电路的基本概念和规律

合集下载

电路的基本概念和基本定律

电路的基本概念和基本定律

电路的基本概念和基本定律
电路基本概念和基本定律
电路是由电工设备或元件按照一定方式组合而成,用于实现电能的传输和转换,以及传递和处理信号。

一般电路由电源、负载和连接导线组成。

电源是一种将其他形式的能量转换成电能或电信号的装置,如发电机、电池和各种信号源。

负载是将电能或电信号转换成其他形式的能量或信号的用电装置,如电灯、电动机、电炉等。

变压器和输电线是连接电源和负载的部分,起到传输和分配电能的作用。

电路分为外电路和内电路。

从电源一端经过负载再回到电源另一端的电路称为外电路,而电源内部的通路则称为内电路。

电路有三种状态:通路、开路和短路。

通路是连接负载的正常状态。

开路是电路中某处的连接导线断开,电路中的电流
为零,电源不输出电能。

短路是非正常连接,外电路的电阻可视为零,电流有捷径可通,不再流过负载。

电路中产生电流的条件是电路中有电源供电且电路必须是闭合回路。

电路的功能包括传递和分配电能,以及传递和处理信号。

电路的基本定律包括欧姆定律、基尔霍夫定律和电功率定律。

欧姆定律指出电流与电阻成正比,与电压成反比。

基尔霍夫定律分为节点定律和回路定律,用于分析电路中的电流和电压分布。

电功率定律则描述了电路中能量的转换和损失。

第一章电路的基本概念和基本定律

第一章电路的基本概念和基本定律
电路:电流的通路.
开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R

Uab E R
15Leabharlann R aIR E UR
b U
IR

U
R
E
(3) 数值计算
U 3V
IR

3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1

1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0

I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3

电路的基本概念和基本定律

电路的基本概念和基本定律

电路的基本概念和基本定律一、电路基本概述1.电流流经的路径叫电路,它是为了某种需要由某些电工设备或元件按一定方式组合起来的,它的作用是A:实现电能的传输和转换;B:传递和处理信号(如扩音机、收音机、电视机)。

一般电路由电源、负载和连接导线(中间环节)组成。

(1)电源是一种将其它形式的能量转换成电能或电信号的装置,如:发电机、电池和各种信号源。

(2)负载是将电能或电信号转换成其它形式的能量或信号的用电装置。

如电灯、电动机、电炉等都是负载,是取用电能的设备,它们分别将电能转换为光能、机械能、热能。

(3)变压器和输电线是中间环节,是连接电源和负载的部分,它起传输和分配电能的作用。

2. 电路分为外电路和内电路。

从电源一端经过负载再回到电源另一端的电路,称为外电路;电源内部的通路称为内电路。

3.电路有三种状态:通路、开路和短路。

(1)通路是连接负载的正常状态;(2)开路是R→∝或电路中某处的连接导线断线,电路中的电流I=0,电源的开路电压等于电源电动势,电源不输出电能。

例如生产现场的电流互感器二次侧开路,开路电压很高,将对工作人员和设备造成很大威胁;(3)短路是相线与相线之间或相线与大地之间的非正常连接,短路时,外电路的电阻可视为零,电流有捷径可通,不再流过负载。

因为在电流的回路中仅有很小的电源内阻,所以这时的电流很大,此电流称为短路电流。

短路也可发生在负载端或线路的任何处。

产生短路的原因往往是由于绝缘损坏或接线不慎,因此经常检查电气设备和线路的绝缘情况是一项很重要的安全措施。

为了防止短路事故所引起的后果,通常在电路中接入熔断器或自动断路器,以便发生短路时,能迅速将故障电路自动切除。

4、电路中产生电流的条件:(1)电路中有电源供电;(2)电路必须是闭合回路;5、电路的功能:(1)传递和分配电能。

如电力系统,它是由发电机,升压变压器,输电线、降压变压器、供配电线路和各种高、低压电器组成。

(2)传递和处理信号。

电路的基本概念和定律、定理

电路的基本概念和定律、定理
基尔霍夫定律
基尔霍夫电流定律
总结词
基尔霍夫电流定律也称为节点电流定 律,它指出在电路中,流入一个节点 的电流总和等于流出该节点的电流总 和。
详细描述
这意味着对于任意一个封闭的电路或 节点,所有流入的电流必须等于所有 流出的电流。这个定律是电路分析中 的一个基本原则,适用于任何电路中 的节点。
基尔霍夫电压定律
对于高频交流信号,诺顿定理可能不适用, 因为电路的分布参数效应需要考虑。
THANKS
感谢观看
05
CATALOGUE
诺顿定理
诺顿定理的定义
01
诺顿定理:在任何线性无源二端 网络中,对其外部任一节点,流 入该节点的电流代数和等于零。
02
诺顿定理是电路分析中的重要定 理之一,它与基尔霍夫电流定律 (KCL)相似,但适用于更广泛 的电路情况。
诺顿定理的应用
01
02
03
验证电路的正确性
通过应用诺顿定理,可以 验证电路中电流的正确性 ,确保电路设计无误。
电路的组成
总结词
电路的组成包括电源、负载、开关、导线等部分。
详细描述
电源是电路中提供电能的设备,如电池、发电机等;负载是电路中消耗电能的 设备,如灯泡、电机等;开关用于控制电路的通断;导线用于连接各元件,形 成电流的通路。
电路的状态
总结词
电路的状态分为开路、短路和闭路三种。
详细描述
开路是指电路中无电流通过的状态,通常是由于开关未闭合或导线断开等原因造成的;短路是指电流不经过负载 直接由电源正负极流过的状态,会导致电流过大、发热甚至烧毁电源;闭路是指电路中电流正常流通的状态,负 载正常工作。
总结词
基尔霍夫电压定律也称为回路电压定律,它指出在电路中,沿着任意闭合回路的电压降总和等于零。

