有理数的分类PPT课件
合集下载
有理数概念ppt课件
置,但是在调换时,要连可编辑同课件PP其T 运算符号和性质符号28 一
减法法则
有理数的加减混合运算
方法:
(1)运用减法法则,将有理数加减混合运算 中的减法转化 为加
法,转化为加法后的式子是几个正数、负数的 和的形式。
正整数:正数 负整数:负数 正分数:分数且正
5
数轴
1、概念:规定了原点、正方向、单位长度的直线 。 原点
三要素: 正方向 单位长度
可编辑课件PPT
6
数轴
2、数轴上的点与有理数的关系 所有的有理数都可以在数轴上表示 正有理数可以用原点右边的点表示 负有理数可以用原点左边的点表示 0可以用原点表示
可编辑课件PPT
互为相反数的两个数相加为0
3、一个数同0相加,扔得这个数
可编辑课件PPT
19
加法法则
提示:有理数的加法运算遵循规律 “一定二求三加减” 即第一步:确定和的符号
第二步:求加数的绝对值 第三步:依据加法法则把绝对值相加还有 相减
可编辑课件PPT
20
加法法则
可编辑课件PPT
21
加法法则
互为相反数的两个数相加等于0 即a和b互为相反数,那么a+b=0
(5)带分数可拆成整数和正分数两部分再相
可编辑课件PPT
25
减法法则
减法法则:
减去一个数等于加上这个数的相反数
注意:两变一不变
即:一是减法变加法
二是把减数变成相反数,被减数不变
注意:有理数的减法在转化为加法之前,被减 数与减数的位置不能
改变,因为对于减法来说,没有交换律
可编辑课件PPT
26
减法法则
可编辑课件PPT
9
相反数
减法法则
有理数的加减混合运算
方法:
(1)运用减法法则,将有理数加减混合运算 中的减法转化 为加
法,转化为加法后的式子是几个正数、负数的 和的形式。
正整数:正数 负整数:负数 正分数:分数且正
5
数轴
1、概念:规定了原点、正方向、单位长度的直线 。 原点
三要素: 正方向 单位长度
可编辑课件PPT
6
数轴
2、数轴上的点与有理数的关系 所有的有理数都可以在数轴上表示 正有理数可以用原点右边的点表示 负有理数可以用原点左边的点表示 0可以用原点表示
可编辑课件PPT
互为相反数的两个数相加为0
3、一个数同0相加,扔得这个数
可编辑课件PPT
19
加法法则
提示:有理数的加法运算遵循规律 “一定二求三加减” 即第一步:确定和的符号
第二步:求加数的绝对值 第三步:依据加法法则把绝对值相加还有 相减
可编辑课件PPT
20
加法法则
可编辑课件PPT
21
加法法则
互为相反数的两个数相加等于0 即a和b互为相反数,那么a+b=0
(5)带分数可拆成整数和正分数两部分再相
可编辑课件PPT
25
减法法则
减法法则:
减去一个数等于加上这个数的相反数
注意:两变一不变
即:一是减法变加法
二是把减数变成相反数,被减数不变
注意:有理数的减法在转化为加法之前,被减 数与减数的位置不能
改变,因为对于减法来说,没有交换律
可编辑课件PPT
26
减法法则
可编辑课件PPT
9
相反数
1.1 第2课时 有理数的分类 (共18张PPT) 课件沪科版(2024)数学七年级上册
1.1 正数和负数
第1章 有理数
第2课时 有理数的分类
七年级上册数学(沪科版)
1. 理解有理数的概念,掌握有理数的分类方法,会将所给有理数归入相应的类别中.2. 经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.重点:理解有理数的概念,掌握有理数的分类方法.难点:会将所给有理数归入相应的类别中.
√
√
√
-4.9
0
-12
√ √
思考1:正整数,负整数可以写成分数的形式吗?可以的话将下列整数写成分数的形式.
2 = _____,
-3 = ____,
0 = ______.
思考2:分组探究小数和分数之间能否互化,所有的小数都能化成分数吗?
5.32 =
-150.25 =
有理数按定义分类:
√
√
×
×
3. 判 断:
4.填空:(1) 有理数中,是整数而不是正数的是___________; 是负数而不是分数的是__________;(2) 零是_________,还是______,但不是 , 也不是_____.
负整数和 0
负整数
有理数
整数
正数
负数
3. 整数中除了正整数和负整数,还有_____.
