煤矿供电系统设计
煤矿供电设计规范
煤矿供电设计规范煤矿供电设计规范是制定和规范煤矿供电工程建设的技术要求和设计标准的文件。
其目的是保障煤矿供电系统的安全可靠运行,提高电力供应质量,减少生产事故的发生。
1. 设计规范范围和适用对象煤矿供电设计规范适用于煤矿供电系统的设计和建设工程,包括配电所、变电所、接线间、电力线路等设施。
适用对象包括煤矿企业、设计单位、施工单位等。
2. 设计规范的基本要求(1) 安全性要求:煤矿供电系统应符合电力安全运行的要求,能够应对各种突发情况,保障人员生命财产安全。
(2) 可靠性要求:煤矿供电系统应具备良好的可靠性,保证供电连续稳定,避免因电力故障产生的停电事故。
(3) 经济性要求:煤矿供电系统应具备合理的经济性,包括设备选型的合理性、运行成本的控制等。
(4) 灵活性要求:煤矿供电系统应具备一定的灵活性,能够适应煤矿生产的变化需求,具备一定的可扩展性和调整性。
3. 设计规范的主要内容(1) 煤矿供电系统的结构和布置设计,包括配电所、变电所、接线间等设施的位置和布置,以及电力线路的布置和走向。
(2) 供电系统的容量和负荷计算,包括配电系统的总容量和负荷的估算,以及各级变电站的容量和负荷的计算。
(3) 供电系统的设备选型和安装要求,包括配电设备、变压器、开关设备等设备的选型和安装要求。
(4) 供电系统的保护和配电装置设计,包括过电压保护、电流保护、短路保护等装置的选型和设置。
(5) 运行和维护管理要求,包括对供电系统的运行模式、监控设备和记录要求等的规定。
4. 设计规范的执行和监督(1) 设计规范应由专业设计单位按煤矿企业的需求进行编制,并经复核、审核后发布。
(2) 煤矿企业应按照设计规范的要求进行供电系统的建设和改造工程,确保设计规范的贯彻执行。
(3) 设计单位、监理单位和施工单位应对供电工程进行监督,确保设计规范的实施和工程质量的合格。
(4) 煤矿安全监察机构应加强对煤矿供电工程的检查和监督,发现问题及时整改。
煤矿高压供电设计报告
煤矿高压供电设计报告项目背景煤炭作为我国主要能源来源,煤矿的生产活动一直是我国经济发展中关键的一部分。
为了满足煤矿生产所需的电力需求,高压供电系统的建设成为必要的举措。
本报告旨在详细介绍煤矿高压供电设计方案,以确保电力供应的安全、稳定和高效。
设计目标本项目的设计目标是为煤矿提供持续稳定的高压电力供应,满足煤矿的日常生产活动,并可应对突发的电力需求增加。
具体设计要求如下:1. 供电系统的安全性高,能够保证工作人员和设备的安全。
2. 电力供应的可靠性强,能够在任何情况下保持连续供电。
3. 供电系统具备灵活性,能够根据煤矿的需求进行扩容。
4. 供电系统的成本低,具备经济性。
5. 供电系统的能效高,降低能源消耗和环境污染。
设计方案根据以上设计目标,本项目的高压供电系统将采用以下设计方案:1. 高压配电网设计:我们将建设一套高压配电网,包括主线路、支线路和终端线路。
主要设备包括高压开关设备、变压器、电缆、开关柜等,以确保电力供应的可靠性和安全性。
2. 安全措施:为保障工作人员和设备的安全,我们将在配电网关键节点设置监测装置,及时发现故障并采取相应措施。
此外,还会配备灭火设备,确保供电设备在发生故障时能够及时得到处理。
3. 自动化系统:我们将引入自动化控制系统,实现对供电系统的智能化管理。
通过监控、数据采集、故障诊断等功能,提高供电系统的运行效率和可靠性。
4. 扩容计划:为了适应煤矿产能的增长,我们将提出一套供电系统扩容计划。
根据煤矿的需求,逐步增加配电设备,保证供电系统的稳定运行。
5. 可再生能源利用:考虑到环境保护和能源消耗问题,我们将积极推广可再生能源的利用。
在设计中考虑将太阳能、风能等可再生能源纳入供电系统中,降低对传统能源的依赖。
设计实施为确保设计方案能够顺利实施,我们将采取以下措施:1. 队伍组建:成立一支专业的设计团队,负责供电系统的设计、施工和调试工作。
该团队由电气工程师、土木工程师等相关人员组成,具备相关经验和技能。
版煤矿井下供电设计规范方案
版煤矿井下供电设计规范方案煤矿是我国的重要煤炭资源开采地,煤矿井下供电系统的设计规范对确保矿井安全生产具有重要意义。
井下供电系统的设计不仅要满足矿井的用电需求,还要考虑到供电线路的可靠性、运行安全和节能环保等因素。
下面是一份1200字以上的煤矿井下供电设计规范方案。
一、总体设计原则1.安全第一、安全是煤矿井下供电设计的首要原则,要严格遵守煤矿安全规定和相关法律法规,确保供电系统的安全可靠。
2.稳定可靠。
井下供电系统的设计要确保电力负荷的稳定供应,防止因供电设备故障而导致停电事故的发生。
3.高效节能。
在满足井下照明、通风、提升等需求的前提下,要选用高效节能的供电设备和系统,尽量减少能源消耗。
4.灵活可靠。
井下供电系统的设计要考虑到煤矿生产的灵活性和可靠性,并采用可调节、可控制的供电设备和系统。
二、供电系统设计要点1.矿井用电需求分析。
根据矿井的实际用电需求,综合考虑矿井的规模、生产工艺、设备负荷、用电时间等因素,确定供电设备的容量和数量。
2.线路布置合理。
根据矿井的地质条件和生产布局,设计电缆和电缆支架的布置方案,确保供电线路的合理布置,方便检修和维护。
3.供电系统的保护与自动化。
设计过程中要考虑到供电系统的过载、短路、漏电等故障保护措施,并配置相应的自动控制设备,实现对供电设备和线路的监控和管理。
4.地下电缆的选择与敷设。
根据矿井的环境条件和电力负荷需求,选择合适的地下电缆材料,并严格按照规范要求进行电缆敷设,确保电缆的可靠运行。
5.变电站的设计与布置。
根据矿井的规模和用电负荷,设计合适容量的变电站,并在合适的地点布置变电站,确保供电系统的稳定运行。
6.防雷与接地。
设计中要充分考虑矿井地质条件和天气等因素,采取合适的接地措施,确保供电系统的防雷和接地的可靠性。
