【解析版】周口市扶沟县2018-2019年八年级下期中数学试卷

合集下载

2018-2019学年人教版八年级下册期中考试数学试题(含答案)

2018-2019学年人教版八年级下册期中考试数学试题(含答案)

2018-2019学年八年级(下)期中数学试卷一、选择题(每题只有一个正确答案,每小题3分,共45分)1.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,142.下列式子为最简二次根式的是()A.B.C.D.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=69.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM 的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠212.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.2513.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是.17.如图,数轴上点A表示的实数是.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.19.已知a,b是正整数,若+是不大于2的整数,则满足条件的有序数对(a,b)为.20.如图,正方形ABCD的对角线长为8,E为AB上一点,若EF⊥AC于点F,EG⊥BD于点G,则EF+EG=.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣×22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD是直角吗?说明理由.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC 于F,试说明EC=EF=BF.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每小题3分,共45分)1.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长之比为3:4:5C.三边长分别为1,,D.三边长分别为5,12,14【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【解答】解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;B、三边符合勾股定理的逆定理,所以其是直角三角形;C、12+()2=()2,符合勾股定理的逆定理,所以是直角三角形;D、52+122≠142,不符合勾股定理的逆定理,所以不是直角三角形;故选:D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.下列式子为最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直【分析】根据正方形的性质和菱形的性质,容易得出结论.【解答】解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.【点评】本题考查了正方形的性质、菱形的性质;熟练掌握正方形和菱形的性质是解决问题的关键.4.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.5.已知矩形ABCD,AB=2BC,在CD上取点E,使AE=EB,那么∠EBC等于()A.15°B.30°C.45°D.60°【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,推出AE=2AD,得出∠DEA =30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB.∵AB=AE,AB=2CB,∴AE=2AD.∴∠DEA=30°.∵DC∥AB,∴∠DEA=∠EAB=30°.∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°.∵∠ABC=90°,∴∠EBC=90°﹣75°=15°.故选:A.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数.6.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.7.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.8.下列计算中,正确的是()A.5=B.÷=(a>0,b>0)C.×3=D.×=6【分析】根据二次根式的乘法法则:•=(a≥0,b≥0),二次根式的除法法则:=(a≥0,b>0)进行计算即可.【解答】解:A、5=,故原题计算错误;B、==(a>0,b>0),故原题计算正确;C、×3=3=,故原题计算错误;D、×=×16=24,故原题计算错误;故选:B.【点评】此题主要考查了二次根式的乘除法,关键是掌握计算法则.9.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.10.如图,设M是▱ABCD一边上任意一点,设△AMD的面积为S1,△BMC的面积为S2,△CDM 的面积为S,则()A.S=S1+S2B.S>S1+S2C.S<S1+S2D.不能确定【分析】根据平行四边形的性质得到AB=DC,而△CMB的面积为S=CD•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,这样得到S1+S2=MA•高+BM•高=(MA+BM)•高=AB•高=S,由此则可以推出S,S1,S2的大小关系.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,∵△CMB的面积为S=DC•高,△ADM的面积为S1=MA•高,△CBM的面积为S2=BM•高,而它们的高都是等于平行四边形的高,∴S1+S2=AD•高+BM•高=(MA+BM)•高=AB•高=CD•高=S,则S,S1,S2的大小关系是S=S1+S2.故选:A.【点评】本题考查平行四边形的性质对边相等以及三角形的面积计算公式,分别表示出图形面积是解题关键.11.如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.12.已知n是一个正整数,是整数,则n的最小值是()A.3B.5C.15D.25【分析】先将中能开方的因数开方,然后再判断n的最小正整数值.【解答】解:∵=3,若是整数,则也是整数;∴n的最小正整数值是15;故选:C.【点评】解答此题的关键是能够正确的对进行开方化简.13.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,=AC•BD=AB•DH,∴S菱形ABCD∴DH==4.8.故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是记住菱形的性质,学会利用菱形的面积的两种求法,构建方程解决问题,属于中考常考题型.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE =BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.【点评】本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.15.