0
1. 有理数的分类
有理数
整数
分数
负整数
负分数
正分数
正整数
0
正有理数
负有理数
正分数
负分数
负整数
正整数
0
有理数
2. 注意 0 的特殊性,分类时不要遗漏 0.
2.下列各数:-2,5, ,0.63,0,7,-0.05,9, .
其中正数有____个,负数有____个,正分数有____个,负分数有____个,自然数有____个,整数有____个.
第1章 有理数
第2课时 有理数的分类
七年级上册数学(沪科版)
1. 理解有理数的概念,掌握有理数的分类方法,会将所给有理数归入相应的类别中.2. 经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.重点:理解有理数的概念,掌握有理数的分类方法.难点:会将所给有理数归入相应的类别中.
√
√
√
-4.9
0
-12
√ √
思考1:正整数,负整数可以写成分数的形式吗?可以的话将下列整数写成分数的形式.
2 = _____,
-3 = ____,
0 = ______.
思考2:分组探究小数和分数之间能否互化,所有的小数都能化成分数吗?
5.32 =
-150.25 =
有理数按定义分类:
√
√
×
×
3. 判 断:
4.填空:(1) 有理数中,是整数而不是正数的是___________; 是负数而不是分数的是__________;(2) 零是_________,还是______,但不是 , 也不是_____.
负整数和 0
负整数
有理数
整数
正数
负数
3. 整数中除了正整数和负整数,还有_____.
0
1. 有理数的分类
有理数
整数
分数
负整数
负分数
正分数
正整数
0
正有理数
负有理数
正分数
负分数
负整数
正整数
0
有理数
2. 注意 0 的特殊性,分类时不要遗漏 0.
2.下列各数:-2,5, ,0.63,0,7,-0.05,9, .
其中正数有____个,负数有____个,正分数有____个,负分数有____个,自然数有____个,整数有____个.
初中数学《有理数》课件PPT
知3-讲
3.易错警示: (1)0是有理数,也是整数,也是最小的自然数. (2)奇数、偶数也扩充到了负数,如-1,-3是负奇
数,-2,-4是负偶数. (3)整数也可以看作分母为1的分数. (4)有限小数与无限循环小数都可以化成分数,所以
是有理数. (5)无限不循环小数,比如π,0.131 131 113…不能
知2-练
知识点 3 数的分类
知3-讲
1.整数和分数的定义: (1)数的认知过程:
自然数 引入分数 非负有理数 引入负有理数 有理数. (2)整数和分数:
正整数、0、负整数统称整数. 正分数、负分数统称分数.
知3-讲
2.要点精析:几种常用的整数和分数名词的含义: (1)正整数:既是正数,又是整数的数;(2)负整数: 既是负数,又是整数的数;(3)正分数:既是正 数,又是分数的数;(4)负分数:既是负数,又是 分数的数;(5)非负整数:正整数和0;(6)非正整 数:0和负整数.
知1-讲
(来自《点拨》)
总结
知1-讲
(1)引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
(2)本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
(来自《点拨》)
知1-练
1 下列说法不正确的是( )
3
3 5
.
非负有理数:{ 0,25%,11, 22, 0.3, 2 3 };
7
5
整数: {
-2,0,11
};
自然数: {
0,11
};
分数: { -0.314,25%,22,-4 1 , 0.3, 2 3 };
《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2.有理数PPT课件(华师大版)
形似分数,实质上它不是分数.分数的分子、
2
分母应为整数(分母不为0);
找各类数时,都要注意“0” A.0是最小的偶数 B.-5是质数 C.-5是奇数 D.1是最小的奇数
总结
引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
3 已知下列各数:7,-9.25,- 9 ,-301, 4 ,
-3.5,0,2,5
1 2
10
,-7,1.25,-
7
27
,-3,- 3
3
4
.
把它们填入相应的大括号内.
正整数集合:{
…};
正分数集合:{
…} ;
负整数集合:{
…} ;
负分数集合:{
…} ;
正数集合:{
…} ;
负数集合:{
…}.
1. 有理数的分类:对有理数分类时,要注意分类标 准,做到不重复、不遗漏;若按集合分类,则每 个集合最后要加上“…”.
时,除写上题中给定的有限个数之外,必须加上省 略号.
拓展:两个集合的交叉部分即为两个集合的公共部 分,由于两个集合不是按同一标准分类,因此必然 是具有两个集合共同特征的数,如:正数和分数集 合的交叉部分为正分数.