7.漏电保护与电源选择。
对于涉及人身安全的电气设备和线路,要设置漏电保护装置,同时选择可靠的电源供应,以确保供电系统的安全可靠。
三、供电设备和设施标准1.供电设备要符合国家的相关标准和规范要求,且经过合格的检测和评估。
煤矿综采工作面供电设计说明
煤矿综采工作面供电设计说明一、供电系统的分类根据煤矿综采工作面的情况和电压等级,供电系统可以分为高压供电系统和低压供电系统两部分。
1.高压供电系统:2.低压供电系统:低压供电系统主要为井下照明、通风、监控等非主要设备供电。
具体包括配电箱、照明灯具、电缆桥架、插座等。
二、供电系统的设计原则供电系统的设计应遵循以下原则:1.安全可靠:供电系统设计应满足国家相关安全规定,确保供电设备在运行过程中不发生故障,且能够及时发现和排除隐患。
2.合理高效:供电系统设计应根据工作面的实际情况,满足设备运行所需的电能供应,降低能耗,提高供电的效率和质量。
3.经济合理:供电系统的设计应充分考虑成本问题,根据实际需要进行合理配置,避免不必要的浪费。
三、供电系统的具体设计要点1.高压供电系统设计要点:(1)变电站的选择:变电站应选择可靠性高、运行安全稳定的设备,具备过流、过压、短路等保护功能。
(2)高压开关柜的选型:高压开关柜应满足可靠性高、操作简便、经济合理的要求,具备过流、短路等继电保护功能。
(3)高压电缆敷设:应选择符合国家标准的高压电缆,并进行正确敷设,保证电缆的绝缘完好性和安全可靠性。
2.低压供电系统设计要点:(1)配电箱的选型:配电箱应选择品牌可靠、结构合理的产品,具备过载保护、漏电保护等功能。
(2)电缆的选择:应选择符合国家标准的低压电缆,并进行正确敷设和维护,保证电缆的安全可靠性。
(3)照明设计:应根据工作面的具体情况,合理选用照明灯具,并进行合理布局,保证工作面的照明质量,提高工作面的安全性。
四、供电系统的检验和维护程序1.定期检测:供电系统应定期进行综合性能和安全性能的检查,排除存在的故障和隐患。
2.配电设备的定期维护:配电设备应进行定期的保养和维修,并进行记录,以保证设备的安全可靠性。
3.灯具的定期更换:照明灯具应定期进行检查和更换,保证井下的照明质量。
总之,煤矿综采工作面供电设计是煤矿安全生产中的重要环节,其合理的设计能够保证设备的安全高效运行,并提高煤矿的开采效率和安全性。
煤矿井下供电设计规范GB50417
煤矿井下供电设计规范GB50417
首先,规范明确了井下供电系统的设计原则。
根据井下设备的特点和动力需求,要选择适当的供电电压等级,并确保供电系统的可靠性和稳定性,以保障井下设备的正常运行。
其次,在电气设备选择方面,规范要求根据矿井的实际情况,选择具有防爆性能的电气设备,并根据不同区域的防爆要求,对设备进行分类和标志,以确保井下供电系统的安全可靠。
在电气设备的安装要求方面,规范要求井下电缆的敷设应符合国家相关标准,并对电缆井、电缆桥架等设施的布置和绝缘接地进行了详细的规定,以确保井下供电系统的安全运行。
同时,规范还对井下供电系统的设备保护和维护提出了要求。
例如,要建立健全的井下设备保护装置和系统,确保故障时能够及时切断电源,防止电气设备的受损和事故的发生。
另外,还对设备的巡视、检修和保养提出了要求,以保证井下供电系统的长期稳定运行。
最后,规范还详细规定了井下电力系统的布线方式,包括电力线路的敷设、井下分级变电站的设置等。
规范要求布线应合理、经济,尽可能减少线路的长度和损耗,确保电能传输的效率和质量。
煤矿井下采区供电系统设计
煤矿井下采区供电系统设计一、供电线路设计1.煤矿井下采区供电线路应采用三相四线制,线路电压为380/660V,频率为50Hz。
2.采用0.4/0.69kV双皮带电缆供电,采用Y型接线方式,配电箱与电缆的连接采用专用接头,保证安全可靠。
3.供电线路应采用集中供电和分散供电相结合的方式,根据井下设备的不同需求进行合理配电。
二、配电装置设计1.采用箱式变电站作为供电系统主要配电装置,箱式变电站应具备防尘、防水、防爆等功能,能够在恶劣的井下环境中正常工作。
2.配电装置应根据井下采区的实际情况进行合理布置,确保供电系统的可靠性和安全性。
3.配电装置应具备过载、短路、漏电等保护功能,并及时报警或切断电源,确保井下设备和人员的安全。
三、电缆敷设设计1.电缆应采用阻燃、耐磨损的特殊材料,具备良好的绝缘性能和机械性能,能够在井下恶劣环境中长期稳定运行。
2.电缆敷设应避免与锚杆、滚筒等设备相接触,避免外力磨损和机械损坏。
3.电缆敷设应采用固定夹具或线槽等形式固定,确保电缆的安全可靠运行。
四、绝缘电缆保护设计1.在采区内应设置绝缘保护装置,控制电缆的绝缘电阻,确保电缆与井壁不发生电击事故。
2.绝缘保护装置应具有自动断电功能,在电缆故障发生时能够及时切断电源,避免事故扩大发生。
3.绝缘电缆保护装置应定期检查和维护,确保其正常工作。
以上是一份关于煤矿井下采区供电系统设计的基本内容,为确保井下电气设备的安全运行,设计应遵循相关的国家标准和规范,并定期进行检查和维护。
同时,设计人员还需要根据煤矿井下采区的具体情况,合理安排供电线路、配电装置和电缆敷设等。
只有确保供电系统的可靠性和安全性,才能保障煤矿井下电气设备的正常运行。
煤矿井下供电设计
煤矿井下供电设计1.供电系统的选择和布置供电系统的选择和布置是煤矿井下供电设计的首要任务。
一般来说,煤矿井下供电系统选择交流供电,因为交流电具有输送能量高、输电损耗小、运行稳定等优点。
同时,煤矿井下供电系统应该采用多回路供电结构,以确保在井下故障发生时仍能保持正常供电。
2.供电线路的设计供电线路的设计是煤矿井下供电设计的重点之一、供电线路应该按照国家相关标准进行设计,线路材质应该选用耐磨、耐张力和耐腐蚀的特殊材料。
同时,供电线路的敷设应该采用优化的线路布局,以避免互相干扰和故障。