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【解答】解:设ED=x,则AE=6﹣x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6﹣x)2,解得:x=3.75,∴ED=3.75.故选:B.【点评】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.二、填空题(每小题3分,共15分)16.命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形.【分析】根据互逆命题的概念解答.【解答】解:命题“菱形的四条边都相等”的逆命题是四条边都相等的四边形是菱形,故答案为:四条边都相等的四边形是菱形.【点评】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17.如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.18.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=5.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得答案.【解答】解:由直角三角形的性质,得CE=AB=5,故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,利用直角三角形的性质是解题关键.19.已知a ,b 是正整数,若+是不大于2的整数,则满足条件的有序数对(a ,b )为 (7,10)或(28,40) .【分析】根据二次根式的性质和已知得出即可.【解答】解:∵ +是整数, ∴a =7,b =10或a =28,b =40,因为当a =7,b =10时,原式=2是整数;当a =28,b =40时,原式=1是整数;即满足条件的有序数对(a ,b )为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.20.如图,正方形ABCD 的对角线长为8,E 为AB 上一点,若EF ⊥AC 于点F ,EG ⊥BD 于点G ,则EF +EG = 4 .【分析】连接EO ,可得S △ABO =S △AEO +S △BEO ,再把AO =BO =4代入可求EF +EG 的值.【解答】解:连接EO∵ABCD 为正方形∴AC ⊥BD ,AO =BO =CO =DO 且AC =BD =8∴AO =CO =BO =4∵S △ABO =S △AEO +S △BEO∴+∴EF +EG =4故答案为4.【点评】本题考查了正方形的性质,本题关键是运用面积法解决问题.三、解答题(本大题共8小题,共60分)21.(6分)计算:(1)﹣5+(2)÷﹣× 【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=4﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.(5分)如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD 是直角吗?说明理由.【分析】连接BD ,根据勾股定理可求出BC 、CD 、BD 的值,再由BC 2+CD 2=BD 2利用勾股定理的逆定理,即可证出∠BCD =90°.【解答】解:∠BCD是直角,理由如下:连接BD,如图所示.BC==2,CD==,BD==5.∵BC2+CD2=25=BD2,∴∠BCD=90°.【点评】本题考查了勾股定理及勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.23.(6分)如图,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EF⊥AC,交BC 于F,试说明EC=EF=BF.【分析】通过△AEF≌△ABF,可以求证FE=FB,然后证得△CEF为等腰直角三角形即可.【解答】解:在Rt△AEF和Rt△ABF中,,∴Rt△AEF≌Rt△ABF(HL),∴FE=FB.∵正方形ABCD,∴∠ACB=∠BCD=45°,在Rt△CEF中,∵∠ACB=45°,∴∠CFE=45°,∴∠ACB=∠CFE,∴EC=EF,∴FB=EC=EF.【点评】本题考查了全等三角形的证明,考查了等腰直角三角形的判定,本题求证Rt△AEF≌Rt △ABF是解本题的关键.24.(8分)已知x=+1,y=﹣1,求下列各代数式的值:(1)x2y﹣xy2;(2)x2﹣xy+y2.【分析】(1)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题;(2)根据x、y的值可以求得xy和x﹣y的值,从而可以解答本题.【解答】解:(1)∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2y﹣xy2=xy(x﹣y)=1×2=2;(2))∵x=+1,y=﹣1,∴xy=2﹣1=1,x﹣y=2,∴x2﹣xy+y2=(x﹣y)2+xy=22+1=4+1=5.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.25.(8分)如图,在四边形ABCD中,AB∥CD,AD∥BC,AN=CM.(1)求证:BN=DM;(2)若BC=3,CD=2,∠B=50°,求∠BCD、∠D的度数及四边形ABCD的周长.【分析】(1)首先判断四边形ABCD和四边形ANMD为平行四边形,然后由“平行四边形的对边相等”推知AB=CD,AN=CM,由等式的性质证得结论;(2)根据平行四边形的对边平行,平行线的性质以及平行四边形的对角相等进行解答.【解答】(1)证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD.又∵AN=CM,∴四边形ANMD为平行四边形,∴AN=CM,∴AB﹣AN=CD﹣CM,即BN=DM;(2)∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=50°,∴∠BCD=180°﹣50°=130°.由(1)知,四边形ABCD是平行四边形,∴∠D=∠B=50°,AB=CD,AD=BC.∵BC=3,CD=2,∴四边形ABCD的周长=2(BC+CD)=2×(3+2)=10.【点评】考查了平行四边形的性质,解题的关键是平行四边形的判定,与平行四边形的性质的综合应用.26.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,某一时刻,AC=18km,且OA=OC.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h和30km/h,经过0.2h,轮船甲行驶至B处,轮船乙行驶至D处,求此时B处距离D处多远?【分析】在Rt△OBD中,求出OB,OD,再利用勾股定理即可解决问题;【解答】解:在Rt△AOC中,∵OA=OC,AC=18km,∴OA=OC=18(km),∵AB=0.2×40=8(km),CD=0.2×30=6(km),∴OB=10(km),OD=24(km),在Rt△OBD中,BD==26(km).答:此时B处距离D处26km远.【点评】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF 平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.28.(10分)△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)证明•:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.【点评】本题考查了矩形判定,平行四边形判定,平行线性质,角平分线定义的应用,主要考查学生的推理能力.。

