河北科技大学大学物理答案稳恒磁场要点

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

稳恒磁场习题册答案

稳恒磁场习题册答案

K j
S
dl
运动电荷的磁场 K K K K d B μ0 qv ×r = B= 3 d N 4π r 适用条件 v << c
q+
K v Kθ K r ×B
−q
K r
θ
K v
K B
R
o
σ
ω
例 半径为 R 的带电薄圆盘的电荷 面密度为 σ , 并以角速 度ω 绕通过盘心垂直 于盘面的轴转动 ,求 圆盘中心的磁感强度.
l
B=
μ 0i
2
a
例、求载流无限长直螺线管内任一点的磁场
取L矩形回路, ab 边在轴上, 边cd与轴平行,另两个边垂直 于轴。
I
G ˆ B = Bz z
a b
K K ∫ B⋅dl = Bab ⋅ ab− Bcd ⋅ cd= 0
L
Bab = Bcd = B
d, P”
c,
同理可证,无限长直螺线管外任一点的磁场为零。 选矩形回路c’d’边在管外。
s
一般情况 K K Φ = ∫s B ⋅ d S
K B
K dS2
S
K dS1
θ1
θ2
K B2
K B1
K K dΦ1 = B1 ⋅ dS1 > 0 K K dΦ2 = B2 ⋅ dS2 < 0
∫ B cos θ d S = 0
S
磁场高斯定理
K K ∫S B ⋅ d S = 0
物理意义:通过任意闭合曲面的磁通 量必等于零(故磁场是无源的).
ΔS ⊥
K 磁场中某点处垂直 B 矢量的单位面积上 K 通过的磁感线数目等于该点 B 的数值.
s⊥
θ
s
K B

大学物理恒定磁场知识点及试题带答案

大学物理恒定磁场知识点及试题带答案

恒定磁场一、基本要求1、了解电流密度的概念。

2、掌握磁感应强度的概念及毕奥—萨伐尔定律,能利用叠加原理结合对称性分析,计算一些简单问题中的磁感应强度。

3、理解稳恒磁场的两个基本规律:磁高斯定理和安培环路定理。

掌握应用安培环路定理计算磁感应强度的条件和方法,并能熟练应用。

4、掌握洛伦兹力公式,能分析运动电荷在磁场中的受力和运动。

掌握安培力公式,理解磁矩的概念,能计算简单几何形状的载流导线和载流平面线圈在均匀磁场中或在无限长直载流导线产生的非均匀磁场中所受的力和力矩。

二、主要内容 1、稳恒电流电流:电荷的定向运动。

电流强度:单位时间通过导体某一横截面的电量,即dtdq I =。

电流密度)(δ:通过与该点的电荷移动方向相垂直的单位面积的电流强度,方向与该点的正电荷移动方向一致。

电流密度是描述电流分布细节的物理量,单位是2/m A 。

电流强度⎰⋅=SS d Iδ。

2、磁场在运动的电荷(电流)周围,除了形成电场外,还形成磁场。

磁场的基本性质之一是它对置于其中的运动电荷或电流有作用力。

和电场一样,磁场也是一种物质。

3、磁感应强度磁感应强度B是描述磁场性质的物理量。

当电荷在磁场中沿不同方向运动时,磁场对它的作用力不同,沿某方向运动时不受力,与该方向垂直运动时受力最大,定义B 的方向与该方向平行,由v q F⨯max 决定。

B 的大小定义为qvF B max=。

如右图所示。

B 的单位为T (特斯拉)。

4、毕奥—萨伐尔定律电流元:电流元l Id是矢量,其大小等于电流I 与导线元长度dl 的乘机,方向沿电流方向。

毕奥—萨伐尔定律:电流元l Id 在P 点产生的磁感应强度为 30r rl Id B d⨯=μ式中0μ为真空磁导率,A m T /10470⋅⨯=-πμ,r由电流元所在处到P 点的矢量。

运动电荷的磁场:304rrqv B πμ ⨯= 本章判断磁场方向的方法与高中所学方法相同。

几种特殊形状载流导线的磁场()012 cos cos 4I B aμθθπ=- a I B πμ20= a I B πμ40= )1(cos 40+=θπμa IB0=B5、磁场的高斯定理磁感应线:磁感应线为一些有向曲线,其上各店的切线方向为该点的磁感应强度方向,磁感应线是闭合曲线。

大学物理第8章 稳恒磁场 课后习题及答案

大学物理第8章 稳恒磁场 课后习题及答案

*作品编号:DG13485201600078972981* 创作者: 玫霸*第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。