3.供电变压器的选型和布置供电变压器的选型和布置是煤矿井下供电设计的关键环节之一、供电变压器的选型应该根据井下的负荷需求和供电距离来确定,同时还需要考虑供电变压器的可靠性和安全性。
供电变压器的布置应该采用合理的位置和结构,以避免井下的振动和温度变化对其造成影响。
4.井下配电设备的选购和布置井下配电设备的选购和布置是煤矿井下供电设计的另一个重要环节。
井下配电设备的选购应该根据其负荷能力、安全性和可靠性来确定。
井下配电设备的布置应该考虑到易用性和可维护性,以方便井下工作人员进行操作和检修。
5.井下照明设计井下照明设计是煤矿井下供电设计的另一个重要方面。
井下的照明设备应该选择符合国家标准的矿用灯具,以确保足够的照明强度和可靠性。
同时,井下的照明设计应该考虑到不同部位的照明需求,以提高照明效果和安全性。
6.电气保护与自动化系统设计电气保护与自动化系统设计是煤矿井下供电设计的最后一个环节。
电气保护系统应该设置合适的保护装置,以保护供电设备免受过电流、过电压等故障的影响。
自动化系统设计应该考虑到井下环境的特殊性,以提高煤矿供电系统的运行效率和安全性。
总之,煤矿井下供电设计是一个复杂而关键的设计工作。
设计人员应该根据国家相关标准和煤矿的实际情况,选用合适的供电系统、线路、设备和保护措施,并进行合理的布置和调整,以确保煤矿井下供电的正常运行和安全生产。
煤矿供电系统井上部分设计
煤矿供电系统井上部分设计煤矿供电系统井上部分设计煤矿供电系统是煤矿生产中最重要的一个环节之一。
它直接关系到煤矿生产的安全和效率。
煤矿供电系统包含井上部分和井下部分两个部分。
其中,井上部分是指煤矿井口附近的电气设备和电力传输设备,它直接影响到井下的照明设备、通风设备和机电设备的正常运转。
本文将对煤矿供电系统井上部分设计进行分析和讨论。
一、设计原则煤矿供电系统井上部分设计应符合以下原则:1、安全性标准高:煤矿是一个高危险行业,供电系统的设计必须符合国家相关行业标准,保证电力设备的安全可靠,避免意外事故发生。
2、实用性强:供电系统的功能要满足煤矿产业的生产需要,同时要满足不同煤矿生产区域的电力需求。
3、结构紧凑:由于煤矿供电系统一般布置在狭窄的煤井口区域,因此设计应尽可能占用较小空间,结构紧凑、合理,方便维护和操作。
4、维护、检修便捷:在煤矿选择供电设备时,除满足生产需要外,还要考虑维修和检修的方便。
二、主要设备煤矿供电系统井上部分主要设备包括:变压器、开关柜、配电盘、电缆、电缆支架等。
变压器:变压器是供电系统的核心设备,它将高压电力转换为适用于煤矿生产的低压电力。
变压器的选用应根据煤矿的电力需求、设备数量、井深及其他因素综合考虑。
开关柜:开关柜是控制供电系统的关键设备。
它能根据需要将电能分配到不同的设备中,实现电力的合理利用。
配电盘:配电盘是供电系统的辅助设备,它可以实现对不同电路的分配和控制。
电缆:电缆是连接变压器、开关柜和配电盘的电力传输设备。
它可以实现高压电力的传输和低压电力的供应。
电缆支架:为了保证电缆的稳定和安全运行,电缆支架是必不可少的。
它可以将电缆固定在指定位置,防止电缆因摩擦或振动而损坏。
三、布线设计煤矿供电系统井上部分的布线要考虑到供电路线的可靠性、耐用性和维修方便性。
布线过程中要严格遵循国家相关行业标准,尽可能避免因接线而引发的问题。
布线设计时需要注意以下几点:1、施工要求:布线要求符合施工标准和安全检查标准,根据煤矿现场环境和需要灵活选取适合的施工方式。
煤矿采区变电所供电设计
煤矿采区变电所供电设计一、总体设计思路1.稳定性原则:供电系统应具有良好的稳定性,能够保证煤矿采区内各设备的正常运转。
2.可靠性原则:供电系统应具有高可靠性,能够保证变电所供电中断的概率极低,并能够有效应对各种突发状况。
3.安全性原则:供电系统应符合相关的安全标准和规范,确保供电系统的安全运行,并能够防范电气火灾和其他事故的发生。
4.经济性原则:供电系统设计应兼顾经济性,尽量减少投资成本同时保证供电质量。
5.环保性原则:供电系统设计应符合环保要求,减少对环境的污染。
二、供电系统设计内容1.负荷计算:通过对矿区设备的负荷需求进行计算,确定变电所的负荷容量,以保证变电所能够稳定供电。
2.供电方案设计:根据矿区的用电需求和供电条件,设计供电方案,包括输电线路的布置、变电所的布置和容量、开关设备的选择等。
3.供电线路设计:根据输电距离、负荷容量和供电质量要求,确定供电线路的截面、种类、走向和敷设方式,并进行线路杆塔的选型和布置。
4.变电所设计:确定变电所的布置和容量,包括主变压器的容量选择、高压开关设备的选型和布置、配电装置和保护装置的选型等。
5.供电系统配套设施设计:包括照明系统、接地系统、防雷系统、电力监测系统、安全设备等。
6.供电系统保护设计:设计合理的过电流保护、过电压保护、短路保护等措施,确保供电系统的安全性和可靠性。
7.供电系统运维设计:设计供电系统的运维管理办法,包括设备维护、故障排除、检修计划制定等。
三、供电系统设计要点1.考虑煤矿采区的特殊环境要求,对供电设备进行防爆设计,并选用合适的防爆型号设备。
2.根据供电线路的长度和负荷情况,选择合适的输电电压等级,以减少线路损耗和投资成本。
3.合理设计变电所的布置,使其满足矿区用电的需求,并兼顾安全、经济和运维的要求。
4.选用可靠性高的开关设备和保护装置,提高供电系统的可靠性和安全性。
5.提前考虑供电系统的扩容需求,合理规划变电所的容量和配电装置的备用容量。
煤矿地面设备供电设计标准
煤矿地面设备供电设计标准
煤矿地面设备供电设计标准主要包括电源系统设计、电缆敷设设计和设备安装设计等方面。
其核心目标是确保煤矿地面设备供电安全可靠、高效节能,并满足相关法规、规范和标准要求。
1. 电源系统设计
(1)设计合理的电源接入点和电源容量,确保供电可靠性和
稳定性。
(2)根据设备特性,选择合适的供电电源类型,如交流电源、直流电源或混合电源等。