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题( 满分 120 分,考试用时 120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题,36 分;第Ⅱ卷为非选择题,84 分;共 120分。

2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。

3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。

4. 第Ⅱ卷必需用0.5 毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。

5.在草稿纸、试卷上答题均无效。

第Ⅰ卷(选择题36 分)一、选择题(本大题共12 小题,每小题 3 分,满分 36 分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形().A. 矩形 B .菱形C.正方形D.等腰梯形2.在□ABCD 中,∠ A: ∠B=7: 2,则∠ C、∠ D 的度数分别为().A . 70°和 20°B . 280 °和 80°C. 140 °和 40°D. 105 °和 30°3.函数y=2x5的图象经过().﹣A .第一、三、四象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、二、三象限.4.1112x 2,2x-1 图象上的两个点,且x 1x 2点 P (x,y),点 P (y )是一次函数 y =4< 0<,则 y 1与 y 2的大小关系是().A .y1>y2B .y1>y2> 0C.y1<y2 D .y1=y25 . 在一次射击训练中,甲、乙两人各射击10 次,两人10 次射击成绩的平均数均是9.1 环,方差分别是S2=1.2, S2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是().A .甲比乙 定;B .乙比甲 定 ;C .甲和乙一 定;D .甲、乙 定性没法 比.6. 一次函数 y= 2x+4 的 象是由 y= 2x-2 的 象平移得到的, 移 方法 ( ) .A .向右平移 4 个 位;B .向左平移 4 个 位;C .向上平移 6 个 位;D .向下平移 6 个 位.7. 次 接矩形的各 中点,所得的四 形一定是 () .A .正方形B .菱形C .矩形D .无法判断8.若 数 a 、 b 、 c 足 a + b + c = 0,且 a < b < c , 函数 y =ax + c 的 象可能是 ( ) .9.如 , D 、 E 、 F 分 是△ ABC 各 的中点, AH 是高,如果 ED =5cm ,那么 HF 的 ( ).A . 6cmB .5cmC . 4cmD .不能确定 10. 已知菱形的周 40,一条 角12, 个菱形的面( ) .9A . 24B . 47C . 48D . 9611. 如 ,直 y=kx+b 点 A ( 3, 1)和点 B ( 6,0), 不等 式 0< kx+b < 1x 的解集 ().3A . x < 0B . 0<x < 3C . x > 6D . 3< x <61112.如 ,矩形 ABCD 的面 20cm 2, 角 交于点 O ,以 AB 、 AO 做平行四 形AOC 1B , 角 交于点 O 1,以 AB 、 AO 1做 平 行 四 形 AO 1C 2B ⋯⋯ 依 此 推 , 平 行 四 形AO 2019C 2020B 的面 () cm 2.5555A .22016B.2 2017C.22018D.2 2019第Ⅱ卷(非选择题84 分)二、填空题(本大题共 4 小题;每小题 4 分,共 16 分.把答案写在题中横线上)13. 一组数据35106x的众数是5,则这组数据的中位数是.,,,,14. 若已知方程组2x y bx1的解是y,则直线 y=- 2x+ b 与直线 y= x-a 的交点坐标x y a3是 __________.15. 已知直线y3x3与x轴、y轴分别交于点A B,在坐标轴上找点P,使△ABP为、等腰三角形,则点P 的个数为个.16.如图,在△ABC 中, AB=6, AC=8, BC=10 , P 为边 BC上一动点 (且点 P 不与点 B、 C 重合 ), PE ⊥AB 于 E, PF⊥AC于 F .则 EF 的最小值为 _________.16 题图三、解答题 : 本大题共 6 小题,满分68 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分 10 分)已知 y k 3 x k28是关于x的正比例函数,(1)写出 y 与 x 之间的函数解析式;(2)求当 x= - 4 时, y 的值.18.