例4 把下列各数填入表示它所在的数集的圈里:
-18,22 ,3.1416,0, 2012,- 3,-0.142 857,
总结
非负有理数一定是有理数,它包含正有理数和0; 不要误认为是除负有理数以外的任何数;
非正整数一定是整数; 找各类数时,要时刻考虑它是否包括“0”.
2
分母应为整数(分母不为0);
找各类数时,都要注意“0” A.0是最小的偶数 B.-5是质数 C.-5是奇数 D.1是最小的奇数
总结
引入负数后,奇数、偶数的范围扩充了负奇数、 负偶数;质数、合数的范围没有变化;
本例中,因为偶数含负偶数,所以A是错误的; 质数没有负质数,所以B也是错误的;奇数含负 奇数,所以D是错误的.因此选C.
3 已知下列各数:7,-9.25,- 9 ,-301, 4 ,
-3.5,0,2,5
1 2
10
,-7,1.25,-
7
27
,-3,- 3
3
4
.
把它们填入相应的大括号内.
正整数集合:{
…};
正分数集合:{
…} ;
负整数集合:{
…} ;
负分数集合:{
…} ;
正数集合:{
…} ;
负数集合:{
…}.
1. 有理数的分类:对有理数分类时,要注意分类标 准,做到不重复、不遗漏;若按集合分类,则每 个集合最后要加上“…”.
时,除写上题中给定的有限个数之外,必须加上省 略号.
拓展:两个集合的交叉部分即为两个集合的公共部 分,由于两个集合不是按同一标准分类,因此必然 是具有两个集合共同特征的数,如:正数和分数集 合的交叉部分为正分数.
例4 把下列各数填入表示它所在的数集的圈里:
-18,22 ,3.1416,0, 2012,- 3,-0.142 857,
总结
非负有理数一定是有理数,它包含正有理数和0; 不要误认为是除负有理数以外的任何数;
非正整数一定是整数; 找各类数时,要时刻考虑它是否包括“0”.
七年级数学《有理数》图文详解PPT
知3-讲
分析:对数集A中的每一个数应逐个分析.如-2即 不属于B,也不属于C,所以应写在圆A内, 但不在圆B和圆C中,-4同是属于三个数集. 应写在三个数集的公共区域内;-8属于数集 A和数集C,应写在圆A和C的公共区域内,但 不在圆B内,其它数的写法以此类推.
解:如图所示:
总结
知3-讲
本题考查数集的表示方法,注意渗透元素与 集合,集合与集合的关系知识.
(2)通常把正数和0统称为非负数,负数和0统称为非正 数,正整数和0统称为非负整数(也叫做自然数),负 整数和0统称为非正整数.
(3)在对有理数进行分类时,要严格按照同一分类标准, 做 到不重复、不遗漏.
知2-练
1 把下列各数分别填入相应的大括号内.
5,-3,3 ,-0.373 737…,3.14,0,9 2 ,- 6 .
小林说“以大堤为基准,记为0米,则芳芳所在的位 置高为-20米,徐伟所在的位置高为+58米.”
徐伟说:“以铁塔顶为基准,记为0米,则芳芳所在 的位置高为-58米,小林所在的位置高为-38米.”
芳芳说:“徐伟的位置比我高58米.” 他们说的数有一个统一的名称吗?
知识点 1 有理数及相关概念
知1-讲
正数中的“+”可以省略不写,如+1.8可以写成1.8,
知3-练
3 把下列各数分别填入相应的大括号内.
-100,1,8
2 3
,6,0
,+3 1,-2.25, 4
- 10%, 3 ,- 18, 2019 ,- 0.01 .
100 正数:{1, 6,+3 1
4
3 ,100 , 2019, …};
负分数:{ 8 2 ,-2.25, -10%,- 0.01 ,…};
苏科版七年级上册第2章有理数课件
本章总结提升
【归纳总结】科学记数法的表示情势为a×10n,其中1≤|a| <10,n为正整数.确定n的值时,要看把原数变成a时,小 数点移动了多少位,n的绝对值与小数点移动的位数相 同.用科学记数法表示的数,原数是多少,只看10的指数n 是几,小数点向右移动几位即可.
本章总结提升
例7、有理数a,b,c在数轴上对应点如图所示,化简 b a a c c b
有理数
本章总结提升
知识框架
本章总结提升
整合提升
问题1 有理数的概念及分类
引入负数后,数的范围扩大到了有理数,你能用图表示有理数 的分类吗?在分类时应该注意什么?