(3)设计供电系统的备用电源和电池组,以应对突发情况下
的断电或停电。
(4)合理分配设备的电力负荷,确保供电系统不超负荷运行。
2. 电缆敷设设计
(1)根据设备布置和工作条件,合理规划电缆敷设路线,确
保电缆维护、更换和修复的便利性。
(2)选择合适的电缆规格和型号,以满足设备的电流、电压
和耐久性要求。
(3)电缆敷设过程中,要保持足够的缆线间距和绝缘距离,
防止电缆敷设故障和电气事故的发生。
3. 设备安装设计
(1)根据设备特性和工艺要求,合理安排设备布局和安装位置,确保设备的安全可靠性和操作便利性。
(2)考虑设备的维护和检修需求,设置合适的维修通道和检
修设施。
(3)设备安装中要注意地面的承重能力和防震设计,确保设备运行时不发生地基沉降或震动损坏。
综上所述,煤矿地面设备供电设计标准包括电源系统设计、电缆敷设设计和设备安装设计等方面,旨在确保煤矿地面设备供电安全可靠、高效节能,并满足相关法规、规范和标准要求。
这些标准是为了保障煤矿生产安全、提高生产效率,同时也是对煤矿行业负责任的体现。
煤矿6kv变电站供电系统设计
煤矿6kV变电站供电系统设计1. 引言煤矿6kV变电站供电系统是煤矿生产过程中重要的电力设施之一,它起到将高压电能转变为低压电能并稳定供应给煤矿设备和照明系统的作用。
本文将对煤矿6kV变电站供电系统的设计进行详细介绍。
2. 设计目标煤矿6kV变电站供电系统的设计目标包括以下几个方面:•确保供电系统的安全可靠运行,减少供电故障和停电时间;•提供足够的电能供应,满足煤矿设备和照明系统的需求;•设计合理、布局合理,便于设备的维护和管理;•考虑到煤矿环境的特殊性,采取适当的措施保证系统的防爆和防腐蚀能力。
3. 系统组成煤矿6kV变电站供电系统主要由以下几个组成部分构成:•6kV高压侧:包括6kV母线、间隔断路器、电流互感器等设备;•低压侧:包括煤矿设备和照明系统的配电设备、变压器、开关柜等;•控制系统:包括监控系统、保护系统和自动化控制系统。
4. 系统设计步骤煤矿6kV变电站供电系统的设计步骤如下:4.1 确定负荷需求首先需要根据煤矿的实际情况确定负荷需求,包括设备的额定功率、运行方式以及峰值负荷等。
根据负荷需求,确定供电系统的设计容量。
4.2 确定系统电压等级根据煤矿的实际情况和负荷需求,确定供电系统的电压等级。
一般情况下,煤矿6kV变电站供电系统的电压等级为6kV。
4.3 设计供电方案根据负荷需求和电压等级,设计供电方案,包括6kV高压侧和低压侧的布置、设备的选型等。
同时需要考虑系统的可靠性、经济性和安全性等因素。
4.4 编制工程图纸根据供电方案,编制相应的工程图纸,包括布置图、接线图、设备参数表等。
工程图纸需要按照相关标准进行设计,并考虑煤矿环境的特殊要求。
4.5 安装调试和验收根据工程图纸进行设备的安装调试,并进行系统的验收。
安装调试和验收过程中需要严格按照相关规范和标准进行操作,确保系统的安全性和稳定性。
5. 系统运行与维护煤矿6kV变电站供电系统的运行与维护是保证系统正常运行的重要环节。
在系统运行过程中,需要定期对设备进行巡检和维护,并及时排除故障。
煤矿井下供电系统的设计课件
• 2)两相短路电流亦可利用计算图(或表)查出。
• 2、短路保护装置
• 1)馈出线的电源端均需加装短路保护装置。低压电动机应具备 短路、过负荷、单相断线的保护装置。
• 2)当干线上的开关不能同时保护分支线路时,则应在靠近分支 点处另行加装短路保护装置。
• 3)各类短路保护装置均应按本细则进行计算、整定、校验,保 证灵敏可靠,不准甩掉不用,并禁止使用不合格的短路保护装置
第一节 过电流保护
• 2.过负荷
• 过负荷是指流过电气设备和电路的实际电流超过其额定 电流和允许过负荷时间。其危害是电气设备和电缆出现 过负荷后,温度将超过所用绝缘材料的最高允许温度, 损坏绝缘,如不及时切断电源,将会发展成漏电和短路 事故。过负荷是井下烧毁中、小型电动机的主要原因之 一。
• 引起电气设备和电缆过负荷的原因主要有以下几方面: 一是电气设备和电缆容量选择过小,致使正常工作时负 荷电流超过了额定电流;二是对生产机械的误操作,例 如在刮板输送机机尾压煤的情况下,连续点动起动,就 会在起动电流的连续冲击下引起电动机过热,甚至烧毁 。此外,电源电压过低或电动机机械性堵转都会引起电 动机过负荷。
第一节 过电流保护
• ②对保护电缆支线的装置按公式⑽选择:
•
I
QC
I R 1.8 ~ 2.5
........⑽
ቤተ መጻሕፍቲ ባይዱ
• 式中 :IQC 、IR 、1.8~2.5----含义同公式⑼。
• ③对保护照明负荷的装置,按公式(11)选择:
•
IR≈Ie ......(11)
• 式中:Ie ----照明负荷的额定电流,A。
•
UN2 ----变压器二次侧额定电压,V。
第一节 过电流保护
煤矿供电系统毕业设计论文
煤矿供电系统毕业设计论文
首先,我们需要对煤矿供电系统进行分析。
煤矿供电系统由高压配电
系统、中压配电系统和低压配电系统组成。
其中,高压配电系统主要负责
将电能从电站输送到煤矿,中压配电系统将高压电能转化为中压电能,低
压配电系统负责将中压电能分配给各个用电设备。
通过对煤矿供电系统的
分析,我们可以了解到其存在着供电线路长、变电设备老化、故障率高等
问题。
为了解决这些问题,我们可以针对煤矿供电系统提出一些优化的措施。
首先,可以选择更佳的供电线路,减少供电线路的长度,降低线路的损耗。
同时,可以对变电设备进行维护和更新,保证其正常运行,减少故障率。
另外,可以增加配电设备的备用容量,以应对突发的用电需求,提高供电
系统的可靠性。
除了以上的技术措施,我们还需要加强对煤矿供电系统的监管和管理。
可以采用电力监测系统,实时监测煤矿供电系统的工作状态,并及时发现
和处理问题。
同时,可以加强对供电设备的定期检查和维护,确保设备的