(本题满分 8 分)在□ABCD 中,点 E、F 分别在 BC、AD 上,且 BE = DF .求证:四边形 AECF 是平行四边形.19.(本题满分12 分)某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.( 1)根据图示填空:19 题图项目平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20.(本题满分 12 分)如图,直线 l1的解析式为y3x 3 ,且 l1与 x 轴交于点 D,直线l2经过点 A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ ADC 的面积;(3)在直线l2上存在异于点 C 的另一点 P,使得△ADC 与△ ADP 的面积相等,请直接写出点P的坐标...y yl1l2O D 3x 3A( 4,0)B2C20题图21.(本题满分 12 分)材料阅读:小明偶然发现线段 AB 的端点 A 的坐标为( 1 , 2),端点 B 的坐标为( 3 ,4),则线段AB 中点的坐标为( 2 , 3),通过进一步的探究发现在平面直角坐标系中,以任意两点P( x1,y1)、 Q(x2, y2)为端点的线段中点坐标为知识运用:如图 , 矩形 ONEF 的对角线相交于点分别在 x 轴和 y 轴上,O 为坐标原点,点3) ,则点 M 的坐标为 _________.x1x2,y1y2.22M, ON、OFE 的坐标为 (4,能力拓展:21 题图在直角坐标系中,有A(-1, 2)、B(3,1)、 C(1 , 4)三点,另有一点 D 与点 A、 B、 C 构成平行四边形的顶点,求点D的坐标 .22.(本题满分14 分)现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所....在直线分别与直线BC、 CD 交于点 M、N.( 1)如图 1,若点 O 与点 A 重合,则OM 与 ON 的数量关系是 ___________;( 2)如图 2,若点 O 在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;( 3)如图 3,若点 O 在正方形的内部(含边界),当OM=ON 时,请探究点 O 在移动过程中可形成什么图形?( 4)如图 4 是点 O 在正方形外部的一种情况.当OM =ON 时,请你就 “点 O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).NA(O)D ADA DODOANO NMN MM BC BCBC图 1图 2图 3BMC图 422 题图2018-2019 学年度下学期八年期中量数学试题评分标准(分 120分,考用 120 分)一、 ( 本大共12 小,每小 3 分,分36 分.在每小所出的四个中,只有一是符合目要求的,将正确的字母代号填涂在答卡相位置上)1~5 BCACA;6~10 CBABD ;11~12 DC.二、填空 ( 本大共 4 小,每小 4 分,分16 分.不需写出解答程,将答案直接写在答卡相位置上.)13. 5 ;14.(-1,3);15.6个;16. 4.8.三、解答( 本大共6 小,分68 分.在答卡指定区域内作答,解答写出必要的文字明、明程或演算步.)17.(本分10 分)解:( 1)∵y是x的正比例函数.∴ k 2-8=1,且k-3≠0,⋯⋯⋯⋯⋯⋯⋯ 3 分∴解得 k=-3∴ y=-6 x.⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)当 x=-4 , y=-6 ×( -4) =24 .⋯⋯⋯⋯⋯10分18.(本分8 分)明 :∵ ABCD是平行四形,∴ AD = BC ,AD∥ BC.⋯⋯⋯⋯⋯⋯⋯ 2 分又∵ BE = DF ,∴ AD-DF = BC- BE,即AF = CE,注意到AF∥ CE,⋯⋯⋯⋯⋯⋯⋯ 6 分因此四形AECF 是平行四形.⋯⋯⋯⋯⋯⋯⋯8 分或通明AE = CF (由△ ABE≌△ CDF )而得或其他方法也可。

2018-2019学年八年级数学下册期中考试试卷及答案

2018-2019学年八年级数学下册期中考试试卷及答案

2019年春学期期中考试八年级数学试卷 第 1 页 共 3 页密 封 线学校 班级 姓名 学号2019年春学期期中考试试卷八年级数学(满分:150分 时间:120分钟)一、相信你的选择。

