”可以表示为【 】 A .-20m B .-40m C .20m D .40m 【答案】B . 【考点】相反数。
【分析】向北与向南是相反方向两个概念,向北为+,向南则为负。
故根据相反数的定义,可直接得出结果2.下面的图形中,既是轴对称图形又是中心对称图形的是【 】【答案】C .【考点】轴对称图形,中心对称图形。
【分析】根据轴对称图形和中心对称图形的定义,可知A 是中心对称图形而不是轴对称图形;B 也是中心对称图形而不是轴对称图形;C 既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D 既不是轴对称图形也不是中心对称图形。
3.计算327的结果是【 】A .±3 3B .3 3C .±3D .3 【答案】D . 【考点】立方根。
【分析】根据立方根的定义,因为33=273 。
4.下列长度的三条线段,不能组成三角形的是【 】 A .3,8,4 B .4,9,6A .C .15,20,8D .9,15,8 【答案】A .【考点】三角形的构成条件。
【分析】根据三角形任两边之和大于第三边的构成条件,A 中3+4<8,故A 的三条线段不能组成三角形。
5.如图,AB ∥CD ,∠DCE =80°,则∠BEF =【 】 A .120° B .110° C .100° D .80° 【答案】C .【考点】平行线的性质。
【分析】根据同旁内角互补的平行线性质,由于AB ∥CD ,∠DCE 和∠BEF 是同旁内角,从而∠BEF =00018080100-=。
6.下列水平放置的几何体中,俯视图是矩形的为【 】【答案】B .【考点】几何体的三视图。
【分析】根据几何体的俯视图视图规则,A 和D 的俯视图是圆,B 的俯视图是矩形,C 的 俯视图是三角形。
7.若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是【 】A .-2B .2C .-5D .5 【答案】B .【考点】一元二次方程根与系数的关系。
D C F A . B .C .D .圆柱长方体三棱柱圆锥【分析】根据一元二次方程根与系数的关系:两根之和等于一次项系数与二次项系数商的相反数,所以有22352x x +=⇒=。
8.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于【 】A .8B .4C .10D .5 【答案】5.【考点】圆的直径垂直平分弦,勾股定理。
【分析】根据圆的直径垂直平分弦的定理,OAM 是直角三角形,在RtOAM 中运用勾股定理有,2222223455OA OM AM OA =+=+=⇒=。
9.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h 【答案】A . 【考点】一次函数。
【分析】根据所给的一次函数图象有:A.甲的速度是205/4km h =;B. 乙的速度是2020/1km h =;C .乙比甲晚出发101h -=; D .甲比乙晚到B 地422h -=。
10.设m >n >0,m 2+n 2=4mn ,则m 2-n2mn =【 】A .2 3B . 3C . 6D .3 【答案】A .【考点】代数式变换,完全平方公式,平方差公式,根式计算。
Ots 甲乙 1 2 3 4 2010 A BO M【分析】由m 2+n 2=4mn 有()()2262m n mn m n mn +=-= ,,因为m >n >0,所以62m n mn m n mn +=-= ,,则()()22621223m n m n m n mn mn mn mn +--⋅====。
二、填空题(本大题共8小题,每小题3分,满分24分) 11.已知α∠=20°,则α∠的余角等于 . 【答案】700. 【考点】余角。
【分析】根据余角的定义,直接得出结果:900-200=700。
128-2= . 【答案】2。
【考点】根式计算。
【分析】822222==。
13.函数y =x +2x -1中,自变量x 的取值范围是 .【答案】1x ≠。
【考点】分式定义。
【分析】根据分式定义,分母不能为0,从而得出结论。
14.七位女生的体重(单位:kg)分别为36、42、38、42、35、45、40,则这七位女生的体 重的中位数为 kg . 【答案】40。
【考点】中位数。
【分析】根据的中位数定义,中位数是指将数据按大小顺序排列起来,形成一个数列,居 于数列中间位置的那个数据。
故应先将七位女生的体重重新排列:35,36,38,40,42,42, 45,从而得到中位数为40。
15.如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC上,且AE ABB 1C DEAC D B=CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC = cm . 【答案】4。
【考点】矩形性质,折叠,等腰三角形性质,直角三角形性质,300角直角三角形的性质。
【分析】由矩形性质知,∠B=900,又由折叠知∠BAC =∠EAC 。