正常运行。
另外,可以制定相应的应急预案,准备各种突发情况的处理方法,以保障煤矿供电系统的安全运行。
综上所述,煤矿供电系统的可靠性和安全性对煤矿的生产效率和工人
的生命安全至关重要。
通过对供电系统进行分析和优化,采取相应的技术
措施和管理措施,可以提高煤矿供电系统的可靠性和安全性,确保煤矿的
正常运行。
同时,还可以提高供电系统的灵活性和响应能力,以适应煤矿
生产的需求。
【精品】煤矿采区供电系统设计设计
矿业工程学院毕业设计题目:某C煤矿采区供电设计专业:采矿工程作者:袁龙龙指导老师:曹金燕摘要本设计初步设计了煤矿地面35kV变电系统.用需用系数法进行全矿负荷计算,再进行无功率补偿,根据补偿后的负荷结果确定出该站主变压器的台数、容量及型号。
对供电系统进行了短路电流计算,选择了电缆型号及长度,制定了矿井变电所的主结线方式、运行方式、继电保护、防雷与接地保护方案。
选择了断路器、隔离开关、继电器、变压器等电气设备,绘制了供电系统图。
对矿山企业进行可靠、安全、经济、合理的供电,对提高经济效益及保证安全生产方面都十分重要。
关键字:负荷计算;负荷统计;变电站;运行方式;经济;安全AbstractThedesignofthecoalmineground35kVsubstationdesign。
Accordingtotheresultsofloadcalculation,themaintransformerofthesubstationisdeterminedbytheloadstatisticsof35KVsubst ation。
.Theshort-circuitcurrentforpowersupplysystemiscalculated,andthemainknotlinemode,operationmodeandrelayprotectionschemeofthesubstation areformulated.。
Selectthecircuitbreaker,isolatedswitch,relay,transformerandotherelectricalequipment.Itisveryimportantforthemineenterprisetocarryonthereliable,safe,economicalandreasonablepowersupply,whichisveryimportanttoimprovetheeconomicbenefitandguaranteethesafety。
煤矿采区供电设计
煤矿采区供电设计
首先,煤矿采区供电设计需要考虑的首要问题是供电线路的布置。
通常,煤矿采区供电线路通常分为主馈线、支线和末端用户线路三个部分。
主馈线是从变电所引入煤矿,通过合理的布置和规划,确保供电线路的安全性和可靠性。
支线连接主馈线和末端用户线路,负责将电能输送到各个采煤区井下设备。
末端用户线路是将电能输送到井下设备,如提升机、风机、照明设备等。
其次,煤矿采区供电设计还需要考虑电源系统的可靠性。
为确保煤矿采区供电的连续性,需要采用双电源供电系统。
一方面,主要电源由变电所供电,主馈线和支线采用环网制,以提高供电系统的可靠性,减少电能中断的可能性。
另一方面,备用电源由备用变电所提供,以保证在主电源出现故障时,能及时切换到备用电源,确保煤矿采区的供电正常。
此外,煤矿采区供电设计还需要考虑井下设备的功率需求。
不同的井下设备具有不同的功率需求,根据实际情况进行合理的负荷配分和供电容量的计算。
在计算供电容量的同时,还要考虑负荷的平衡和合理性,以提高供电系统的能源利用率。
最后,煤矿采区供电设计还需要考虑电气设备的选择和安装。
电气设备的选择需要兼顾设备的功能性、安全性和适应性,以满足井下设备的工作需求。
安装电气设备时,需要按照相关规范和标准进行施工和调试,确保设备正常运行和使用安全。
综上所述,煤矿采区供电设计是一项复杂而重要的工作,需要考虑供电线路的布置、电源系统的可靠性、井下设备的功率需求以及电气设备的
选择和安装。
通过科学合理的供电设计,可以提高煤矿的生产效率和安全性,确保煤矿的正常运转。
煤矿采区供电系统设计
02 设备可靠性
选用高可靠性、高稳定性的电气设备,降低故障 率,提高供电系统的稳定性。
03 备用电源
为确保安全可靠,应设置备用电源,以便在主电 源出现故障时能够迅速切换。
节能环保原则
优化供电系统
通过优化供电系统设计, 降低能耗,提高能源利用 效率。
应急预案
制定供电系统应急预案, 定期进行演练,确保在突 发情况下能够迅速响应。
事后分析
对故障处理过程进行记录 和分析,总结经验教训, 优化供电系统设计和管理 。
煤矿采区供电系统发展趋势
06
与展望
智能化发展
智能监控
利用物联网、大数据等技术,实时监控供电系统的运行状态,实现 故障预警和远程控制。
智能调度
供电线路设计
01
02
03
线路选型
根据采区环境条件和用电 设备特性,选择合适的电 缆型号和截面,确保线路 安全可靠运行。
线路路径
合理规划线路路径,尽量 避开危险区域,减少交叉 跨越,降低安全风险。
线路保护
根据线路长度和负载情况 ,配置相应的保护装置, 提高线路的稳定性和可靠 性。
变压器设计
变压器型号
减少环境污染
合理处理采区产生的废弃 物,降低对环境的污染, 保护生态环境。
节能设备
选用节能型电气设备,减 少电能消耗和浪费。
经济合理性原则
控制成本
01
在满足安全、可靠、节能环保的前提下,合理控制供电系统设
计的成本。
经济效益
02
提高供电系统的经济效益,降低运营成本,增加企业盈利能力
。
技术经济比较
35KV煤矿供电设计
35KV煤矿供电设计中央电视广播大学毕业论文摘要本设计是在煤矿实习的基础上完成的。
通过对河东煤矿的实地考察,结合该矿现有生产水平和未来发展前景,在原有供电系统的基础上根据煤炭生产行业的有关规定进一步规范和完善。