(每小题3分,共30分)1.是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是( )2.已知x y >,则下列不等式不成立的是 ( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+3.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120° D .150°4.一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A a+b;B b a +1;C 2b a +;D ba 11+5.如图,数轴上所表示关于x 的不等式组的解集是( )A .x ≥2B .x >2C .x >﹣1D .﹣1<x ≤26.下列多项式中不能用公式分解的是( )A. a 2+a+41B.-a 2+b 2-2abC.-a 2+25b 2D.-4+b 27.如果把分式yx xy+中的x 和y 都扩大2倍,即分式的值 ( )A 扩大4倍;B 扩大2倍;C 不变;D 缩小2倍8. 下列分解因式正确的是( )A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)29.分式x--11可变形为( )A .﹣B .C .﹣D .10.直线l 1:y=k 1x +b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x +b 的解集为( ) A .x <﹣1 B .x >﹣1 C .x >2D .x <2二、耐心填一填,你能行!(每题4分,共32分)11.不等式930x ->的正整数解是 .12.若分式1x -1有意义,则x 的取值范围是_______________.13.若222121,2y xy x y x ++=+则代数式的值是__________.14.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将ΔBCE 绕点C 顺时针方向旋转90°得到ΔDCF ,连接EF ,若∠BEC=60°,则∠EDF 的度数为 .15.已知(a -2)x |a|-1+3>5是关于x 的一元一次不等式,则a的值为____.16.若一个正方形的面积是9m 2+24mn+16n 2,则这个正方形的边长是 . 17.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为_________.18.已知不等式组⎩⎨⎧≥≥-ax x 112的解集是错误!未找到引用源。