根据等腰三角形等边对等 角的性质,由AE =CE 得∠EAC=∠ECA 。
而根据直角三角形两锐角互余的性质,可以得到 ∠ECA=300。
因此根据300角直角三角形中,300角所对直角边是斜边一半的性质有,Rt∆ABC 中AC=2AB=4。
16.分解因式:3m (2x ―y )2―3mn 2= . 【答案】()()322m x y n x y n -+--。
【考点】提取公因式法和应用公式法因式分解。
【分析】()()()()222232332322m x y mn m x y n m x y n x y n ⎡⎤--=--=-+--⎣⎦。
17.如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°, ∠ADB =60°,CD =60m ,则河宽AB 为 m(结果保留根号).【答案】A .【考点】解直角三角形,特殊角三角函数,根式计算。
【分析】在Rt∆AB D 和R t∆ABC 中tan tan AB ABADB ACB DB CB==, 0033tan 60 tan303 60606033603260330 3.AB AB AB AB AB DB DB DB DB AB AB AB AB ⎛⇒==⇒==⇒=+ ⎪++⎝⎭⇒=+⇒=⇒= ,, 18.如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线y =33x 相切.设三个半圆的半 径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .O O 1 O 2O 3xy · ··【答案】9。
【考点】一次函数,直角三角形的性质,相似三角形。
【分析】设直线y =33x 与三个半圆分别切于A ,B ,C ,作AE ⊥X 轴于E ,则在Rt∆A EO 1中,易得∠AOE=∠EAO 1=300,由r 1=1得EO=12, 132OE=32,OO 1=2。
则。
1112222221233r OO R AOO R BOO r r OO r r ∆∆⇒=⇒=⇒=+∽tt 同理,1113333331299r OO R AOO R COO r r OO r r ∆∆⇒=⇒=⇒=+∽t t 。
三、解答题(本大题共10小题,满分96分) 19.(10分)(1)计算:22+(-1)4+(5-2)0-|-3|;(2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1. 【答案】解:(1)原式=4+1+1-3=1。
(2)原式=4ab (b 2-2ab )÷4ab +4a 2-b 2=b 2-2ab +4a 2-b 2=4a 2-2ab 当a =2,b =1时,原式=4×22-2×2×1=16-4=12。
【考点】负数的偶次幂,0次幂,绝对值,代数式化简,平方差公式。
【分析】(1)利用负数的偶次幂,0次幂和绝对值的定义,直接得出结果。
(2)利用提取公因式先把分式化简,应用平方差公式把多项式乘多项式化简,然后合并同类项,再代入。
20.(8分)求不等式组⎩⎨⎧3x -6≥x -42x +1>3(x -1) 的解集,并写出它的整数解.【答案】解:由①,得x ≥1, 由②,得x<4。
所以不等式组的解集为14x ≤<。
它的整数解1,2,3。
【考点】-元一次不等式组。
【分析】利用-元一次不等式组求解方法,直接得出结果,然后写出它的整数解。
①21.(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度; (2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人. 【答案】解:(1)300,36。
(2)喜欢足球的有300-120-60-30=90人,所以据此将条形图补充完整(如右图)。
(3)在参加调查的学生中,喜欢篮球的有120人,占120÷300=40%,所以该校2000名学生中,估计喜欢“篮球”的学生共有2000×40%=800(人)。
【考点】扇形统计图,条形统计图,频率,频数。
【分析】(1)从图中知,喜欢乒乓球的有60人,占20%,所以参加调查的学生共有60÷20%=300(人)喜欢其他球类的有30人,占30÷300=10%,所以表示“其他球类”的扇形的圆心角为3600×10%=360。
(2)由(1)参加调查学生的总数减去另外各项就可得喜欢足球的人数,将条形图补充完整。
(3)先求出在参加调查的学生中,喜欢篮球的人,占参加调查的学生的百分比就能估计出全校喜欢“篮球”的学生人数。
22.(8分)如图,AM 切⊙O 于点A ,BD ⊥AM 于点D ,BD 交⊙O于点C ,OC 平分∠AOB .求∠B 的度数.【答案】解:∵OC 平分∠AOB ,∴∠AOC =∠COB , ∵AM 切⊙O 于点A ,即OA ⊥AM ,又BD ⊥AM ,人数 120 90 60 30 0篮球 乒乓球 足球 其他球类 项目1206030乒乓球 20%足球其他球类篮球OA D MCB∴OA ∥BD ,∴∠AOC =∠OCB又∵OC =OB ,∴∠OCB =∠B ,∴∠B =∠OCB =∠COB =600。