若通以电流I ,求O 点的磁感应强度。

解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。

AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB)180cos 150(cos 60cos 400︒︒-=R Iπμ)231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里 7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B 环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。

以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。

在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为 x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。

大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。

河北科技大学大学物理答案稳恒磁场

河北科技大学大学物理答案稳恒磁场

习 题12-1 若电子以速度()()616120103010.m s .m s --=醋+醋v i j 通过磁场()0030.T =-B i ()015.T j 。

(1)求作用在电子上的力;(2)对以同样速度运动的质子重复上述计算。

解:(1)()()kj i j i B v F 136610624.015.003.0100.3100.2-⨯=-⨯⨯+⨯-=⨯-=e e (2)k F 1310624.0-⨯-=12-2 一束质子射线和一束电子射线同时通过电容器两极板之间,如习题12-2图所示。

问偏离的方向及程度有何不同?质子射线向下偏移,偏移量较小;电子射线向上偏移,偏移量较大。

12-3 如习题12-3图所示,两带电粒子同时射入均匀磁场,速度方向皆与磁场垂直。

(1)如果两粒子质量相同,速率分别是v 和2v ;(2)如果两粒子速率相同,质量分别是m 和2m ;那么,哪个粒子先回到原出发点? 解:qBmT π2=(1)同时回到原出发点;(2) 质量是m 先回到原出发点。

12-4 习题12-4 图是一个磁流体发电机的示意图。

将气体加热到很高温度使之电离而成为等离子体,并让它通过平行板电极1、2之间,在这习题12-2图习题12-3图习题12-4图里有一垂直于纸面向里的磁场B 。

试说明这两极之间会产生一个大小为vBd 的电压(v 为气体流速,d 为电极间距)。

问哪个电极是正极? 解:qE qvB =,vB E =,vBd Ed U ==,电极1是正极。

12-5 一电子以713010.m s v -=醋的速率射入匀强磁场内,其速度方向与B 垂直,10T B =。

已知电子电荷191610.C e --=-?。

质量319110.kg m -=?,求这些电子所受到的洛仑兹力,并与其在地面上所受重力进行比较。

解:11719108.410100.3106.1--⨯=⨯⨯⨯⨯==evB F N ,3031109.88.9101.9--⨯=⨯⨯==g m G e N18104.5⨯=GF12-6 已知磁场B 的大小为04.T ,方向在xy 平面内,并与y 轴成3p 角。

稳恒磁场作业答案

稳恒磁场作业答案

稳恒磁场作业答案1.解:其中3/4圆环在D 处的场 )8/(301a I B μ= 2分AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μ 2分 BC 段在D 处的磁感强度 )221()]4/([03⋅π=b I B μ 2分 1B 、2B 、3B方向相同,可知D 处总的B 为)223(40ba I B +ππ=μ 2分2.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r r RIB ≤π=μ 3分因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ 3分在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ 2分因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ 3分穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ 1分3.解:圆电流产生的磁场 )2/(201R I B μ= ⊙ 2分 长直导线电流的磁场 )2/(202R I B π=μ ⊙ 2分 导体管电流产生的磁场 )](2/[103R d I B +π=μ ⊗ 2分 圆心O点处的磁感强度 321B B B B -+=)()1)((2120d R R RI d R I +-π++⋅π=μ ⊙ 2分4.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 3分在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B d Φr b rNId 2π=μ12ln2R R NIbπ=μ 5分 (2)同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B∴ B = 0 2分5.解:载流导线MN 上任一点处的磁感强度大小为:)(210x r I B +π=μ)2(220x r I -π-μ 3分MN 上电流元I 3d x 所受磁力: x B I F d d 3=)(2[103x r I I +π=μx x r I d ])2(210-π-μ 2分⎰-π-+π=rx x r I x r I I F 020103d ])2(2)(2[μμ-+π=⎰rx xr II 0130d [2μ]d 202⎰-rx x r I ]2ln 2ln[22130rrI r r I I +π=μ ]2ln 2ln [22130I I I-π=μ2ln )(22130I I I-π=μ 3分若 12I I >,则F 的方向向下,12I I <,则F 的方向向上 2分 6.解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力 l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.2分因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin= 0.34 N , 方向垂直环面向上. 2分电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 2分由于轴对称,d F 2对整个线圈的合力为零,即02=F . 1分所以圆环所受合力 34.01==F F N , 方向垂直环面向上. 1分7.解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μx x π=2d 0δμ 方向垂直纸面向里. 3分 (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度 ==⎰B B d ⎰+πb a b xdx x 20δμb ba x +π=ln 20δμ 2分 方向垂直纸面向里.8.解: 321B B B B ++=B 2d lB 1、B 2分别为带电的大半圆线圈和小半圆线圈转动产生的磁感强度,B 3为沿直径的带电线段转动产生的磁感强度.ππ=21bI λω, 422200101λωμλωμμ=π⋅π==b b b I B 3分ππ=22aI λω, 422200202λωμλωμμ=π⋅π==a a a I B 3分)2/(d 2d 3π=r I λωrrB bad 203⋅π=⎰λωμabln20π=λωμ =B )ln (20ab+ππλωμ 4分 9.解∶电流密度 )(22a R IJ -π=1分P点场强为充满圆柱并与I 同向的电流I 10,及充满孔并与I 反向的电流I 20的场叠加而成.取垂直于圆柱轴并包含P 点的平面,令柱轴与孔轴所在处分别为O 与O ',P 点与两轴的距离分别为r 1与 r 2,并建立坐标如图.利用安培环路定理可知P 点场强为与I 同向的I 1和与I 反向的I 2的场的叠加,且有211r J I π= , 222r J I π=J r r I B 10110122μμ=π=2分J r r I B 20220222μμ=π= 2分1B,2B 方向如图所示. P 点总场21B B B+=1122sin sin θθB B B x -=0)sin sin (211220=-=θθμr r J 3分2211cos cos θθB B B y +=)cos cos (222110θθμr r J +=Jb 20μ= 3分)(222200a R bIJb B B y -π===μμ 1分 B 与r 1, r 2无关,可知圆柱孔内为匀强场,方向沿y 轴正向.10.解:由安培环路定理: ∑⎰⋅=i I l Hd0< r <R 1区域: 212/2R Ir rH =π212R Ir H π=, 2102R Ir B π=μ 3分 R 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μ 3分R 2< r <R 3区域: )()(22223222R R R r I I rH ---=π1B2BOO ′ x Cy C r 1C r 2C θ1θ1 θ2 θ2 P)1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ 3分 r >R 3区域: H = 0,B = 0 3分。