河东煤矿供电系统设计内容包括:地面变电所设计、井下供电设计、短路电流计算、地面及井下高低压设备选择、保护装置、地面及井下接地等。
本设计主供电系统由来自不同地方的两路35kV线路供电,经主变压器变为10kV,由单母分段的接线方式分别向地面和井下供电。
根据煤矿供电系统特点,本设计系统主线路均以最大运行方式进行整定,并以此对线路及其设备进行选择。
河东煤矿35kV供电系统包括井上供电系统和井下供电系统两个部分。
为保证供电的安全、可靠,从经济和技术两个方面对本矿进行整体设计,以达到满足对灵北煤矿设计的合理性。
关键词:河东煤矿;35kV;供电;设备选择第1页中央电视广播大学毕业论文目录1绪论1.1河东基本情况简介1.2井下采区设计原始资料52河东35KV煤矿供电设计方案及论证72.1河东煤矿总体设计方案2.2方案的可行性论证2.2.1技术方面论证82.2.2经济方面论证93矿井地面变电所设计3.1地面用电负荷计算1010873.2地面变电所位置选择133.3地面变电所的主接线133.3.135kV侧主接线133.3.210kV侧主接线144井下中央变电所及供电设计164.1井下电力负荷计算4.2.2井下负荷的计算161618194.1.1井下负荷的计算方法4.3井下中央变电所位置选择原则194.4井下中央变电所主接线5短路电流计算215.1短路电流计算选择215.2计算短路电流的目的215.3三相短路电流的计算方法225.3.1电源为无限容量时的短路电流计算225.3.2电源为有限容量时的短路电流计算225.4短路电流计算236设备选择306.1一般的选择方法306.2短路动、热稳定性校验原则316.3变压器选择31第2页中央电视广播大学毕业论文6.4地面设备选择举例6.4.135kV设备的选择6.4.210kV设备的选择6.5井下设备选择346.5.1电缆选择计算346.5.2井下开关选择367保护装置377.1继电保护装置377.2防雷保护及接地387.2.1变电所防雷装置38313234。
煤矿供电方案设计
煤矿供电方案设计简介煤矿供电方案设计是为了满足煤矿的电力需求而制定的计划。
在煤矿生产过程中,电力是不可或缺的能源,用于驱动机械设备、照明和通风等。
本文将介绍煤矿供电方案的设计要点和注意事项。
设计要点1.供电容量根据煤矿的规模和设备数量,确定所需的供电容量。
供电容量应足够满足煤矿的基本需求,同时考虑到未来的扩展和升级。
2.供电方式根据煤矿的地理位置和周围电网的情况,选择合适的供电方式。
常见的供电方式有直接供电和变压器供电两种。
–直接供电:将高压电源直接引入煤矿内部,然后通过变压器进行降压分配。
–变压器供电:将电力从外部输送到变电站,然后通过变压器进行升压再输送到煤矿。
3.线路布局设计合理的线路布局,使供电线路能够高效地覆盖煤矿各个区域。
合理布置变电站和配电柜,以便于电力的传输和分配。
4.电缆选型根据煤矿的工作环境和电力需求,选择合适的电缆。
电缆的选型应考虑到电压等级、电流容量、耐火性能等方面的要求。
5.电气设备选择根据煤矿的需求,选择合适的电气设备,包括开关设备、变压器、发电机等。
设备的选择应满足性能要求,同时也要考虑到安全性和可靠性。
6.安全措施设计合理的安全措施,确保供电系统的安全运行。
包括过载保护、漏电保护、接地保护等,以及防雷、防爆等附加安全措施。
注意事项1.法律法规在煤矿供电方案设计过程中,要遵守国家相关的法律法规,特别是与电力供应和煤矿安全相关的法规。
2.可行性研究在设计煤矿供电方案之前,进行可行性研究是必要的。
研究应包括电力供应情况、设备需求、成本分析等。
3.灵活性煤矿供电方案应具备一定的灵活性,在未来发生设备扩展和升级时能够适应变化。
因此,要预留一定的余量和扩展空间。
4.维护和检修设计时要考虑到供电系统的维护和检修需求。
合理设置检修通道和维护设施,方便维修人员进行日常维护和故障处理。
5.绿色供电鼓励采用绿色能源供电,如太阳能和风能等。
除了减少环境污染外,还可以降低能源成本。
结论煤矿供电方案的设计涉及供电容量、供电方式、线路布局、电缆选型、电气设备选择和安全措施等方面。
(完整版)矿井供电设计
目录第一章系统概况 (2)第一节供电系统简介 (2)第二节中央变电所高压开关及负荷统计 (2)一、G-03高压开关负荷统计: (3)二、G-04高压开关负荷统计: (3)三、G-05高压开关负荷统计: (3)四、G-07高压开关负荷统计 (4)五、G-08高压开关负荷统计 (4)六、G-09高压开关负荷统计 (5)第三节中央变电所高压开关整定计算 (6)一、计算原则 (6)二、中央变电所G-01、G-06、G-11高爆开关整定: (7)三、中央变电所G-03高爆开关整定: (7)四、中央变电所G-04、G-08高爆开关整定: (8)五、中央变电所G-05、G-07高爆开关整定: (8)六、中央变电所G-09高爆开关整定: (9)七、中央变电所G-02、G-10高爆开关整定: (9)八、合上联络开关,一回路运行,另一回路备用时Ⅰ、Ⅱ段高压开关整定.9九、定值表(按实际两回路同时运行,联络断开): (10)第四节井底车场、硐室及运输整定计算 (10)一、概述 (10)二、供电系统及负荷统计 (10)三、高压系统设备的选型计算 (11)第五节660V系统电气设备选型 (13)一、对于3#变压器 (13)二、对于2#变压器 (15)第六节660V设备电缆选型 (17)一、对于3#变压器 (17)二、对于2#变压器 (18)第七节短路电流计算 (19)一、对于3#变压器 (19)二、对于2#变压器 (20)第八节低馈的整定 (21)一、对于3#变压器 (21)二、对于2#变压器 (23)三、对于1#变压器 (25)四、对于4#变压器 (26)五、对于YB-02移变 (27)六、对于YB-04移变 (28)第二章30104综采工作面供电整定计算 (31)第一节供电系统 (31)第二节工作面供电系统及负荷统计 (32)第三节高压系统设备的选型计算 (33)一、1140V设备YB-03移动变电站的选择 (33)二、660V设备YB-04移动变电站的选择 (33)三、高压电缆的选择及计算 (34)四、1140V系统电气设备电缆计算 (35)五、660V系统电器设备电缆计算 (38)第四节短路电流计算 (44)第五节整定计算 (51)第六节供电安全 (56)第三章 30106工作面联络巷供电整定计算 (57)第一节供电系统 (57)第二节工作面供电系统及负荷统计 (57)第三节设备的选型计算 (57)一、YB-02移动变电站的选择 (57)二、高压电缆的选择及计算 (58)三、低压系统电气设备电缆计算 (59)第四节短路电流计算 (62)第五节整定计算 (64)第六节供电安全 (68)第一章系统概况第一节供电系统简介我煤矿供电系统为单母线分段分列运行供电方式,一回来自西白兔110KV站35KV母线,另一回来自羿神110KV站35KV母线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本设计为煤矿采区供电设计。
从实际出发进行系统分析,除满足一般设计规程及规范要求外,还满足《煤矿安全规程》的具体要求和标准。
本设计变压器选用矿用隔爆型干式变压器和矿用隔爆型移动变电站;高压开关与低压馈电开关都选用具有技术先进的智能化综合保护装置的高压防爆真空开关和低压矿用隔爆型真空馈电开关,各种设备的开关选用矿用隔爆型真空起动器。
高压铠装电缆选用交联聚乙烯绝缘聚乙烯护套电力电缆。
通过短路电流、开关继电保护整定的计算和保护接地的确定,使其设计可靠性高、功能完善、组合灵活,以及功耗低,保证采区供电安全、经济、高效平稳运行。
关键词:供电设计选用变压器开关电缆目录摘要 (I)1 采区供电设计的原始资料 (1)1.1 采区地质概况 (1)1.2 采煤方法 (1)1.3 采区排水 (1)1.4 采区设备及材料的运输 (1)1.5 煤炭的运输 (1)1.6 采区压气系统 (2)1.7 采区通风系统 (2)2 采区供电系统及变电所位置的确定 (3)2.1 变电所位置的确定 (3)2.2 电压等级的确定 (3)2.3 采区负荷计算及变压器、变电站容量、台数的确定 (3)2.3.1 向临时施工的普掘I工作面供电变压器确定 (3)2.3.2 向普掘II工作面供电的变压器(变电站)确定 (4)2.3.3 向煤仓供电的变压器确定 (4)2.3.4 向综采工作面供电的变压器(变电站)确定 (4)2.3.5 向采煤生产准备面设备供电变电站确定 (7)2.3.6 向采区主提升绞车等设备供电变压器确定 (7)2.3.7 专用风机变压器的选择确定 (7)2.4 采区变电所供电系统的确定 (8)3 采区的设备选型 (10)3.1 低压电缆的选择计算 (10)3.1.1 电缆的选择原则 (10)3.1.2 电缆型号的确定 (10)3.1.3 电缆长度的确定 (12)3.1.4 低压电缆截面的选择计算 (12)3.2 高压电缆的选择计算 (22)3.2.1 电缆型号与长度的确定 (22)3.2.2 电缆截面的选择与校验 (22)3.3 采区高、低压开关的选择 (27)3.4 低压电网的短路电流计算 (28)3.5 高、低开关的继电保护整定计算 (29)3.6 采区的保护接地 (33)4 结论 (36)致谢 (36)参考文献 (37)1 采区供电设计的原始资料1.1 采区地质概况南二下延采区,北起F71断层,南到F70号断层,东起DF02断层,西为-700水平,走向约300米倾斜东西宽约1000米,该采区可采煤层有:16#、17#、18#煤层,每个煤层可布置一个倾斜长壁回采工作面。
其中17#煤层最厚,平均厚度为3.76米。
1.2 采煤方法由于该采区走向长度短,倾向长度长,煤层平均倾角19°,采用走向长壁后退式采煤方法,煤层被划分多个块段,煤柱损失量大、工作面搬家频繁、效率低,所以三个工作面均采用倾向长壁后退式采煤方法,采煤方式为综合机械化采煤,但区别在于采用的工作面机械设备不同。
1.3 采区排水根据南二上采区及南二下延采区的水文观测,并参照公式Q=FqF,推断本采区的正常涌水量为60~80m3/h,最大为100~120m3/h。
由于该采区为上山采区,该采区的自然涌水及生产过程中的废水自然流向南二下采区-700,再由-700集中排水泵排往南翼-500大巷,所以该设计中可以不考虑采区排水的用电负荷。
1.4 采区设备及材料的运输该采区的三个采煤工作面及初期巷道掘进所需的设备、生产材料等的运输路线:副井口→-500石门→南翼采区运输大巷→南二下延采区提升上山→各煤层工作面下料道→采掘工作面。
1.5 煤炭的运输工作面采煤机落煤→工作面运输机→工作面转载机→工作面上山皮带→南二下延煤仓→三吨底卸式矿车→主井底煤仓→主井箕斗→地面煤仓。
1.6 采区压气系统由于文该采区煤炭覆存量少,采区服务年限短,所以该采区不安设压风机房,采区掘进用风由南翼压风机房提供,所以该采区供电设计不考虑压风系统负荷。
1.7 采区通风系统该采区虽然服务年限短,但采区生产能力大。
采区用风采用轨道上山兼做主要入风道,采区乏风由采区回风上山排入南翼采区主排风道。
各工作面的通风线路:-500南翼大巷→下延采区提升上山→各煤层工作面皮带道→各煤层工作面→各工作面下料道→ -375车场及风道→南四回风道→南二回风上山→主井。
2 采区供电系统及变电所位置的确定2.1 变电所位置的确定根据《煤矿安全规程》、《煤矿工业设计规范》和《煤矿井下供电设计技术规范》的要求,结合该采区实际的地质条件在该采区提升机房右侧设一处采区变电所,并且与提升机房相连通。