电路的基本概念和规矩 -回复

电路的基本概念和规矩 -回复

电路的基本概念和规矩-回复电路的基本概念和规则电路是指由电器元件(如电阻、电容、电感、二极管、晶体管等)以及导线、电源等组成的能够传导电流的闭合路径。

电路是电子技术的基础,它在现代生活中扮演着重要的角色。

对于电路的基本概念和规则的了解,能够帮助我们更好地理解和应用电子技术。

一、电路的基本概念1. 电流:电流是电荷在单位时间内通过导线的量,通常用字母I表示,单位是安培(A)。

电流方向规定为正电流(从正极到负极)和负电流(从负极到正极)。

2. 电压:电压是电流的驱动力,它使电荷在导线中流动。

电压通常用字母U表示,单位是伏特(V)。

在电路中,电压可以理解为电流在电路中的压力差。

3. 电阻:电阻是电流流过导体时的阻碍力,它使电流发生阻碍和损耗。

电阻通常用字母R表示,单位是欧姆(Ω)。

电阻越大,电流通过的能力越小。

4. 电容:电容是指电路中的两个导体之间的电荷存储能力,通常用字母C表示,单位是法拉(F)。

电容器可以把电荷积攒在一起,当需要时再释放出来。

5. 电感:电感是电流变化时,产生的电磁感应阻碍电流变化的能力。

电感通常用字母L表示,单位是亨利(H)。

电感可以储存电能,当电流发生变化时,电感能够释放出储存的电能。

6. 电源:电源是电路中供电的装置,可以提供稳定的电压和电流。

常见的电源有电池、交流电源和直流电源等。

7. 导线:导线是电流在电路中传输的通路,它通常由金属材料制成,如铜、铝等。

二、电路的基本规则1. 欧姆定律:欧姆定律是电学的基本定律,它揭示了电流、电压和电阻之间的关系。

根据欧姆定律,电流通过一个电阻的大小与电压成正比,与电阻成反比。

数学表达式为I = U/R,其中I表示电流,U表示电压,R表示电阻。

2. 基尔霍夫电压定律:基尔霍夫电压定律也称为节点电压法则,它表明在电路中,电压在一个闭合回路中的各个电压之和等于零。

3. 基尔霍夫电流定律:基尔霍夫电流定律也称为分流电流法则,它表明在电路中,流入一个节点的电流等于流出该节点的电流之和。

高考物理一轮专题复习—电路的基本概念和规律

高考物理一轮专题复习—电路的基本概念和规律

高考物理一轮专题复习—电路的基本概念和规律一、电流部分电路欧姆定律1.电流(1)形成的条件:导体中有自由电荷;导体两端存在电压。

(2)标矢性:电流是标量,正电荷定向移动的方向规定为电流的方向。

(3)两个表达式:①定义式:I =q t ;②决定式:I =UR 。

2.部分电路欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

(2)表达式:I =UR。

(3)适用范围:金属导电和电解质溶液导电,不适用于气态导电或半导体元件。

(4)导体的伏安特性曲线(I -U )图线图1①比较电阻的大小:图线的斜率k =tan θ=I U =1R ,图1中R 1>R 2(选填“>”“<”或“=”)。

②线性元件:伏安特性曲线是直线的电学元件,适用于欧姆定律。

③非线性元件:伏安特性曲线是曲线的电学元件,不适用于欧姆定律。

【自测1】如图2所示为a 、b 两电阻的伏安特性曲线,图中α=45°,关于两电阻的描述正确的是()图2A.电阻a的阻值随电流的增大而增大B.因I-U图线的斜率表示电阻的倒数,故电阻b的阻值R=1tanα=1.0ΩC.在两图线交点处,电阻a的阻值等于电阻b的阻值D.在电阻b两端加2V电压时,流过电阻的电流是4A答案C解析I-U图像上的点与坐标原点连线的斜率等于电阻的倒数,由题图可知,电阻a的图像上的点与坐标原点连线的斜率越来越大,表示电阻越来越小,故选项A错误;由于横、纵坐标轴的长度单位不同,因此R≠1tanα,而只能通过R=UI=105Ω=2Ω求解,选项B错误;根据R=UI可知在两图线交点处,电阻a的阻值等于电阻b的阻值,选项C正确;由题图可知,在电阻b两端加2V电压时,流过电阻的电流是1A,选项D错误。