最新第7章稳恒磁场及答案

最新第7章稳恒磁场及答案

第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。

1.大学物理-稳恒磁场概念

1.大学物理-稳恒磁场概念

思路: 思路: 实验
理论
应用
磁现象
1)磁体间有相互作用力 1)磁体间有相互作用力 同性相斥, 同性相斥,异性相吸 磁极不能单独存在 2)奥斯特: 奥斯特: 奥斯特 电流 3)安培: 磁体 3)安培: 安培 磁体 4) 洛仑兹: 洛仑兹: 5) 载流导线 磁体 电流 运动电荷 载流导线 –
S S N S N
磁感应强度
一. 磁感应强度概念
r r Fe r →B= 参照:电场强度: 参照:电场强度: E = q0
磁感应强度: 磁感应强度: 运动点电荷: 运动点电荷: 电流元: 电流元:
1. 定义: 定义:
r r Fe = q0 E
r r Fm r Fm r r , B= q0v0 I 0dl0
?
r r r dFm = ( I 0 dl 0 ) × B
3. 画 B x曲线 r 0 IR 2 r B= 3 i 2 2 2( R + x ) 2 练习: 练习:
B
o
x
Bo = ?
I
R
o
R o
I
B0 =
0 I
8R
30 I 0 I B0 = + 8R 4πR
亥姆霍兹圈: 例4.亥姆霍兹圈:实验室用近似均匀磁场 亥姆霍兹圈 两个完全相同的N匝共轴密绕短线圈 匝共轴密绕短线圈, 两个完全相同的 匝共轴密绕短线圈,其中心间距 与线圈半径R相等 相等, 与线圈半径 相等,通同向平行等大电流 I. . 求轴线上 o1 .
磁场 如何作用—通过磁场 1.磁场概念: 磁力如何作用 通过磁场: 1.磁场概念: 磁力如何作用 通过磁场: 磁场概念 电流或运动电荷周围,除了电场, 电流或运动电荷周围,除了电场,还有磁场

大学物理第10章稳恒磁场习题参考答案

大学物理第10章稳恒磁场习题参考答案

第10章 稳恒磁场10-1 由毕—沙定律30d 4rrl I B d⨯=πμ可得 ),,(o o a 点,k a l I i j a l I B20204d )(4d d πμπμ-=⨯=),,(o a o 点,0)(4d d 20=⨯=j j al I Bπμ),,(a o o 点,i a l I k j a l I B20204d )(4d d πμπμ-=⨯=,,(a a,,(o a 10-2 在 B = 显然10-3 )sin (sin 4220ααπμ+=rIB 可得A 点的磁感(见图示))T (1073.110220310343310---⨯=⨯⨯⨯==a I πμ B的方向由右手定则知为垂直纸面向外。