本章总结提升
例 1 把下列各数填在相应的大括号内.
15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.
正数集合:{
本章总结提升
[解析] 方法一:根据有理数比较大小的法则进行比较即可. ∵a>0,b<0,且|b|>|a|,∴-b>a>0,b<-a<0,∴b<-a< a<-b.故选B. 方法二:利用数轴比较大小. 由a>0,b<0可知a为正数,b为负数,a,b所对应的点分别在数轴上 原点的右边和左边,而|b|>|a|,所以表示数a的点到原点的距离比 表示数b的点到原点的距离近,再根据相反数的意义可在数轴上表示a, -a,b,-b为: 故a,-a,b,-b按从小到大的顺序排列为b<-a<a<-b.故选B.
…};
负数集合:{
…};
正整数集合:{
…};
负整数集合:{
…};
有理数集合:{
…}.
本章总结提升
【归纳总结】有理数的分类方法有两种: 一是逐个考察给出的数,看它是什么数,即是否属于某一集 合,如属于,就可以填入相应的大括号内;二是从给出的数 中找出属于这个集合的数,逐个填入相应的大括号内,如在 填负整数集合时,只要从给出的数中找出所有的负整数,并 填入相应的大括号内即可.
有理数ppt课件
分析:零既不是正数,也不是负数;正整数、零、负整数统称为整数;非负数是正数和零,反之,正数和零统称为非负数;能被2整除的数是偶数. 答案:(1)× (2)√ (3)√(4)×(5)√(6)×
链接中考
1.(2011.贵阳)如果“盈利10‰”记为+10‰,那么“亏损6‰”记为( ) A. -16‰ B. -6‰ C.+6‰ D.+4‰ 2.(2011.湖北宜昌)如果用+0.02克表示一个乒乓球质量超出标准质量0.02克,那么一个乒乓球质量低于标准质量0.02克记作( ) A. +0.02克 B. -0.02克 C. 0 克 D.+0.04克
支出6元
低于海平面789米
增加80千克
公元前20年
—15
— 4
向东
— 6 %
4
— 2
练习2
2、若将28计为0,则可以将27计为-1,试猜想若将27计 为0,28应计为 。
1、如果全班某次数学测试的平均成绩为83分,某同学考 了85分,记作+2分,得90分应记作______,得80分应 记作______ 。
珠穆朗玛峰的海拔高度为8 844.43 m
吐鲁番盆地的海拔高度为―155 m
上面图中的正数和负数的含义是什么?你能再举一些用正数、负数表示数量的实际例子吗?
思考
参考答案:左图中的正负数表示,A地高于海平面4 600米,B地低于海平面100米. 右图中的正负数分别表示,存入 2 300元,支出 800元.
地位和作用:
本章是九年制义务教育第三学段“数与代数”的起始内容,是初等数学的重要基础.
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础.
链接中考
1.(2011.贵阳)如果“盈利10‰”记为+10‰,那么“亏损6‰”记为( ) A. -16‰ B. -6‰ C.+6‰ D.+4‰ 2.(2011.湖北宜昌)如果用+0.02克表示一个乒乓球质量超出标准质量0.02克,那么一个乒乓球质量低于标准质量0.02克记作( ) A. +0.02克 B. -0.02克 C. 0 克 D.+0.04克
支出6元
低于海平面789米
增加80千克
公元前20年
—15
— 4
向东
— 6 %
4
— 2
练习2
2、若将28计为0,则可以将27计为-1,试猜想若将27计 为0,28应计为 。
1、如果全班某次数学测试的平均成绩为83分,某同学考 了85分,记作+2分,得90分应记作______,得80分应 记作______ 。
珠穆朗玛峰的海拔高度为8 844.43 m
吐鲁番盆地的海拔高度为―155 m
上面图中的正数和负数的含义是什么?你能再举一些用正数、负数表示数量的实际例子吗?
思考
参考答案:左图中的正负数表示,A地高于海平面4 600米,B地低于海平面100米. 右图中的正负数分别表示,存入 2 300元,支出 800元.
地位和作用:
本章是九年制义务教育第三学段“数与代数”的起始内容,是初等数学的重要基础.
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础.
《有理数》PPT优秀课件
C
分析:点A可能向左移,也可能向右移,所以需分情况讨论.