2018-2019学年八年级(下)期中数学试卷 2解析版

2018-2019学年八年级(下)期中数学试卷 2解析版

2018-2019学年八年级(下)期中数学试卷一.选择题(共10小题)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y2.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.63.不等式组的解集在数轴上表示为()A.B.C.D.4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.185.不等式﹣4x﹣k≤0的负整数解是﹣1,﹣2,那么k的取值范围是()A.8≤k<12B.8<k≤12C.2≤k<3D.2<k≤36.将点A(1,﹣3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab 的值是()A.﹣15B.15C.﹣5D.57.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm8.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC9.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.9折B.8折C.7折D.6折10.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°二.填空题(共4小题)11.不等式8﹣3x≥0的最大整数解是.12.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是.13.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=42°,则∠ABC=°.14.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为.三.解答题(共11小题)15.解不等式组,并把不等式组的解集在数轴上表示出来.16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,求∠C的度数.18.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于E,BD=DF,求证:CF =EB.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt △A2B2C2.并计算C1C2的长.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求DC的长.21.某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;(2)写出会员卡租书方式应付金额y2(元)与租书数量x(册)之间的函数关系式;(3)小军选取哪种租书方式更合算?22.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.23.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都经过A(m,2)(1)求点A的坐标及正比例函数的表达式;(2)利用函数图象比较y1和y2的大小并直接写出对应的x的取值范围.24.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.25.为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.参考答案与试题解析一.选择题(共10小题)1.若x<y,则下列不等式中不成立的是()A.x﹣1<y﹣1B.3x<3y C.<D.﹣2x<﹣2y【分析】利用不等式的基本性质判断即可.【解答】解:若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则<,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选:D.2.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3,∴CD=3.故选:A.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2,表示在数轴上,如图所示:故选:C.4.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12B.15C.12或15D.18【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6=6,∴不能构成三角形,故舍去,∴答案只有15.故选:B.5.不等式﹣4x﹣k≤0的负整数解是﹣1,﹣2,那么k的取值范围是()A.8≤k<12B.8<k≤12C.2≤k<3D.2<k≤3【分析】解不等式得出x≥﹣,根据不等式的负整数解是﹣1,﹣2,知﹣3<﹣≤﹣2,解之可得.【解答】解:∵﹣4x﹣k≤0,∴x≥﹣,∵不等式的负整数解是﹣1,﹣2,∴﹣3<﹣≤﹣2,解得:8≤k<12,故选:A.6.将点A(1,﹣3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则ab 的值是()A.﹣15B.15C.﹣5D.5【分析】根据向右平移,横坐标加,纵坐标不变,向下平移,横坐标不变,纵坐标减,进行解答.【解答】解:将点A(1,﹣3)向右平移2个单位,再向下平移2个单位后得到点B(a,b),则a=1+2=3、b=﹣3﹣2=﹣5,所以ab=3×(﹣5)=﹣15,故选:A.7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.【解答】解:连接AM、AN、过A作AD⊥BC于D,∵在△ABC中,AB=AC,∠A=120°,BC=6cm,∴∠B=∠C=30°,BD=CD=3cm,∴AB==2cm=AC,∵AB的垂直平分线EM,∴BE=AB=cm同理CF=cm,∴BM==2cm,同理CN=2cm,∴MN=BC﹣BM﹣CN=2cm,故选:C.8.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.9.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.9折B.8折C.7折D.6折【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于5%,列不等式求解.【解答】解:设打了x折,由题意得900×0.1x﹣600≥600×5%,解得:x≥7.答:最低可打7折.故选:C.10.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°【分析】首先在△ABB'中根据等边对等角,以及三角形内角和定理求得∠ABB'的度数,然后在直角△BB'C中利用三角形内角和定理求解.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.二.填空题(共4小题)11.不等式8﹣3x≥0的最大整数解是2.【分析】先解出不等式的解集,再求其最大整数解.【解答】解:因为不等式8﹣3x≥0的解是x≤所以不等式8﹣3x≥0的最大整数解是2.12.关于x的不等式﹣2x+a≥5的解集如图所示,则a的值是3.【分析】先把a当作已知条件求出x的取值范围,再根据不等式的解集为x<﹣1即可得出a的值.【解答】解:解不等式﹣2x+a≥5得x≤,∵由图可知,不等式的解集为x≤﹣1,∴=﹣1,解得a=3.故答案为:3.13.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=42°,则∠ABC=52°.【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCE=26°,然后可算出∠ABC的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD,∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ACF=42°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=∠FBC,∴∠ABC=2∠FCE,∵∠ACF=42°,∴3∠FCE=120°﹣42°=78°,∴∠FCE=26°,∴∠ABC=52°,故答案为52.14.