二、电阻及电阻定律1.电阻(1)定义:导体对电流的阻碍作用,叫作导体的电阻。

(2)公式:R=UI,其中U为导体两端的电压,I为通过导体的电流。

(3)单位:国际单位是欧姆(Ω)。

电路的基本概念和规律

电路的基本概念和规律

电路基本概念和规律一、电流1.电流(1)定义:电荷的定向移动形成电流。

(2)条件:①有自由移动的电荷;②导体两端存在电压。

注意:形成电流的微粒有三种:自由电子、正离子和负离子。

其中金属导体导电时定向移动的电荷是自由电子,液体导电时定向移动的电荷是正离子和负离子,气体导电时定向移动的电荷是电子、正离子和负离子。

(3)公式①定义式:qIt=,q为在时间t内穿过导体横截面的电荷量。

注意:如果是正、负离子同时定向移动形成电流,那么q是两种离子电荷量的绝对值之和。

②微观表达式:I=nSve,其中n为导体中单位体积内自由电子的个数,q为每个自由电荷的电荷量,S 为导体的横截面积,v为自由电荷定向移动的速度。

(4)方向:规定正电荷定向移动的方向为电流的方向,与负电荷定向移动的方向相反。

注意:电流既有大小又有方向,但它的运算遵循算术运算法则,是标量。

(5)单位:国际单位制中,电流的单位是安培(A),常用单位还有毫安(mA)、微安(μA),1 mA=10–3 A,1 μA=10–6 A。

2.电流的分类方向不改变的电流叫直流电流;方向和大小都不改变的电流叫恒定电流;方向周期性改变的电流叫交变电流。

3.三种电流表达式的比较分析1.电源:通过非静电力做功使导体两端存在持续电压,将其他形式的能转化为电能的装置。

2.电动势(1)定义:电动势在数值上等于非静电力把1 C 的正电荷在电源内从负极移送到正极所做的功。

(2)表达式:qW E =。

(3)物理意义:反映电源把其他形式的能转化成电能的本领大小的物理量。

注意:电动势由电源中非静电力的特性决定,跟电源的体积无关,跟外电路无关。

(4)方向:电动势虽然是标量,但为了研究电路中电势分布的需要,规定由负极经电源内部指向正极的方向(即电势升高的方向)为电动势的方向。

(5)电动势与电势差的比较1.电阻(1)定义式:I U R =。

(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小。

生活中的电路知识

生活中的电路知识

生活中的电路知识一、电路的基本概念电路是指由电源、导线和负载组成的电气连线系统。

电源提供电能,导线用于传输电能,负载消耗电能。

在生活中,我们常见的电路有各种电器、灯具、插座等。

二、电路的分类根据电流的流动方式,电路可以分为串联电路、并联电路和混合电路。

1. 串联电路:指电流沿着一条路径流动,负载依次连接。

在生活中,我们常见的串联电路包括家庭照明电路和电子设备的电路。

例如,当我们打开家里的开关时,电流从电源进入导线,然后依次通过各个灯具,最后回到电源。

2. 并联电路:指电流分为几条路径流动,负载并行连接。

在生活中,我们常见的并联电路包括家庭插座和电源适配器。

例如,当我们插上电源适配器时,电流可以同时通过多个插孔,供应不同的电器使用。

3. 混合电路:指既有串联部分又有并联部分的电路。

在生活中,我们常见的混合电路包括电路板和各种电子产品内部的电路。

三、电路的元件电路中的元件包括电源、开关、导线、负载等。

1. 电源:提供电能的装置,可以是电池、电网或发电机。

在生活中,我们使用的电源有家庭电源、电池、充电器等。

2. 开关:用于控制电路的通断,分为单控开关和双控开关。

在生活中,我们常见的开关有墙壁开关、电器上的按钮等。

3. 导线:用于传输电能的金属线材,分为导电良好的铜线和导电性较差的铁线。

在生活中,我们使用的导线有电线、插座上的金属触点等。

4. 负载:消耗电能的装置,包括灯泡、电器、电机等。

在生活中,我们使用的负载有各种家电、电脑、手机等。

四、电路中的电流、电压和电阻电流是指电荷在单位时间内通过导线的数量,用安培(A)表示。

电压是指电流在电路中的推动力,用伏特(V)表示。

电阻是指阻碍电流流动的程度,用欧姆(Ω)表示。

在电路中,根据欧姆定律,电流、电压和电阻之间存在如下关系:电流 = 电压 / 电阻。

五、电路中的串联和并联规律在串联电路中,各个负载的电压之和等于电源的电压,而电流相同。

在并联电路中,各个负载的电流之和等于电源的电流,而电压相同。

电路的基本概念和定律

电路的基本概念和定律

1.2.3 电功率
电功率的定义为:单位时间电场力所做的功。为了更具普遍意义 ,这里我们用随时间变化的功率定义式,若在dt 时间内电场力 做的功为d w ,则电功率p 为:
在国际单位制中,功率的单位用瓦特表示,简称瓦(W) ,1 瓦功率等于每秒产生(或消耗)1 焦耳(J)的功。对于大的功 率还可以用千瓦(kW)表示,对于小的功率可以用毫瓦(mW)表 示,它们的关系为:
电路原理
1 电流、电压和电功率 欧姆定律和基尔霍夫电流定律及
2 电压定律 电阻串、并联、分压、分流
3 公式 4 电路中的电位及其计算
5 受控源的概念
1.1 电路及电路模型
1.1.1 电路
电路就是电的传送路径,它由电 源、负载和中间环节组成,图是按实 物画出的手电筒电路的示意图,它由 电源(干电池) 、小电珠(负载) 和开关(中间环节)三部分组成,导 线是连接这三部分必不可少的。当闭 合开关S 时,正电荷便从电源正极通过导线源源不断地流经小 电珠中的灯丝,回到电源负极。灯丝的作用是把电能变成了光 能和热能。电路的另一个重要功能是实现电信号的传递和处理 。
1 安(A) = 103毫安(mA) = 106微安(μA) = 109 纳安(nA)
1.2.2 电压
在国际单位制中,电压的单位为伏特(V) ,简称 伏。把1 库仑(C)的正电荷从a 点移到b 点,电 场力所做的功为1 焦耳(J) ,则a 、b 两点间 的电压为1 伏(V) ,参考点处认为是零伏(V)。 大的电压单位采用千伏(kV)表示,对于很小的电 压可用毫伏(mV)或微伏(μV)作为单位,它们的关系为:
如图 所示回路,按照外回路abcdea 的方向巡行一周,以图中的 参考方向为准,电压降低的有U1 、U2 、U3 ,升高的有US 1 、US2 ,即:

电路的基本概念与基本定律

电路的基本概念与基本定律
或按下面的方法计算该电路总的吸收功率为
P 1P 216824W
根据电路的功率平衡电关路系中,元整件个发电出路的尚功需率从为外部P3吸收12的W功率为
P2 4 1 21 2 W
上一页
下一页
1.3 电阻元件和欧姆定律
1、电阻元件
电阻元件是反映电路器件消耗电能的物理性 能的一种理想的二端元件。
返回首页
第一、第二道各代表一位数字,第三道代表零的 个数。 例如,某色环电阻第一道为蓝色,第二道为灰色, 第三道为橙色, 该电阻器的电阻值为 68K 。
电阻器的额定功率是指在规定的气压、温度条件 下,电阻器长期工作所允许承受的最大电功率。一般 情况下,所选用的电阻器的额定功率应大于其实际消 耗的最大功率,否则,电阻器可能因温度过高而烧毁。
上一页
返回首页 下一页
第一章 电路的基本概念和基本定律
1.1 电路和电路模型 1.2 电路的基本物理量 1.3 电阻元件和欧姆定律 1.4 电压源和电流源 1.5 工程中的电阻、电源与电路状态 1.6 基尔霍夫定律
返回首页
上一页
下一页
第一章 电路的基本概念和基本定律
1.1 电路和电路模型
1.1.1 电路电路又称网络,是各种电器设备按
若电压有的千实伏际(方k向V)与、参毫考伏方(向m一V致),、则微电伏压(为μV正)值等,。若电压的
实际方向与参考方向相反,则电压为负值。
A u
BA
B
u
(a)
(b)
上一页
下一页
1.2电路的基本物理量
5、关联参考方向与非关联参考方 向①关联参考方向
电路中电流、电压的参考方向,可以分别独立地规 定,当它们一致时称为关联参考方向,简称关联方 向

第1章 电路的基本概念与定律

第1章 电路的基本概念与定律

第1章 电路的基本概念与定律
注意 若选定的参考方向与电流的实际方向一致,则电流 为正值,即I>0 ; 若选定的参考方向与电流的实际方向相反,则电流 为负值,即I<0 。
电流的实际方向 电流的实际方向
I a
I
R
b
a
R
b
电流的参考方向 I>0
电流的参考方向 I<0
第1章 电路的基本概念与定律
二、电压和电动势及其参考方向 电压 电场力把单位正电荷从电场中的一点移到另一点所作的功, 叫做这两点间的电压。
C
q u
式中q的单位为库仑,u的单位为伏特,C的单位为法拉,简称 法,用字母F表示。由于法拉的单位太大,通常采用微法(μF)或 皮法(pF)表示。
1F 1 0 F 1 0
6 12
pF
当电容电压和电流为关联参考方向时,由电流的定义
i dq dt C du dt
在任一时刻,电路中电容的电流与其端电压的变化率成正比。 对于恒定电压,电容中的电流为零。所以电容对直流电而言相当于 开路。
响应
由激励产生的结果(如某个元件上的电流和电压等) 称之为响应。 激励和响应的关系就是作用和结果的关系。
电路分析就是在已知激励、电路结构和参数(电路模型) 的情况下,根据电路的基本定律对由理想元件组成的电路模型 进行分析,求出各元件上的电压、电流及功率等物理量,预测 实际电路的特性,以便设计更优化的电路。
N
第1章 电路的基本概念与定律
如果忽略导线电阻中消耗能量等次要因素,就可以用电感 元件作为实际线圈的模型。如下图所示。 i
+
u L e
将单位电流所能产生的磁链定义为电感元件的自感系数。电 感元件的自感系数简称电感,用字母L 来表示,即

选修3-1 第八章 第1讲 电路的基本概念和规律

选修3-1 第八章 第1讲 电路的基本概念和规律

第1讲电路的基本概念和规律知识排查欧姆定律1.电流(1)形成的条件:导体中有自由电荷;导体两端存在电压。

(2)标矢性:电流是标量,规定正电荷定向移动的方向为电流的方向。

(3)三个表达式:①定义式:I=qt;②决定式:I =UR;③微观表达式I=nq v S.2.欧姆定律(1)内容:导体中的电流I跟导体两端的电压U成正比,跟导体的电阻R成反比。

(2)公式:I=UR。

(3)适用条件:适用于金属和电解质溶液,适用于纯电阻电路。

电阻定律1.电阻定律(1)内容:同种材料的导体,其电阻跟它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关。

(2)表达式:R=ρlS。

2.电阻率(1)计算式:ρ=RSl。

(2)物理意义:反映导体的导电性能,是导体材料本身的属性。

(3)电阻率与温度的关系金属的电阻率随温度升高而增大,半导体的电阻率随温度升高而减小。

电阻的串联、并联有关。

( )(5)公式W =UIt 适用于任何电路中求电功,Q =I 2Rt 适用于任何电路求电热。

( )答案 (1)× (2)× (3)√ (4)√ (5)√ 2.[人教选修3-1·P 43·T 3改编]安培提出了著名的分子电流假说,根据这一假说,电子绕核运动可等效为一环形电流。

设电荷量为e 的电子以速率v 绕原子核沿顺时针方向做半径为r 的匀速圆周运动,关于该环形电流的说法正确的是( )A .电流大小为v e2πr ,电流方向为顺时针B .电流大小为v er ,电流方向为顺时针C .电流大小为v e2πr ,电流方向为逆时针D .电流大小为v er ,电流方向为逆时针解析 电子做圆周运动的周期T =2πr v ,由I =eT 得I =v e2πr ,电流的方向与电子运动方向相反,故为逆时针。

答案 C 3.(2019·浙江模拟)欧姆不仅发现了欧姆定律,还研究了电阻定律,有一个长方体的金属电阻,材料分布均匀,边长分别为a 、b 、c ,且a >b >c 。