习题10-3图23326sin 2sin 60sin 400⋅=⎪⎭⎫ ⎝⎛+︒=a I a IB πμπππμ解法(二) P 点的磁感应强度大小为)cos (cos 4210ββπμ-=bIB b 为场点P 到载流直导线的垂直距离。

第1段载流直导线在A 点产生的01=B 。

第2段载流直导线在A 点产生的B 2。

aa b 2360sin 180,6021=︒=︒=︒=ββ则10-4 0B 10-5 (174 21B B B +=[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++++=2/3222/32220)2/(1)2/(12x a R x a R NIR μ(2)据题设R a =,则P 点的B 为[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++++=2/3222/32220)2/(1)2/(12x R R x R R NIR B μ 令 222222)2/(,)2/(x R R v x R R u -+=++=习题10.3图(2)图(3)则 ⎪⎭⎫ ⎝⎛+=3320112v uNIR B μ⎪⎭⎫⎝⎛+-=x v v x u u NIR x B d d 1d d 1)3(2d d 4420μ ⎥⎦⎤⎢⎣⎡--+-=2/142/1420)2/(1)2/(123v x R v u x R u d NIR μ 当x =0时,u =v , ∴0d d 0==x xB10-6 l aId =此元电流在 B10-7θd d R l =O 相距为x ,则r θθπμμd sin )(d 2d 202/32220RNI r x Ir B =+= 由此可得O 点的磁感应强度⎰⎰==θθπμπd sin d 2/00RNIB BRNIR NI4d )2cos 1(202/0μθθπμπ=-=⎰B的方向沿x 轴线向右。

(完整word)稳恒磁场一章习题解答

(完整word)稳恒磁场一章习题解答

稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。

正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为⎪⎪⎪⎩⎪⎪⎪⎨⎧--=rIa b r a r I B πμπμ2)(2)(0022220 )()()(b r b r a a r >≤≤< 所以,应该选择答案(B ).习题9—2 如图,一个电量为+q 、质量为度v沿X 轴射入磁感应强度为B 直纸面向里,其范围从x =0和y =0处进入磁场,则它将以速度v-这点坐标是x =0和[ ]。

(A) qB m y v +=。

(B ) qBm y v2+=.(C ) qB m y v 2-=. (D ) qBm y v-=。

解:依右手螺旋法则,带电质点进入磁场后将在x 〉0和y 〉0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R v =因此,它从磁场出来点的坐标为x =0和qBm y v2+=,故应选择答案(B)。

习题9-3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O B P ,B Q ,B Or BOa b(A)(B)B a b r O B r O a b(C)B Ora b(D)习题9―1图习题9―2图I间的关系为[ ]。

(A) O Q P B B B >>。

(B ) O P Q B B B >>。

(C) P O Q B B B >>。

(D ) P Q O B B B >>说明:本题得通过计算才能选出正确答案。

对P 点,其磁感应强度的大小aIB P πμ20= 对Q 点,其磁感应强度的大小 [][])221(2180cos 45cos 4135cos 0cos 4000+=-+-=a I a I a I B Q πμπμπμ对O 点,其磁感应强度的大小 )21(2424000ππμπμμ+=⋅+=a I a I aIB O 显然有P Q O B B B >>,所以选择答案(D )。

大学物理自测题下(黄皮书)稳恒磁场要点及详细答案

大学物理自测题下(黄皮书)稳恒磁场要点及详细答案
与物质的磁化强度和磁场强度有 关,是产生磁场的内在电流。
磁场强度与磁感应强度的关系
磁场强度
描述磁场强弱的物理量,与磁感应强 度和介质有关。
磁感应强度
描述磁感应线密度的物理量,与磁场 强度和介质有关。
04
CATALOGUE
磁场能量与磁场力
磁场能量密度
总结词
描述磁场中单位体积所含的能量。
详细描述
磁场能量密度是描述磁场中单位体积所含的能量,用公式表示为W = B²/2μ,其 中B为磁感应强度,μ为磁导率。
磁场能量的储存和释放
总结词
描述磁场能量的储存和释放过程。
详细描述
磁场能量的储存和释放过程与磁场的变化密切相关。当磁场发生变化时,会在磁场中产 生感应电场,从而将磁场能转化为电能。这个过程可以用法拉第电磁感应定律来描述。
磁场力与能量转换
要点一
总结词
描述磁场力在能量转换中的作用。
要点二
详细描述
磁场力是磁场对带电粒子的作用力,它在能量转换中起着 重要作用。例如,在发电机中,磁场力驱动带电粒子运动 ,将机械能转化为电能。而在电动机中,磁场力又将电能 转化为机械能。
05
CATALOGUE
磁场的测量与仪器
磁通量计
磁通量计是测量磁场强度的仪器,通过测量导线圈中磁通量的大小来间接测量磁场 强度。
磁通量计主要由导线圈、测量电路和显示装置组成,其中导线圈是测量磁场的关键 部分,需要选用高导磁材料制作。
磁通量计的测量原理基于法拉第电磁感应定律,通过测量感应电动势的大小来计算 磁通量的大小。
02
CATALOGUE
稳恒磁场中的磁力
Hale Waihona Puke 安培环路定律总结词