2.2 电压等级的确定根据2007版《煤矿安全规程》的要求和现有采、掘工作面设备技术水平确定:变电所高压及采、掘工作面移动变电站电源侧电压为6000V ;综采工作面机电设备及掘进综掘机的电压为1140V (其中:17#层采煤工作面采用MG400/940-WD 型采煤机和SGZ-800/2*400型刮板运输机,电压等级为3300V ),电源取自工作面移动变电站;掘进工作面设备及采煤工作面的生产辅助设备电源电压为660V ,电源取自变电所低压变压器或工作面移动变电站;各工作面的煤电钻、信号及照明电压为127V 。
2.3 采区负荷计算及变压器、变电站容量、台数的确定按工程设计采区为四个同时施工的掘进工作面,其中在采区上部临时施工的两个掘进工作面设备由该变电所供电,另外两个沿煤上山掘进皮带道和下料道的工作面设备由-700变电所供电,该设计中不做计算说明。
该采区同时只有一个生产工作面,另有一个采煤生产准备面。
设计时依据采区最大生产负荷时期(17#煤层采煤工作面生产时期)确定变压器、变电站的容量和台数。
2.3.1 向临时施工的普掘I 工作面供电变压器确定由于该工作面设备少,负荷容量小,采用变电所低压变压器器供电。
852.03.1064539.0cos ⨯=Φ∑⨯=pj e X B P K S =56.63 KVA 式中:B S ——变压器计算容量,KVA ;X K ——由变压器供电的设备的需用系数,ed X P P K ∑⨯+=714.0286.0=0.4539;e P ∑——由变电所供电的设备额定功率之和,KW ;e P ∑ =106.3KW (查负荷统计表见表2-1)pj Φcos ——变压器供电的设备加权平均功率因数。
根据以上计算,选用KBSG-315/6型变压器满足要求,电压为660V 。
2.3.2 向普掘II 工作面供电的变压器(变电站)确定该巷道施工距离长运输设备多负荷大,施工地点距变电所远,采用移动变电站向工作面设备供电。
841.05.327529.0cos ⨯=Φ∑⨯=pj e X B P K S =206.1 KVA 式中:e d X P P K ∑⨯+=6.04.0=0.529 e P ∑=327.5KW (查负荷统计表见表2-1)根据以上计算,选用KSGZY-315/6型移动变电站满足要求,电压为660V 。
2.3.3 向煤仓供电的变压器确定89.0551cos ⨯=Φ∑⨯=pj e X B P K S =61.8 KVA 式中:由于变电站仅向一台设备供电,X K =1e P ∑=55KW (查负荷统计表见表2-1)监测电源的负荷容量忽略不计。
根据以上计算,并考虑电站对线路最远端的短路保护和现有设备来源,选用KBSG-315/6型变压器,满足要求,电压为1140V 。
2.3.4 向综采工作面供电的变压器(变电站)确定由于综采工作面设备分布广、设备多、容量大、电压等级多样,故采用多台移动变电站、变压器向工作面设备供电。
(1)、带一台皮带的变压器:87.01501cos ⨯=Φ∑⨯=pj e X B P K S =172.41KVA 式中:由于变压器仅向一台设备供电,X K =1;e P ∑=150KW (查负荷统计表见表2-1)根据以上计算,选用KBSG-315/6型变压器满足要求,电压为660V 。
(2)、带二台皮带的变电站:87.04001cos ⨯=Φ∑⨯=pj e X B P K S =459.77 KVA 式中:由于变电站仅向一台设备供电,X K =1e P ∑=400KW (查负荷统计表见表2-1)根据以上计算,并考虑大功率设备的起动要求,选用KSGZY-630/6型移动电站满足要求,电压为1140V 。
(3)、带三台皮带的变电站:同理,带第三台皮带的移动变电站也选用KSGZY-630/6型移动变电站满足要求,电压为1140V 。
(4)、带皮带道下半部分设备的变电站:由于初采时工作面距离变电所较远,超过1000米,考虑到最远端设备及电缆的短路保护,在皮带道中部设置一台移动变电站。
856.0138494.0cos ⨯=Φ∑⨯=pj e X B P K S =79.64 KVA 式中:e d X P P K ∑⨯+=714.0286.0=0.494 e P ∑=138KW (查负荷统计表见表2-1)根据以上计算,选用KSGZY-315/6型移动变电站满足要求,电压等级为660V 。
(5)、带破碎机及乳化泵的变电站:856.0400733.0cos ⨯=Φ∑⨯=pj e X B P K S =342.52 KVA式中:ed X P P K ∑⨯+=6.04.0=0.733e P ∑ =400KW (查负荷统计表见表2-1)根据以上计算,选用KSGZY-630/6型移动变电站满足要求,电压等级为1140V 。
(6)、带转载机及乳化泵的变电站:854.06008.0cos ⨯=Φ∑⨯=pj e X B P K S =562.06 KVA 式中:e d X P P K ∑⨯+=6.04.0=0.8 e P ∑=600KW (查负荷统计表见表2-1)根据以上计算,并考虑大功率设备的起动要求,选用KSGZY-800/6型移动变电站满足要求,电压等级为1140V 。
(7)、带机组的变电站:86.09401cos ⨯=Φ∑⨯=pj e X B P K S =1093 KVA 式中:由于变电站仅向一台设备供电,X K =1e P ∑=940KW (查负荷统计表见表2-1)根据以上计算,并考虑大功率设备的起动要求和现有设备情况,选用KSGZY-1600/6型移动变电站满足要求,电压为3300V 。
(8)、带工作面运输机的变电站:85.08001cos ⨯=Φ∑⨯=pj e X B P K S =941 KVA 式中:由于变电站仅向一台设备供电, =1e P ∑=800KW (查负荷统计表见表2-1)根据以上计算,并考虑大功率设备的起动要求和现有设备情况,选用KSGZY-1600/6型移动变电站满足要求,电压为3300V 。