电路的基本概念和规律知识点

电路的基本概念和规律知识点

电路的基本概念和规律一、考纲要求1.理解欧姆定律、电阻定律、焦耳定律的内容,并会利用它们进行相关的计算与判断.2.会用导体的伏安特性曲线I-U图象及U-I图象解决有关问题.3.能计算非纯电阻电路中的电功、电功率、电热.二、知识梳理1.电流(1)定义:通过导体横截面的电荷量q跟通过这些电荷所用时间t的比值,叫做电流.(2)方向:自由电荷的定向移动形成电流.规定正电荷定向移动的方向为电流的方向.(3)2.电阻(1)定义式:R=.(2)物理意义:导体的电阻反映了导体对电流阻碍作用的大小.3.电阻定律:R=ρ.4.电阻率(1)物理意义:反映导体导电性能的物理量,是导体材料本身的属性.(2)电阻率与温度的关系①金属的电阻率随温度升高而增大;②半导体的电阻率随温度升高而减小;③超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小为零,成为超导体.5.部分电路欧姆定律(1)内容:导体中的电流I跟导体两端的电压U成正比,跟导体的电阻R成反比.(2)公式:I=.(3)适用条件:适用于金属导体和电解质溶液导电,适用于纯电阻电路.6.电功(1)定义:导体中的恒定电场对自由电荷的电场力做的功.(2)公式:W=qU=IUt(适用于任何电路).(3)电流做功的实质:电能转化成其他形式能的过程.7.电功率(1)定义:单位时间内电流做的功,表示电流做功的快慢.(2)公式:P=W/t=IU(适用于任何电路).8.焦耳定律(1)电热:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比.(2)计算式:Q=I2Rt.9.热功率(1)定义:单位时间内的发热量.(2)表达式:P==I2R.10.串、并联电路的特点(1)特点对比U=U1=U2=…=U n=++…+=,==,==,==,=串联电路的总电阻大于其中任一部分电路的总电阻.②并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.③无论电阻怎样连接,某一段电路的总耗电功率P总是等于该段电路上各个电阻耗电功率之和.④无论电路是串联还是并联,电路中任意一个电阻变大时,电路的总电阻变大.三、要点精析1.对电阻率的理解:(1)电阻率可以用ρ=计算,在数值上等于用某种材料制成的长为1 m、横截面积为1 m2的导线的电阻值.(2)电阻率与导体材料有关,与导体长度l、横截面积S无关.(3)电阻率与温度有关.例如,金属材料的电阻率随温度的升高而增大.半导体材料的电阻率随温度的升高而减小.有些材料的电阻率几乎不受温度的影响,可制作标准电阻.2.R=ρ与R=的比较:R=ρR=3.应用公式R=ρ时的注意事项应用公式R=ρ解题时,要注意公式中各物理量的意义及变化情况.(1)公式R=ρ中,l为沿电流的方向的长度,S为垂直电流方向的面积.(2)导体长度l和横截面积S中只有一个发生变化,另一个不变.(3)l和S同时变化,有一种特殊情况是l与S成反比,即导线的总体积V=lS不变.(4)输电线问题中,输电线的长度等于两地距离的二倍.4.对伏安特性曲线的理解(1)图线的区别①下图中,图线a、b表示线性元件,图线c、d表示非线性元件.②图线a、b的斜率表示电阻的倒数,斜率越大,电阻越小,故R a<R b(如图甲所示).③图线c的电阻随电压的增大而减小,图线d的电阻随电压的增大而增大(如图乙所示).(1)图线的意义①由于导体的导电性能不同,所以不同的导体有不同的伏安特性曲线.②伏安特性曲线上每一点的电压坐标与电流坐标的比值,对应这一状态下的电阻.5.伏安特性曲线的“三点注意”(1)在I-U曲线上某点切线的斜率不是电阻的倒数.(2)要区分是I-U图线还是U-I图线.(3)对线性元件:R==;对非线性元件:R=≠.应注意,线性元件不同状态时比值不变,非线性元件不同状态时比值不同.6.计算电功、电热、电功率的方法技巧(1)P=UI、W=UIt、Q=I2Rt,在任何电路中都能使用.在纯电阻电路中,W=Q、UIt=I2Rt,在非纯电阻电路中,W>Q、UIt>I2Rt.(2)在非纯电阻电路中,欧姆定律R=不成立.(3)处理非纯电阻电路的计算问题时,要善于从能量转化的角度出发,紧紧围绕能量守恒定律,利用“电功=电热+其他能量”寻找等量关系求解.(4)导体在某状态下的电功率P=UI,也可以从U-I图线看该状态纵、横坐标围成的矩形面积,注意不是曲线与坐标轴包围的面积.7.8.“柱体微元”模型求解电流大小[模型构建]带电粒子在外加电场的作用下,形成定向移动的粒子流,从中取一圆柱形粒子流作为研究对象即为“柱体微元”模型.如图所示,粗细均匀的一段导体长为l,横截面积为S,导体单位体积内的自由电荷数为n,每个自由电荷的电荷量为q,当导体两端加上一定的电压时,导体中的自由电荷沿导体定向移动的速率为v.[模型条件](1)外加电压为恒定电压.(2)带电粒子流仅带一种电荷.(3)带电粒子在柱体内做定向移动.[模型特点](1)柱体的长―→l.柱体的横截面积―→S.(2)带电粒子在柱体内做匀加速直线运动.[处理思路](1)选取一小段粒子流为柱体微元.(2)运用相关物理规律,结合柱体微元和整体对象的关联性进行分析计算.(3)常用的公式.①导体内的总电荷量:Q=nlSq.②电荷通过横截面D的时间:t=.③电流表达式:I==nqSv.。