C
1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点
2 a,b,c在数轴上的位置如图所示,下列说法正确的是( ) A.a,b,c都表示正数 B.a,b,c都表示负数 C.a,b表示正数,c表示负数 D.a,b表示负数,c表示正数
(1)
(2)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向(3) 选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,..;从原点向左,用类似方法依次表示-1,-2,-3,….
(1)
(2)
(3)
(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻 度均匀.
画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.
画数轴的步骤:(1) 画直线,取原点:在直线上任取一个适当的点为原点.
(1)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向.
C
右
6
左
8
14
-10或6
7.如图,写出数轴上点A,B,C,D,E表示的数.
解:点A,B,C,D,E表示的数分别是 0,-2,1,2.5,-3.
分析:点A可能向左移,也可能向右移,所以需分情况讨论.
C
1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点
2 a,b,c在数轴上的位置如图所示,下列说法正确的是( ) A.a,b,c都表示正数 B.a,b,c都表示负数 C.a,b表示正数,c表示负数 D.a,b表示负数,c表示正数
(1)
(2)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向(3) 选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,..;从原点向左,用类似方法依次表示-1,-2,-3,….
(1)
(2)
(3)
(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻 度均匀.
画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.
画数轴的步骤:(1) 画直线,取原点:在直线上任取一个适当的点为原点.
(1)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向.
C
右
6
左
8
14
-10或6
7.如图,写出数轴上点A,B,C,D,E表示的数.
解:点A,B,C,D,E表示的数分别是 0,-2,1,2.5,-3.
人教版数学七年级上册1.2.1有理数分类-课件
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/142021/8/142021/8/142021/8/148/14/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月14日星期六2021/8/142021/8/142021/8/14 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/142021/8/142021/8/148/14/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/142021/8/14August 14, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/142021/8/142021/8/142021/8/14
33, 4
正分数集合
1
2
3
负分数集合
4
5
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/142021/8/14Saturday, August 14, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/142021/8/142021/8/148/14/2021 8:31:39 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/142021/8/142021/8/14Aug-2114-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/142021/8/142021/8/14Saturday, August 14, 2021
33, 4
正分数集合
1
2
3
负分数集合
4
5
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/142021/8/14Saturday, August 14, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/8/142021/8/142021/8/148/14/2021 8:31:39 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/142021/8/142021/8/14Aug-2114-Aug-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/142021/8/142021/8/14Saturday, August 14, 2021
七年级上册1.2.1有理数(共20张PPT)
有理数
正数
整数
(2)零是_________,还是______,但不是_____,
也不是_____.
负数
拓展练习
1.把下列各数填入相应的集合的括号内.
- ,1,-1.5, ,0, ,-8,-7,0.38,6,-20%
1,0,6
整数集
-8,
-7,
-
,
-1.5 ,
-20%
负数集
, ,0.38
课堂总结
正整数
整数
有理数
分数
正整数
零
负整数
正分数
负分数
正有理数
正分数
零
有理数
负有理数
负整数
负分数
D.4个
新知演练
【变式】1.下列说法中,正确的是( B )
A.正整数、负整数统称为整数
B.正分数、负分数统称为分数
C.零既可以是正整数,也可以是负整数
D.一个有理数不是正数就是负数
新知演练
【变式】2.填空:
负整数和0
(1)有理数中,是整数而不是正数的是___________;
负整数
是负数而不是分数的是__________.
不能
“不能”)算做分数;
2.无限不循环小数不是有理数,如π;(无理数)
0
3.整数中除了正整数和负整数,还有___.
有理数还有其他
的分类方法吗?
新知讲解
根据前面的学习,你能按性质符号对有理数进行分类吗?
正有理数
正整数
正分数
零
有理数
负有理数
负整数
负分数
注意 :
有理数的概念ppt课件
11 1
1
1
1
1
(2)想一想小数与分数有什么关系?
有限小数,无限循环小数可以化成分数, 无限不循环小数不能化成分数
这些能化为分 数的小数,都 看作为分数
小结:可以写成分数形式的数称为有理数,其中,可以写成正分数形式的数为 正有理数,可以写成负分数形式的数为负有理数.
探究二 有理数的分类
思考并回答下列问题: (1)0是整数吗?是正数吗?是有理数吗?
0是整数,不是正数,是有理数 (2)-2是整数吗?是正数吗?是有理数吗?