大学物理《稳恒电流的磁场》习题答案

大学物理《稳恒电流的磁场》习题答案

第14章 稳恒电流的磁场 参考答案一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).B I R2,沿y 轴正向; (9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μBC 段在D 处的磁感强度)221()]4/([03⋅π=b I B μ1B、2B 、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图θd d d KR s K I ==2/32220])cos ()sin [(2)sin (d d θθθμR R R I B +=32302d sin R KR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得: )(220R r rRIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S Bd 2Φr r I R Rd 220⎰π=μ2ln 20π=I μ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+I μ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.1 m解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F FN , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 重力矩 αραρs i n s i n 2121gSa a a gS a M +⋅=αρsin 22g Sa =B 2d l磁力矩ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M = 所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρT7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =. 根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.I 2I 1A DC8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

大学物理习题答案稳恒电流的磁场

大学物理习题答案稳恒电流的磁场

第十章 稳恒电流的磁场1、四条相互平行的无限长直载流导线,电流强度均为I ,如图放置,若正方形每边长为2a ,求正方形中心O 点的磁感应强度的大小和方向。

解:43210B B B B B r r r r r +++=无限长载流直导线产生的磁感应强度 rI2B 0πμ=由图中的矢量分析可得a 2I a 2I22B B 0042πμ=πμ=+a I45cos a2I 2B 0000πμ=⋅πμ= 方向水平向左2、把一根无限长直导线弯成图 (a)、(b) 所示形状,通以电流I ,分别求出O 点的磁感应强度B 的大小和方向。

解:(a )(b )均可看成由两个半无限长载流直导线1、3和圆弧2组成,且磁感应强度在O 点的方向相同 (a )方向垂直纸面向外。

)38(R16I43R 4I R 4I R 4I B 00000π+πμ=π⋅πμ+πμ+πμ=(b )由于O 点在电流1、3的延长线上,所以0B B 31==r r方向垂直纸面向外。

R8I323R I 4B B 0020μ=π⋅πμ==14(a ) I(b )3、真空中有一边长为l 的正三角形导体框架,另有互相平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连 (如图) 。

已知直导线中的电流为I ,求正三角形中心点O 处的磁感应强度B 。

解:三角形高为 l l360sin h .0==4 它在 θθπμ=θ=d sin R 2Isin dB dB 20x θθπμ−=θ−=d cos R2I cos dB dB 20yRI d sin R2I dB B 20200x x πμ=∫θθπμ∫==π0d cos R2I dB B 020y y =∫∫θθπμ−==π)T (1037.6100.10.5104RI B B 522720x P −−−×=××π××π=πμ==∴轴正方向。

《大学物理》稳恒磁场

《大学物理》稳恒磁场

3.磁感应强度:描述磁 场性质的重要物理量
与电学类似,通过运 动电荷在磁场中所受的作用力来定量描
述运((磁 动1 2的场在))正磁大v电场小在荷中与某某q一q00点,特和P其定v处受方有,磁向关放场(,入力或且一F反F速平度行vv)
时,电荷不受力(此方向为磁场方向)
(3)当 v与上述磁场方向
垂直时,受力最大 Fm
Idl
r
r3
式中0 4 107 N A,2 真
空中磁导率
是 Idl与矢量
r的夹角
因此,由磁场叠加原理可得到载流
导线在P点的磁感应强度
B
dB
0 4
Idl
r2
er
3.定律应用举例
例题一:载流长直导线的
磁场。一通有电流I的长
直导线,求导线外任一点P的磁感应强
度 B ,已知P与导线垂直距离为

1 0,2
B 0I 2r0
若1
线)
2
, 2
(半“无限长”直流导
z 2
B 0I 4r0
Idz oz
x 1
dB
p
y
例2:求圆电流中心的磁感强度
dB
0
v Idl
evR
y
Idl
4 R2
R
0 Idl 4 R2
o
x
B dB
l
0 I
l
0 4
Idl R2
0 4
I R2
l
dl
2R
第二节 磁场的高斯定理与安培环 路定理
第六章 稳恒磁场
基本内容:讨论恒定电流激发的 磁场的规律和性质
第一节 磁感应强度
一、 磁场
1.安培关于物质磁场本 质的假设