8.1 电路的基本概念和规律

8.1 电路的基本概念和规律

8.1 电路的基本概念和规律一、电流1.定义:电荷的定向移动形成电流 2.形成电流的条件(1)导体中有能够自由移动的电荷;(2)导体两端存在电压.3.电流的方向:与正电荷定向移动的方向相同,与负电荷定向移动的方向相反. 电流虽然有方向,但它是标量. 4.定义式:I =qt.5.微观表达式:I =nqS v ,式中n 为导体单位体积内的自由电荷数,q 是自由电荷的电荷量, v 是自由电荷定向移动的速率,S 为导体的横截面积. 6.单位:安培(安),符号A ,1 A =1 C/s . 7.对电流的理解公式适用 范围字母含义公式含义 定 义 式I =q t一切电路q :(1)是通过整个导体横截面的 电量,不是单位面积上(2)当异种电荷反向通过某截面时,所形成的电流是同向的,应是q =|q 1|+|q 2| qt反映了I 的大小,但不能说I ∝q ,I ∝1t微观式I =nqSv一切 电路n :导体单位体积内的自由电荷数q :每个自由电荷的电量S :导体横截面积v :定向移动的速率从微观上看n 、q 、S 、v 决定了I 的大小决定式I =U R金属电解液U :导体两端的电压R :导体本身的电阻 I 由U 、R 决定I ∝U ,I ∝1R8.正确理解导体中有电流时的三种速率(1)电场传播速率(或电流传导速率),它等于光速,电路一旦接通,电源就以光速在电路各处建立了电场,整个电路上的电子几乎同时受到电场力开始做定向移动,平时一合上电闸,用电器中立即就有电流,就是这个原因.(2)电子定向移动的速率,数量级为10—4m/s ~10—5m/s .(3)电子热运动的速率,数量级为105m/s .【例1】示波管中,2s 内有6×1013个电子通过横截面大小不知的电子枪,则示波管中电流大小为(A)A .4.8×10—6AB .3×10—13AC .9.6×10—6AD .无法确定【练习】我国北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,电子电荷量e=1.6×10—19C ,在整个环中运行的电子数目为5×1011,设电子的速度是3×107 m/s ,则环中的电流是( A)A .10mAB .1mAC .0.1mAD .0.01mA【练习】某电解池,如果在1s 内共有5×1018个二价正离子和1×1019个一价负离子通过面积为0.1m 2的某截面,那么通过这个截面的电流是( D )A .0B .0.8AC .1.6AD .3.2A二、电动势1.物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小.电动势越大,电路中每通过1C 电量时,电源将其它形式的能转化成电能的数值就越多. 2.定义:在电源内部非静电力所做的功W 与移送的电荷量q 的比值,叫电源的电动势,用E 表示.定义式为:E = W/q . 【注意】(1)电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关. (2)电动势在数值上等于电源没有接入电路时,电源两极间的电压.(3)电动势在数值上等于非静电力把1C 电量的正电荷在电源内从负极移送到正极所做的功. 3.电源(池)的几个重要参数(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关. (2)内阻(r ):电源内部的电阻.(3)容量:电池放电时能输出的总电荷量.其单位是:A·h ,mA·h . 【例1】关于电动势,以下说法正确的是( D ) A .1号干电池比5号干电池大,所以电动势也大B .1号干电池比5号干电池大,但是电动势相等,内电阻相同C .电动势的大小随外电路的电阻增大而增大D .电动势由电源中非静电力的特性决定,跟电源的体积无关,也跟外电路无关 【练习】关于电源电动势,以下说法正确的是( C )A .由电动势qW E = 可知E 跟q 成反比,电路中移送的电荷越多,电动势越小B .由电动势qW E = 可知E 跟W 成正比,电源做的功越多,电动势越大C .由电动势qW E = 可知电动势E 的大小跟W 和q 的比值相等,跟W 的大小和q 的大小无关,由电源本身决定 D .以上说法都不对1.电阻率:(1)物理意义:反映导体导电性能的物理量,是导体材料本身的属性. (2)电阻率与温度的关系金属:电阻率随温度升高而增大; 半导体:电阻率随温度升高而减小;超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零成为超导体. 2.电阻定律:同种材料的导体,其电阻跟它的长度成正比,与它的横截面积成反比,导体的电阻与构成它的材料有关.表达式为:R =ρlS.3.电阻的决定式和定义式的区别与相同点公式 R =ρl S R =UI区别电阻定律的表达式电阻的定义式指明了电阻的决定因素提供了一种测定电阻的方法,并不说明电阻与U 和I 有关 只适用于粗细均匀的金属导体和浓度均匀的电解液适用于任何纯电阻导体相同点都不能反映电阻的实质(要用微观理论解释)【例1】关于电阻率,下列说法中正确的是( D )A .电阻率是表征材料导电性能好坏的物理量,电阻率越大,其导电性能越好B .各种材料的电阻率大都与温度有关,金属的电阻率随温度升高而减小C .所谓超导体,是当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为无穷大D .某些合金的电阻率几乎不受温度变化的影响,通常都用它们制作标准电阻 【练习】对于常温下一根阻值为R 的均匀金属丝,下列说法中正确的是( BD ) A .常温下,若将金属丝均匀拉长为原来的10倍,则电阻变为10R B .常温下,若将金属丝从中点对折起来,电阻变为14RC .