-2是整数,不是正数,是有理数
(3)自然数就是整数吗?是正数吗?是有理数吗? 自然数是整数,自然数中的0不是正数,自然数是有理数
(4)“正数”与“整数”有什么不同?与它们相对的是什么数?
正数是大于0的数,如1,2.3等,整数是形如-2,0,2等这样 的数与正数相对的是负数,与整数相对的是分数 (5)有理数除正数外还有什么数,你能根据符号(正,负)对 有理数进行分类吗?
情壹 境 导 入
目录
新贰 知 初 探
当叁 堂 达 标
课肆 堂 小 结
壹 情境导入
壹 情境导入
下面是某旅行社对冬季某天天气的预报,方便大家出行: 某地的最高气温为6℃,最低气温达到-10℃,平均气温是0℃,而同一 天北京的气温为-3℃~7℃. 问题1:上面的这段文字中出现了什么数? 解:6,7是正数;-10,-3是负数;0既不是正数也不是负数
2.请观察下列一组数.
1,3,5.7,6,-7,-9,-10,0, 3 1 ,
2
1 3
,
3 5
,-7.4,-15.2.
问题:以上各数,哪些是小学学过的数?它们可以分为哪几类?哪些是我们
北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
人教版(2024)数学七年级上册1.2 有理数及其大小比较 第1课时《有理数的概念》PPT教学课件
-91,125,-183,0.1, -5.32,2.333,-297
整数
分数
1. 你能对有理数进行分类吗?分类的标准是什么?
能,根据整数、分数分,根据正负分 2.游戏:请10名同学每人扮演一个不同的有理数,各自寻找
自己的朋友.
小组展示
越展越优秀
我提问 我回答 我补充 我质疑
提疑惑:你有什么疑惑?
15
,
2 15
,
0.1
,
123
,
2.333,200%
-91,-5,-183, -5.32,-80,-297 Nhomakorabea正数
负数
2.把下列有理数分别填入所属的圆圈内:
15,-91,-5,
2 15
,
-183,0.1,-5.32,-80,123,
2.333,0,-297 ,200%.
15,-5,-80, 123,0,200%
人教版(2024)数学七年级上册
有理数的概念
1.2 有理数及其大小比较第1课时
汇报人:XXX 时间:2024.09
《目录》
1 新课导入 2 新知讲解
3 课堂练习 4 拓展延伸
《01》
新课导入
重点
难点
1. 通过阅读课本理解有理数的概念,理解并 掌握有理数的两种分类方法,了解0在有 理数分类中的作用,能把给出的有理数按 要求分类,初步感受分类讨论的数学思 想.
1.整数:正整数、0、负整数统称为整数. 2.分数:正分数、负分数统称为分数. 3.有理数:可以写成分数形式的数称为有理数.
注意:(1)任何有理数都可以写成
n m
(m,n是整数,其中
m≠0)的形式.
(2)所有的分数都可以化为有限小数或无限循环小数,反
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分负正数分分数数
正整数
零
负整数
正分数 负分数
1
2.
3
4
57
有理数的分类:
正整数
有理数
整数 分数
0 负整数 正分数 负分数
注意:我们把有限小数,无限循环小数和百分数都看
作分数,但不是所有的小数都是分数。(圆周率 是
一个无限不循环小数,它就不能化成分数)
.
8
活动3
探究有理数的分类(二)
ቤተ መጻሕፍቲ ባይዱ
合作 探究
1.在左图的有理数中, 正整数有:________; 负分数有:__________________;
进步往往从归纳反思开始!
.
15
整数有:__________________;
3,3.25,7, 2,23,0, 分数有:__________________ .
75
1,21 ,3.14,10,0 2
2.丹丹在做第1题时,发现了新的分类 方法,她认为:带“+”的数分为一类,带
2.5,6,1.5,9. “-”的数分为一类,数的前面没有符 11 号的作为一类.你认为她的分类方法对
A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm
E.+0.15mm
你认为应该选哪一个乒乓球用于比赛呢?为什么?
.
3
活动1
同桌 探究 122.5,
110, 182.5,
12.91, 12.96, 0, -52 1.1, +75, 305, 18, -7.5, 0.333......
.
