高二数学必修二测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修二测试题及答案
【一】
卷Ⅰ
一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.对于常数、,“”是“方程的曲线是双曲线”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
2.命题“所有能被2整除的数都是偶数”的否定是
A.所有不能被2整除的数都是偶数
B.所有能被2整除的数都不是偶数
C.存在一个不能被2整除的数是偶数
D.存在一个能被2整除的数不是偶数
3.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为
A.B.C.D.
4.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为
A.B.C.D.
5.若双曲线的离心率为,则其渐近线的斜率为
A.B.C.D.
6.曲线在点处的切线的斜率为
A.B.C.D.
7.已知椭圆的焦点与双曲线的焦点恰好是一个正方形的四个顶点,则抛物线的焦点坐标为
A.B.C.D.
8.设是复数,则下列命题中的假命题是
A.若,则
B.若,则
C.若,则
D.若,则
9.已知命题“若函数在上是增函数,则”,则下列结论正确的是
A.否命题“若函数在上是减函数,则”是真命题
B.逆否命题“若,则函数在上不是增函数”是真命题
C.逆否命题“若,则函数在上是减函数”是真命题
D.逆否命题“若,则函数在上是增函数”是假命题
10.马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的
A.充分条件
B.必要条件
C.充分必要条件
D.既不充分也不必要条件
11.设,,曲线在点()处切线的倾斜角的取值范围是,则到曲线对称轴距离的取值范围为
A.B.C.D.
12.已知函数有两个极值点,若,则关于的方程的不同实根个数为
A.2
B.3
C.4
D.5
卷Ⅱ
二、填空题:本大题共4小题,每小题5分,共20分.
13.设复数,那么等于________.
14.函数在区间上的值是________.
15.已知函数,则=________.
16.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于、两点(在轴左侧),则.
三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
已知z是复数,和均为实数(为虚数单位).
(Ⅰ)求复数;
(Ⅱ)求的模.
18.(本小题满分12分)
已知集合,集合
若是的充分不必要条件,求实数的取值范围.
19.(本小题满分12分)
设椭圆的方程为点为坐标原点,点,分别为椭圆的右顶点和上顶点,点在线段上且满足,直线的斜率为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设点为椭圆的下顶点,为线段的中点,证明:.
20.(本小题满分12分)
设函数(其中常数).
(Ⅰ)已知函数在处取得极值,求的值;
(Ⅱ)已知不等式对任意都成立,求实数的取值范围.
21.(本小题满分12分)
已知椭圆的离心率为,且椭圆上点到椭圆左焦点距离的最小值为.
(Ⅰ)求的方程;
(Ⅱ)设直线同时与椭圆和抛物线相切,求直线的方程.
22.(本小题满分12分)
已知函数(其中常数).
(Ⅰ)讨论函数的单调区间;
(Ⅱ)当时,,求实数的取值范围.
参考答案
一.选择题
CDBACCDABBDB
二.填空题
三.解答题
17.解:(Ⅰ)设,所以为实数,可得,
又因为为实数,所以,即.┅┅┅┅┅┅┅5分
(Ⅱ),所以模为┅┅┅┅┅┅┅10分
18.解:(1)时,,若是的充分不必要条件,所以,
,检验符合题意;┅┅┅┅┅┅┅4分
(2)时,,符合题意;┅┅┅┅┅┅┅8分
(3)时,,若是的充分不必要条件,所以,
,检验不符合题意.
综上.┅┅┅┅┅┅┅12分
19.解(Ⅰ)已知,,由,可得,┅┅┅┅┅┅┅3分
所以,所以椭圆离心率;┅┅┅┅┅┅┅6分
(Ⅱ)因为,所以,斜率为,┅┅┅┅┅┅┅9分
又斜率为,所以(),所以.┅┅┅┅┅┅┅12分
20.解:(Ⅰ),因为在处取得极值,所以,解得,┅┅┅┅┅┅┅3分
此时,
时,,为增函数;时,,为减函数;
所以在处取得极大值,所以符合题意;┅┅┅┅┅┅┅6分
(Ⅱ),所以对任意都成立,所以,所以.┅┅┅┅┅┅┅12分
21.解:(Ⅰ)设左右焦点分别为,椭圆上点满足所以在左顶点时取到最小值,又,解得,所以的方程为
.(或者利用设解出得出取到最小值,对于直接说明在左顶点时取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分
(Ⅱ)由题显然直线存在斜率,所以设其方程为,┅┅┅┅┅┅┅5分
联立其与,得到
,,化简得┅┅┅┅┅┅┅8分
联立其与,得到
,,化简得,┅┅┅┅┅┅┅10分
解得或
所以直线的方程为或┅┅┅┅┅┅┅12分
22.(Ⅰ),
设,该函数恒过点.
当时,在增,减;┅┅┅┅┅┅┅2分
当时,在增,减;┅┅┅┅┅┅┅4分
当时,在增,减;┅┅┅┅┅┅┅6分
当时,在增.┅┅┅┅┅┅┅8分
(Ⅱ)原函数恒过点,由(Ⅰ)可得时符合题意.┅┅┅┅┅┅┅10分
当时,在增,减,所以,不符合题意.
┅┅┅┅┅┅┅12分
【二】
一、选择题
1.一个物体的位移s(米)和与时间t(秒)的关系为s?4?2t?t,则该物体在4秒末的瞬时速度是A.12米/秒B.8米/秒C.6米/秒D.8米/秒2.由曲线y=x2,y=x3围成的封闭图形面积为为
A.21711B.C.D.
41212323.给出下列四个命题:(1)若z?C,则z≥0;(2)2i-1虚部是2i;(3)若a?b,则a?i?b?i;(4)若z1,z2,且z1>z2,则z1,z2为实数;其中正确命题的个数为....A.1个B.2个C.3个D.4个
4.在复平面内复数(1+bi)(2+i)(i是虚数单位,b是实数)表示的点在第四象限,则b 的取值范围是
A.b
B.b??11
C.?5.下面几种推理中是演绎推理的为....
A.由金、银、铜、铁可导电,猜想:金属都可导电;
1111,,,???的通项公式为an?
B.猜想数列(n?N?);n(n?1)1?22?33?42
C.半径为r圆的面积S??r,则单位圆的面积S??;
D.由平面直角坐标系中圆的方程为(x?a)2?(y?b)2?r2,推测空间直角坐标系中球的方程为
(x?a)2?(y?b)2?(z?c)2?r2.
6.已知f?x???2x?1??2a?3a,若f???1??8,则f??1??xA.4B.5C.-2D.-3
37.若函数f?x??lnx?ax在点P?1,b?处的切线与x?3y?2?0垂直,则2a?b等于