给金属丝加上的电压逐渐从零增大到U 0,则任一状态下的UI比值不变D .把金属丝温度降低到绝对零度附近,电阻率会突然变为零【练习】如图甲为一测量电解液电阻率的玻璃容器,P 、Q 为电极,设a =1 m ,b =0.2 m ,c =0.1 m ,当里面注满某电解液,且P 、Q 加上电压后,其U -I 图线如图乙所示,当U =10 V 时,求电解液的电阻率ρ是多少? 答案 40 Ω·m1.内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比. 2.表达式:I =UR .3.适用范围(1)金属导电和电解液导电(对气体导电不适用); (2)纯电阻电路(不含电动机、电解槽等的电路). 4.导体的伏安特性曲线 (1)I -U 图线以电流为纵轴、电压为横轴画出导体上的电流随电压的变化曲线,如图所示. (2)比较电阻的大小图线的斜率k =I U =1R,图中R 1>R 2.(3)线性元件:伏安特性曲线是直线的电学元件,适用欧姆定律. (4)非线性元件:伏安特性曲线为曲线的电学元件,不适用欧姆定律.【例1】如图所示是某导体的伏安特性曲线.由图可知该导体的电阻是________Ω;当导体两端的电压是10 V 时,通过导体的电流是________A ;当通过导体的电流是0.1 A ,导体两端的电压是________V .答案 25;0.4;2.5【练习】如图所示,a 、b 分别表示由相同材料制成的两条长度相同、粗细均匀电阻丝的伏安特性曲线,下列判断中正确的是( B )A .a 代表的电阻丝较粗B .b 代表的电阻丝较粗C .a 电阻丝的阻值小于b 电阻丝的阻值D .图线表示的电阻丝的阻值与电压成正比 五、电功、电热 1.电功(1)表达式:W =qU =UIt .(2)电流做功的实质:电能转化为其他形式能的过程.2.电功率(1)定义:单位时间内电流所做的功. (2)表达式:P =Wt=UI .(3)物理意义:反映电流做功的快慢. 3.电热(1)表达式:Q =I 2Rt (焦耳定律).(2)本质:电流做功的过程中电能转化为内能的多少的量度. 4.热功率 P 热=I 2R . 5.电功和电热的关系(1)在纯电阻电路中,W =Q 、P 电=P 热;在非纯电阻电路中,W >Q 、P 电>P 热.(2)在非纯电阻电路中,U 2Rt 既不能表示电功,也不能表示电热,因为欧姆定律不再成立.纯电阻电路 非纯电阻电路实例白炽灯、电炉、电饭锅、电热毯、电熨斗及转子被卡住的电动机等 电动机、电解槽、日光灯等电功与电热 W =UIt , Q =I 2Rt =U 2R tW =Q W =UItQ =I 2Rt W >Q电功率与热功率 P 电=UI , P 热=I 2R =U 2RP 电=P 热P 电=UIP 热=I 2R P 电>P 热【例1】把两根同种材料做成的电阻丝,分别接在两个电路中,甲电阻丝长为l ,直径为d , 乙电阻丝长为2l ,直径为2d ,要使两电阻丝消耗的功率相等,加在两电阻丝上的电压应满 足( C )A.U 甲U 乙=1B.U 甲U 乙=22 C.U 甲U 乙= 2 D.U 甲U 乙=2 【练习】一白炽灯泡的额定功率与额定电压分别为36 W 与36 V .若把此灯泡接到输出电压为18 V 的电源两端,则灯泡消耗的电功率( B ) A .等于36 W B .小于36 W ,大于9 W C .等于9 W D .小于36 W【例2】一台电风扇,内阻为20 Ω,接上220 V 电压后正常工作,消耗功率66 W ,求: (1)电风扇正常工作时通过电动机的电流是多少?(2)电风扇正常工作时转化为机械能的功率是多少?转化为内能的功率是多少?电动机的效率是多少?(3)如果接上电源后,电风扇的扇叶被卡住,不能转动,这时通过电动机的电流以及电动机消耗的电功率和发热功率是多少?答案(1)0.3 A(2)64.2 W 1.8 W97.3 % (3)11 A 2 420 W 2 420 W【练习】如图所示,A为电解槽,为电动机,N为电炉子,恒定电压U=12 V,电解槽内阻r A=2 Ω,当S1闭合、S2、S3断开时,电流表Ⓐ示数为6 A;当S2闭合、S1、S3断开时,Ⓐ示数为5 A,且电动机输出功率为35 W;当S3闭合、S1、S2断开时,Ⓐ示数为4 A.求:(1)电炉子的电阻及发热功率各多大?(2)电动机的内阻是多少?(3)在电解槽工作时,电能转化为化学能的功率为多少?答案(1)2 Ω72 W(2)1 Ω(3)16 W六、串并联电路1.串并联电路电路种类串联电路并联电路电路图等效电阻R=R1+R2+R3+…+R n1R=1R1+1R2+1R3+…+1R n各电路相等的物理量I1=I2=I3=…=I n U1=U2=U3=…=U n电流或电压分配关系U1R1=U2R2=…=U nR nI1R1=I2R2=…=I n R n总电流I总=I1=I2=…=I n I总=I1+I2+I3+…+I n 总电压U总=U1+U2+…+U n U总=U1=U2=…=U n电功率分配关系P1R1=P2R2=…=P nR nP1R1=P2R2=…=P n R n几个常用的推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻.(3)n个相同的电阻并联,总电阻等于其中一个电阻的1n,即:R总=1n R.(4)两个电阻并联时的总电阻R=R1·R2R1+R2,当其中任一个增大或减小时总电阻也随之增大或减小.(5)多个电阻并联时,其中任一个电阻增大或减小,总电阻也随之增大或减小.【例1】有三个电阻,其阻值分别为10 Ω、20 Ω、30 Ω.现把它们分别按不同方式连接后加上相同的直流电压,问:在总电路上可获得的最大电流与最小电流之比为多少?【练习】两只定值电阻,甲标有"10Ω 1A” , 乙标有“15Ω 0.6A”。