4
活动2
正整数: +10,18,29,+75,110,305,1,2,3,… 零: 0
负整数: -52, -67, -1,-2,…
正分数: 1.1, 12.91,
5
12.96, 182.5,
,
3
3,
17
,
2 43
负分数:-7.5,
5, 2
3.25, 3 3 , 5.35, 17 ,
4
3
正整数集合
2
7
注意:1,像 300%这种可以先化简成整数的数是整数不是分数;
2,非负整数集合包括正整数和0,也称为自然数集合.
.
14
小结:
1,什么是有理数? 2,有理数的分类:
(1)按整数与分数划分; (2)按性质划分;
3,如何区分整数和分数? 4,如何理解非正数和非负数? 5,整数和分数,正数和负数之间有什么关系?
2,粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮食重量 如下:52千克,49千克,49.8千克,如果超重部分用正数表示, 请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数;
3,国际乒联在正式比赛中采用打球,对大球的直径有严格的
标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数
记为正数,不足的记为负数,测量结果如下:
1.在以上各数中,哪些是在小学里学过的数?它们可以分为哪几类?
2.在小学里学过的数中,有没有哪类数在上面没有出现?请举例说明. 3.将上面的小数化为分数,说明有限小数、无限循环小数都可以化
作什么数?
4.由前面的结论,小学里学的数可以分为哪几类?
5.引入负数后,整数除了小学学的整数外,还包含其它的整数吗? 分数除了小学学的分数外,还包含其它的分数吗?
吗?若不对,你发现什么新的分类方法
吗?
.
9
按性质分类:
正有理数
有理数
0
负有理数
正整数
正数和正有理数 有什么区别呢?
正分数
负整数 负分数
注意:正数和正有 理数是不同的,例
如: 就是正数,
但不是正有理数;
.
10
有理数分类的几点注意:
1,如
15,200%, 69
3
3
能约分成整数的数_不__能__(填“能”
15, 1 , 5 , 2 , 13 ,
9
15 9
0.1, 5.32, 80 , 123, 2.33.
正分数集合
负整数集合
正整数集合
负分数集合
以上四个集合能组成有理数集合吗?
1
2.
3
4
5 12
随堂练习
1:(1)既是分数又是负数的数是__负__分__数_; (2)既是非负数又是整数的数是__非__负__整_;数 (3)非负整数又称为_自__然__数___; (4)非负数包括____正__数__和____0___; (5)非正数包括____负__数__和____0___;
负整数集合 正分数集合
负分数集合 零:
.
5
有理数的定义:
正整数、零、负整数统称为整数。 正分数、负分数统称为分数。
整数和分数统称为有理数。
.
6
活动2
探究有理数的分类(一)
由刚才的演示可知: 1.有理数可分为哪两类数? 2.整数可分为哪几类? 3.分数可分为哪几类?
正负整整零整数数数
有有分整理理数数数
};
2
7
负数集合:{ 3,0.6,50.6 ...
};
分数集合:{ 1,2.1,2 0.6,5 0.6 ,22 ...
};
2
7
整数集合:{ 3,0,4,30% 0 ...
};
非负数集合:{
1,0,4,,2.1,2 3
22 0% 0 ,...
};
2
7
有理数集合:{ 3 , 1 ,0 ,4 , 2 .1, 2 0 .6,3 5% 0 0 0 .6 ,,2.2 ..};
沪科版 七年级数学 上册
有理数的分类
.
1
学习目标
1 理解什么是有理数 2 有理数的两种分类 3 整数、分数、与正负数之间的联系
学习重点
有理数的两种分类
学习难点
整数、分数、与正负数之间的联系
.
2
温故知新:
1,如果自行车车条的长度比标准长度长2mm,记作+2mm,那 么比标准长度短1.5mm,应记为__-1_._5mm
或“不能”)算做分数;
2,两个整数的比(如
2 3
,
1 2
等)、有限小数(如0.2,
-3.14等)、无限循环小数(如
0.3,1等.4 )7都是
分数;但无限不循环小数(如 等)不是分数;
3,无限不循环小数不是有理数;(无理数)
4,整数中除了正整数和负整数,还有__0___.
.
11
活动4
练一练
1.把下列各数填入它所属于的集合的圈内:
2 :下图中的两个圆分别表示正数集合和分数集 合,请你在每个圆中及它们重叠的部分各填入3 个数;
正数集. 合 分数集合
13
3:把下列各数填在相应的集合中:
3 , 1 ,0 ,4 , , 2 .1, 2 0 .6, 5 3% 0 0 0 .6 ,,22
2
7
正数集合:{ 1,4,,2.1,2 30% 02,2 ...