如图,在平面直角坐标系中,点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′是直线y=x上一点,则点B与其对应点B′间的距离为5.【分析】根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【解答】解:如图,连接AA′、BB′.∵点A的坐标为(0,4),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是4.又∵点A的对应点在直线y=x上一点,∴4=x,解得x=5.∴点A′的坐标是(5,4),∴AA′=5.∴根据平移的性质知BB′=AA′=5.故答案为:5.三.解答题(共11小题)15.解不等式组,并把不等式组的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1﹣2x≤3,得:x≥﹣1,解不等式>﹣1,得:x<5,则不等式组的解集为﹣1≤x<5,将解集表示在数轴上如下:16.已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.17.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,求∠C的度数.【分析】根据直角三角形的性质求得∠BEA=80°;根据线段垂直平分线的性质得AE=CE,则∠C=∠EAC,再根据三角形的外角的性质即可求解.【解答】解:∵∠B=90°,∠BAE=10°,∴∠BEA=80°.∵ED是AC的垂直平分线,∴AE=EC,∴∠C=∠EAC.∵∠BEA=∠C+∠EAC,∴∠C=40°.18.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于E,BD=DF,求证:CF =EB.【分析】根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB.【解答】证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在△CDF与△EDB中,,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)先将Rt△ABC向右平移5个单位,再向下平移1个单位后得到Rt△A1B1C1.试在图中画出图形Rt△A1B1C1;(2)将Rt△A1B1C1绕点A1顺时针旋转90°后得到Rt△A2B2C2,试在图中画出图形Rt △A2B2C2.并计算C1C2的长.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;(2)根据网格结构找出点A1、B1、C1绕点A1顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可,再根据勾股定理求出C1C2的长度.【解答】解:(1)如图,Rt△A1B1C1即为所求;(2)如图,Rt△A2B2C2即为所求,C1C2==.20.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求DC的长.【分析】先Rt△ABC,利用∠C=90°,∠A=30°易求∠ABC=60°,再利用角平分线性质可求∠ABD=∠DBC=30°,从而可得∠ABD=∠A,进而可求BD,在Rt△BDC中,利用30°的角所对的便等于斜边的一半可求CD.【解答】解:在Rt△ABC中,∵∠C=90°,∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠ABD=∠DBC=30°,∴∠ABD=∠A,∴BD=AD=20,又∵∠DBC=30°,∴DC=10.21.某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书,若每月租书数量为x册.(1)写出零星租书方式应付金额y1(元)与租书数量x(册)之间的函数关系式;(2)写出会员卡租书方式应付金额y2(元)与租书数量x(册)之间的函数关系式;(3)小军选取哪种租书方式更合算?【分析】(1)因为零星租书每册收费1元,所以y1和x是相等的关系;(2)会员卡租书,每册是0.4元,x册的费用就是0.4x,加上办卡费12元,所以y2=12+0.4x;(3)比较两种租书方式哪种花的费用最少就哪种方式更合算.【解答】解:(1)∵零星租书每册收费1元,∴应付金额与租书数量之间的函数关系式为:y1=x;(2)∵在会员卡租书中,租书费每册0.4元,x册就是0.4x元,加上办卡费12元,∴应付金额与租书数量之间的函数关系式为:y2=0.4x+12;(3)当y1=y2时,x=12+0.4x,解得:x=20当y1>y2时,x>12+0.4x,解得x>20当y1<y2时,x<12+0.4x,解得x<20综上所述,当小军每月借书少于20册时,采用零星方式租书合算;当每月租书20册时,两种方式费用一样;当每月租书多于20册时,采用会员租书的方式更合算.22.如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.23.如图,一次函数y1=x+1的图象与正比例函数y2=kx(k为常数,且k≠0)的图象都经过A(m,2)(1)求点A的坐标及正比例函数的表达式;(2)利用函数图象比较y1和y2的大小并直接写出对应的x的取值范围.【分析】(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入正比例函数解析式,求出k的值即可得出正比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:y2=kx,得:2=k,解得:k=2,则反比例函数的表达式y2=2x;(2)结合函数图象可得:当x<1时,y1>y2;当x=1时,y1=y2;当x>1时,y1<y2.24.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE.(2)若BE∥AC,试判断△ABC的形状,并说明理由.【分析】(1)由边角关系求证△ADB≌△AEB即可;(2)由题中条件可得∠BAC=60°,进而可得△ABC为等边三角形.【解答】(1)证明:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°,∵AE⊥BE,∴∠E=90°=∠ADB,∵AB平分∠DAE,∴∠1=∠2,在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE;(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形.25.为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.【分析】(1)由“已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”,即可得出关于a、b的二元一次方程组,解之即可得出结论;(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据总价=单价×数量结合厂里预算购买污水处理设备的资金不超过105万元,即可得出关于m的一元一次不等式,解之取其中的整数即可得出各购买方案;(3)由每月要求处理污水量不低于2040吨,来验证m的值,再利用总价=单价×数量找出最省钱的购买方案.【解答】解:(1)根据题意得:,解得:.答:a的值为12,b的值为10.(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据题意得:12m+10(10﹣m)≤105,解得:m≤,∴m可取的值为0,1,2.故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台.(3)当m=0时,每月的污水处理量为:200×10=2000(吨),∵2000<2040,∴m=0不合题意,舍去;当m=1时,每月的污水处理量为:240+200×9=2040(吨),∵2040=2040,∴m=1符合题意,此时购买设备所需资金为:12+10×9=102(万元);当m=2时,每月的污水处理量为:240×2+200×8=2080(吨),∵2080>2040,∴m=2符合题意,此时购买设备所需资金为:12×2+10×8=104(万元).∵102<104,∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.。