电路的基本概念与基本定律

电路的基本概念与基本定律

电路的基本概念与基本定律1. 电路的基本概念1.1 电路是什么首先,我们得知道,电路就像是一条“水管”,不过这里流动的不是水,而是电。

想象一下你在家里打开水龙头,水顺着管道流动,电流也是如此。

电路里有很多“组件”,像是电池、导线、开关和灯泡,它们共同工作,就像一支乐队,齐心协力奏出动听的乐章。

电池就像是乐队的指挥,它提供电力,让电流得以流动。

而导线则像是乐器之间的连接,确保每一个音符都能完美地传递。

1.2 电流与电压接下来,我们得聊聊电流和电压。

电流就像是流水的速度,单位是安培(A),而电压则是推动电流流动的力量,单位是伏特(V)。

可以想象一下,如果水流的压力不足,那么水就流不动,这就是电压的重要性。

电压高,电流就能“畅通无阻”,低了就容易卡壳。

电流和电压是电路里的好伙伴,缺一不可。

2. 基本定律2.1 欧姆定律欧姆定律可是电路中的一颗明珠,它告诉我们电流、电压和电阻之间的关系。

简而言之,欧姆定律的公式是 V = I * R,其中 V 是电压,I 是电流,R 是电阻。

想象一下,电流就像是小溪,电阻则是溪流中的石头,石头越多,水流就越难过去。

这个公式就像一张“通行证”,帮助我们了解在不同情况下,电流是如何受到影响的。

2.2 基尔霍夫定律然后我们要提到的是基尔霍夫定律,它就像是电路的交通规则。

基尔霍夫有两个定律,第一个是电流定律,意思是进入某个节点的电流总和等于离开的电流总和。

第二个是电压定律,简单来说就是在一个闭合回路中,各个部分的电压总和要等于零。

听起来有点复杂,但其实就像是一个小镇的交通,所有的车辆都要遵循规则,才能保持畅通无阻。

3. 电路中的应用3.1 日常生活中的电路现在我们可以看看电路在我们日常生活中的应用。

想象一下,你在晚上打开灯,电路就开始工作,电流流动,灯泡发光,瞬间照亮整个房间。

这一切都是电路在背后默默付出。

还有那些高科技的设备,比如手机、电脑,它们的电路设计得非常复杂,却都遵循着上述的基本概念和定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年级:高复班授课时间:2014.12.22 授课教师:科目:物理课题电路的基本概念和规律
教学目标1.理解电流的概念和电流的定义式及微观表达式
2.掌握电阻定律,理解电阻的定义式和决定式的关系
3.掌握欧姆定律内容和适用范围,并能处理部分电路问题
4.掌握串并联电路的特点
教学重点与难点
1.欧姆定律的内容及其适用范围
2.串并联电路的特点
教学过程一、电流
1.定义:电荷的定向移动形成电流
2.形成电流的条件:
(1)导体中有能够自由移动的电荷;(2)导体两端存在电压.
3.电流的方向:与正电荷定向移动的方向相同,与负电荷定向移动的方向相反.
电流虽然有方向,但它是标量.
4.定义式:I=
q
t
.
注意:(1)q是通过整个导体横截面的电量,不是单位面积上的电量;
(2)当异种电荷反向通过某截面时,所形成的电流是同向的,此时q=|q1|+|q2|. 5.微观表达式:I=nqS v,式中n为导体单位体积内的自由电荷数,q是自由电荷的电荷量,v是自由电荷定向移动的速率,S为导体的横截面积.注意:电子定向移动的速率,数量级为10—4m/s~10—5m/s,但电流传导速率,等于光速.
例1:示波管中,2s内有6×1013个电子通过横截面大小不知的电子枪,则示波管中电流大小为( A)
A.4.8×10—6A
B.3×10—13A
C.9.6×10—6A
D.无法确定
例2:有一横截面积为S的铜导线,流经其中的电流为I,设每单位体积的导线中有n个自由电子,电子的电荷量为q.此时电子的定向移动速率为v,在Δt时间内,通过导线横截面的自由电子数目可表示为(BC )
A.nvS B.nvSΔt C.
IΔt
q
D.
IΔt
Sq
二、电阻
教学过程1.物理意义:物理学中,用电阻来表示导体对电流阻碍作用的大小.
2.电阻的定义式:R=
U
I
.
3.电阻定律:
(1)内容:同种材料的导体,其电阻R与它的长度l成正比,与它的横截面积S成反比,导体的电阻还与构成它的材料有关.
表达式为:R=ρ
l
S
.其中ρ叫做电阻率,是由导体的材料决定的.
(2)电阻率与温度的关系:
金属:电阻率随温度升高而增大;
半导体:电阻率随温度升高而减小;
超导体:当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零成为超导体.
例3:对于一根阻值为R的均匀金属丝,求:
(1)若将金属丝均匀拉长为原来的2倍,则电阻变为多少;
(2)若将金属丝从中点对折起来,则电阻变为多少.
4R;
4
1R
三、欧姆定律
1.内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比.
2.表达式:I=
U
R
.
3.适用范围:适用于金属导体和电解液导电,适用于纯电阻电路.
4.导体的伏安特性曲线:以电流为纵轴、电压为横轴画出导体上的电流随电压的变化曲线,称为导体的伏安特性曲线.
若某电学元件的伏安特性曲线为直线,则称该元件称为线性元件;
若为曲线,则称为非线性元件.
(1)对线性元件,图象的斜率表示电阻的倒数,斜率越大,电阻越
小,故R a<R b(如图甲所示).
(2)对非线性元件,伏安特性曲线上每一点的电压坐标与电流坐标
的比值,对应这一状态下的电阻,图线c电阻减小,图线d电阻
增大(如图乙所示).
注意:曲线上某点切线的斜率不是电阻的倒数.
例4:某一金属导体的伏安特性曲线如图AB段(曲线)所示,关于该导体的电阻,以下说法正确的是( B )
A.B点的电阻为12 Ω
B.B点的电阻为40 Ω
C.导体的电阻因温度的影响改变了1Ω
课后反思。

相关文档
最新文档