大学物理试卷答案稳恒磁场

大学物理试卷答案稳恒磁场

M O P
K
第五题图
二、填空题
7、图中所示的一无限长直圆筒,沿圆周方向上的面电流密 度单位垂直长度上流过的电流为i,则圆筒内部的磁感强度的 大小为B =_____ _0 i__,方向___沿__轴__线__方__向_朝__右_.
iHale Waihona Puke 8、有一同轴电缆,其尺寸如图所示,它的内外两导体中的电 流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则
解:取x轴向右,那么有
B1
2[R12
(0bR12Ix1)2]3/2沿x轴正方向
I1 R1
I2
OP x
B2
2[R22
0R22I2
(bx)2]3/2
沿x轴负方向
2b
BB1B2
0 2
[
0R12I1
[R12 (bx)2]3/2
0R22I2
]
[R22 (bx)2]3/2
若B > 0,则 B方向为沿x轴正方向.若B < 0,B 则
R2 x
的方向为沿x轴负方向.
13、螺绕环中心长L= 10 cm,环上均匀密绕线圈N = 200匝,
线圈中通有电流I = 0.1 A.管内充满相对磁导率 的磁介质.求管内磁场强度和磁感强度的大小.
= 4r 200
解: H n IN/lI200 A/m
BH0rH1.06 T
14、一铁环中心线周长L = 30 cm,横截面S = 1.0 cm2,环上 紧密地绕有N = 300 匝线圈.当导线中电流I = 32 mA 时,通 过环截面的磁通量 = 2.0×10-5 Wb.试求铁芯的磁化率 Xm .
6、用细导线均匀密绕成长为L、半径为a L>> a、总匝数为N 的螺线管,管内充满相对磁导率为 的r 均匀磁介质.若线圈中 载有稳恒电流I,则管中任意一点的 . D

大学物理练习题答案 04稳恒磁场解答

大学物理练习题答案 04稳恒磁场解答

r1 2π x d − x
π
r1
9-8 解:(1)作半径为 r、圆心在轴线上的圆为积分回路。由安培环路定律
∫ r < a
L B1 ⋅ dl = B1 ⋅ 2πr = 0
∴ B1 = 0
a<r<b
B2 ⋅ 2π
r
=
μ0
I

=
π
μ0 I (b2 − a2)
⋅π
(r2

a2)

B2
=
μ0 2π
I (r2 − a2) r(b2 − a2)
(3)穿入平面 abcd 的磁力线数与穿出 aefd 平面的磁力线数相同
∴ Φ m3 = − Φ m1 = 0.24 Wb
9-7 解:(1)左导线在 P 点的磁感应强度
B1
=
μ0 I 2πx
方向垂直纸面向下
右导线在 P 点的磁感应强度
B2
=

μ0 (d
I −
x)
方向垂直纸面向下
d xP
l
IILeabharlann ∴B=方向与 I 满足右手螺旋法则
r > b B3 ⋅ 2π r = μ0 I

B3
=
μ0 2π
I r
方向与 I 满足右手螺旋法则
(2)取面元 dS = ldr = dr
∫ ∴ Φm =
μ0 I 2π (b2 − a2)
b r2 − a2 dr = ar
μ0 I 4π
− μ 0 I a2 ln b 2π (b2 − a2) a
方向垂直于纸面向外
9-2 解:∵圆环电流在圆心处的磁场 B = μ0 I 2R
∴圆弧 ABC 在 O 处的磁场
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题12-1 若电子以速度()()616120103010.m s .m s --=醋+醋v i j 通过磁场()0030.T =-B i ()015.T j 。

(1)求作用在电子上的力;(2)对以同样速度运动的质子重复上述计算。

解:(1)()()kj i j i B v F 136610624.015.003.0100.3100.2-⨯=-⨯⨯+⨯-=⨯-=e e (2)k F 1310624.0-⨯-=12-2 一束质子射线和一束电子射线同时通过电容器两极板之间,如习题12-2图所示。

问偏离的方向及程度有何不同?质子射线向下偏移,偏移量较小;电子射线向上偏移,偏移量较大。

12-3 如习题12-3图所示,两带电粒子同时射入均匀磁场,速度方向皆与磁场垂直。

(1)如果两粒子质量相同,速率分别是v 和2v ;(2)如果两粒子速率相同,质量分别是m 和2m ;那么,哪个粒子先回到原出发点? 解:qBmT π2=(1)同时回到原出发点;(2) 质量是m 先回到原出发点。

12-4 习题12-4 图是一个磁流体发电机的示意图。

将气体加热到很高温度使之电离而成为等离子体,并让它通过平行板电极1、2之间,在这习题12-2图习题12-3图习题12-4图里有一垂直于纸面向里的磁场B 。

试说明这两极之间会产生一个大小为vBd 的电压(v 为气体流速,d 为电极间距)。

问哪个电极是正极? 解:qE qvB =,vB E =,vBd Ed U ==,电极1是正极。

12-5 一电子以713010.m s v -=醋的速率射入匀强磁场内,其速度方向与B 垂直,10T B =。

已知电子电荷191610.C e --=-?。

质量319110.kg m -=?,求这些电子所受到的洛仑兹力,并与其在地面上所受重力进行比较。

解:11719108.410100.3106.1--⨯=⨯⨯⨯⨯==evB F N ,3031109.88.9101.9--⨯=⨯⨯==g m G e N18104.5⨯=GF12-6 已知磁场B 的大小为04.T ,方向在xy 平面内,并与y 轴成3p 角。

试求电量为10pC q =的电荷以速度()7110m s -=?v k 运动,所受的磁场力。

解:j i j i B 2.032.03cos4.06cos4.0+=+=ππ,k 710=v ,()()47121032.02.02.032.0101010--⨯+-=+⨯⨯⨯=j i j i k F N 。

12-7 如习题12-7图所示,一电子在20G B =的磁场里沿半径为20cmR =的螺旋线运动,螺距50.cm h =,如图所示,已知电子的荷质比11117610.C kg e m -=醋,求这电子的速度。

习题12-7图解:71141004.71076.120.01020⨯=⨯⨯⨯⨯==-⊥mqBRv m/s v ∥71141028.021076.105.010202⨯=⨯⨯⨯⨯==-ππm q Bh m/s05.71028.004.7722=⨯+=v m/s.12-8 空间某一区域有均匀电场E 和均匀磁场B ,E 和B 方向相同,一电子在这场中运动,分别求下列情况下电子的加速度a 和电子的轨迹。

开始时,(1)v 与E 方向相同;(2)v 与E 方向相反;(3)v 与E 垂直;(4)v 与E 有一夹角q 。

解:(1)()B E F ⨯+-=v q 由于速度与磁场同向,所以洛仑兹里为0。

i i F a m qE e =-=i E a ee m qEm q -=-=,电子的轨迹为沿x 轴的直线。

(2)同理,i E a ee m qEm q -=-=,电子的轨迹为沿x 轴的直线。

(3)设初始时速度沿y 轴,电子的速度可分解为沿x 轴的v ∥和yoz 平面内的⊥v , v ∥导致电子在x 轴方向上做匀变速直线运动,⊥v 的运动使得电子受洛伦兹力在yoz 平面做匀速圆周运动。

a ∥i e m qE -=,em qvBa -=⊥,方向指向圆心。

(3)θsin v v =⊥,使得e sin m qvB a θ-=⊥,a ∥i em qE-=电子在x 轴方向上做匀变速直线运动,平面做匀速圆周运动。

12-9 在空间有相互垂直的均匀电场E 和均匀磁场B ,B 沿x 方向,E 沿z 方向,一电子开始时以速度v 向y 方向前进,问电子运动的轨迹如何? 解:(1)开始时电子受的电场力与磁场力方向相反,若E Bv =,则合力为0,电子将做匀速直向运动;(2)设电子在此S 坐标中某一瞬时速度为v,则电子受的力为()B v E q F ⨯+-=,令B v E ⨯=0,则()B v v q F⨯+-=0,设S '系相对S 系沿y 轴逆向以0v 的速度运动,则在S '系中没有电场,电子的速度v v v+='0,受的力()B v v q F ⨯+-=0()B v E q ⨯+-=与在S 系中受的力相同,初始速度002v v=',在yoz 平面内做匀速圆周运动,所以在S 系看来电子做摆线运动。

12-10 飞行时间谱仪。

歌德斯密特设计过测量重离子质量的准确方法,这个方法是测量重离子在已知磁场中的旋转周期。

一个单独的带电碘离子,在224510.W bm --醋的磁场中旋转7圈所需要的时间约为312910.s -´。

试问这个碘离子的质量有多少千克(近似值)?解:qBm T π2=,2193105.4106.1271029.1---⨯⨯⨯=⨯m π,251011.2-⨯=m kgxyzvBE12-11 如习题12-11图所示,一个铜片厚度为10.mm d =,放在15.T B =的磁场中,磁场的方向与铜片表面垂直。

已知铜片中自由电子密度为2238410.cm -´,每个电子的电荷为191610.C,e --=-?当铜片中有200A I =的电流时,(1)求铜片两侧的电势差aa j¢;(2)铜片宽度b 对aa j¢有无影响? 为什么?解:3.22100.1106.1104.85.1200131922=⨯⨯⨯⨯⨯⨯==--d IB nq U H V 12-12 一块半导体样品的体积为a b c 创,如习题13-12图所示。

沿x 方向有电流I ,在z 方向加有均匀磁场B 。

这时的试验数据为010.cm a =,035.cm b =,100.cm c =,10.mA I =,03.T B =,样品两侧的电势差655.mV A A j¢=。

(1)问这块半导体是正电荷导电(P 型半导体)还是负电荷导电(N 型半导体)?(2)求载流子浓度(即单位体积内带电粒子数)。

解:(1)N 型半导体;(2)2419331086.2001.0106.11055.63.0100.1⨯=⨯⨯⨯⨯⨯⨯==---a qU IB n H m -3 12-13 一个铜圆柱体半径为a ,长为l ,外面套一个与它共轴且等长的圆筒,筒的内半径为b ,在柱与筒之间充满电导率为g 的均匀导电介质。

求:(1)柱与筒之间电阻;(2)柱与筒之间有电势差j时柱与筒之间的电场强度的习题12-11图习题12-12图分布。

解:(1)abl rl r R baln 212d 1πγπγ==⎰; (2)a b l RI 1ln 2-==ϕπγϕ,E a b r rl I J γϕγπ===-1ln 2,ab r E 1ln 1-=ϕ 12-14 如习题12-14图所示,有一个半径为0r 的半球状电极与大地接触,大地的电阻率为r 。

假定电流通过这种接地电极均匀地向无穷远处流散,试求这种情况下的接地电阻。

解:0222d 0r r r R r πρπρ==⎰∞习题12-14图习题12-15图13-15 一长度为l ,内、外半径分别为1R 和2R 的导体管,电阻率为r 。

求下列三种情况下管子的电阻。

(1)若电流沿长度方向流过;(2)电流沿径向流过;(3)如习题12-15图所示,管子被切去一半,电流沿图示方向流过。

解: (1)()2122R R lR -=πρ(2)12ln 22d 21R Rl rl r R R R πρπρ==⎰(3)12ln d 1121R R l r r l R R R ρππρ==⎰, 121ln R R l R -=ρπ12-16 一铜棒的横截面积为22080mm ´,长为20.m ,两端电势差为50mV 。

已知铜的电导率715710.S m s -=醋,铜内自由电子的电荷密度为10313610.C m -醋。

试求:(1)它的电阻R ;(2)电流I ;(3)电流密度的大小j ;(4)棒内电场强度的大小;(5)所消耗的功率P ;(6)一小时所消耗的能量W ;(7)棒内电子的漂移速度d v 。

解:(1)4671056.40.2101600107.5⨯=⨯⨯⨯==-l S G σS Ω⨯==-51019.21GR (2)341028.2050.01056.4⨯=⨯⨯==GU I A(3)66310425.11016001028.2⨯=⨯⨯==-S I J A/m 2 (4)025.00.2050.0===l U E V/m (5)114050.01028.23=⨯⨯==IU P W (6)4104003600114=⨯==Pt W J(7)4106d 1005.11036.110425.1-⨯=⨯⨯==nq J v m/s 12-17 假定正负电子对撞机的储存环是周长为240m 的近似圆形轨道。

已知电子的速率接近光速,当环中电流强度为8mA 时,问整个环中有多少电子在运行? 解:lNqcT Nq I ==,10819100.4100.3106.1240008.0⨯=⨯⨯⨯⨯==-qc Il N 12-18 一长直导线载有电流50A ,离导线50.cm 处有一电子以速率711010.m s -醋运动。

求下列情况下作用在电子上的洛仑兹力。

(1)设电子的速率v 平行于导线;(2)设v 垂直于导线并指向导线;(3)设v 垂直于导线和电子所构成的平面。

解:(1)1671970100.2100.1106.1050.02501042---⨯=⨯⨯⨯⨯⨯⨯⨯=⨯=πππμqv r I F N,方向垂直于导线; (2)16100.2-⨯=F N,方向平行于导线;(3)0=F12-19 如习题12-19图所示,在无限长的载流直导线AB 的一侧,放着一条有限长的可以自由运动的载流直导线CD ,CD 与AB 相垂直,问CD 怎样运动?解:边向上运动边顺时针旋转,并远离AB ,转置于原方向相反时会受到相反的作用。

相关文档
最新文档