2018-2019年八年级数学下册期中试卷含答案

2018-2019年八年级数学下册期中试卷含答案

八年级下学期期中数学试卷一、精心选一选:(将正确答案填在下面的表格中)1.下列图形中是中心对称图形的是( )A.①②④B.②③④C.①③④D.①②③2.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等3.点M(﹣5,y)向下平移5个单位所得的像是关于x轴对称,则y的值是( ) A.﹣5 B.5 C.D.4.横坐标为负,纵坐标为零的点在( )A.第一象限B.第二象限C.x轴的负半轴D.y轴的负半轴5.在▱ABCD中,BD、AC是对角线,下列结论不正确的是( )A.当AB=BC时,▱ABCD是菱形B.当∠ABC=90°时,▱ABCD是矩形C.当AC⊥BD时,▱ABCD是菱形D.当AC=BD时,▱ABCD是正方形6.如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )A.6 B.3 C.D.7.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cm B.5cm C.6cm D.8cm8.矩形、菱形、正方形都具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角9.下列各组数中,能构成直角三角形的是( )A.4,5,6 B.1,1,C.6,8,11 D.5,12,2310.在x轴上,且到原点的距离为2的点的坐标是( )A.(2,0)B.(﹣2,0)C.(2,0)或(﹣2,0)D.(0,2)二、细心填一填:11.在▱ABCD中,添加条件__________可得四边形ABCD是菱形.12.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是__________.13.一个多边形每个外角都是30°,它的内角和是__________.14.顺次连结任意四边形各边中点所得到的四边形一定是__________.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为__________cm2.16.点B(3a﹣9,a+1)在第二象限,则a的取值范围为__________.17.已知点A(a,﹣3),B(4,b)关于y轴对称,则a﹣b=__________.18.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为__________.19.已知线段MN平行于y轴,且MN的长度为3,若M(2,﹣2),那么点N的坐标是__________.20.在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有__________个.三、耐心做一做(60分)21.已知:▱ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA 的周长长5cm,求这个平行四边形各边的长.22.已知:如图,点E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:∠CDF=∠ABE.23.如图,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC 交于点H.求证:HC=HF.24.如图,在菱形AB CD中,∠ABC与∠BAD的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.25.矩形ABCD的对角线相交于点O,DE∥AC,CE∥DB,CE、DE交于点E,请问:四边形DOCE是什么四边形?请说明理由.26.如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB 的长为2,求出各顶点的坐标.27.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?参考答案一、精心选一选:(将正确答案填在下面的表格中,3&#215;10分)1.下列图形中是中心对称图形的是( )A.①②④B.②③④C.①③④D.①②③考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,①③④都符合;不是中心对称图形的只有②.故选:C.点评:本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.下列条件中,不能判定四边形是平行四边形的是( )A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等考点:平行四边形的判定.分析:由平行四边形的判定方法得出A、C、D正确,B不正确;即可得出结论.解答:解:∵两组对边分别平行的四边形是平行四边形,∴A正确;∵一组对边平行,另一组对边相等的四边形是等腰梯形,不一定是平行四边形,∴B不正确;∵两组对边分别相等的四边形是平行四边形,∴C正确;∵一组对边平行且相等的四边形是平行四边形,∴D正确;故选:B.点评:本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.3.点M(﹣5,y)向下平移5个单位所得的像是关于x轴对称,则y的值是( )A.﹣5 B.5 C.D.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.解答:解:此题平移规律是(x,y﹣5),因为点M(﹣5,y)向下平移5个单位的像关于x轴对称,所以y的值是(y﹣y+5)÷2=.故选C.点评:本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.横坐标为负,纵坐标为零的点在( )A.第一象限B.第二象限C.x轴的负半轴D.y轴的负半轴考点:点的坐标.分析:根据x轴上点的纵坐标为零,横坐标小于零在x轴的负半轴,可得答案.解答:解:横坐标为负,纵坐标为零的点在x轴的负半轴上.故选:C.点评:本题考查了点的坐标,x轴的负半轴上的点的横坐标小于零,纵坐标等于零;x轴的正半轴上的点的横坐标大于零,纵坐标等于零.5.在▱ABCD中,BD、AC是对角线,下列结论不正确的是( )A.当AB=BC时,▱ABCD是菱形B.当∠ABC=90°时,▱ABCD是矩形C.当AC⊥BD时,▱ABCD是菱形 D.当AC=BD时,▱ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.分析:分别利用矩形、菱形、正方形的判定方法判断得出即可.解答:解:A、当AB=BC时,▱ABCD是菱形,利用邻边相等的平行四边形是菱形,故此选项正确,不合题意;B、当∠ABC=90°时,▱ABCD是矩形,利用一个角是直角的平行四边形是矩形,故此选项正确,不合题意;C、当AC⊥BD时,▱ABCD是菱形,利用对角线互相垂直的平行四边形是菱形,故此选项正确,不合题意;,D、当AC=BD时,▱ABCD是矩形,故此选项错误,符合题意.故选:D.点评:此题主要考查了矩形、菱形、正方形的判定方法,正确掌握判定定理是解题关键.6.如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )A.6 B.3 C.D.考点:翻折变换(折叠问题);含30度角的直角三角形;勾股定理.专题:计算题;压轴题.分析:易得∠ABC=60°,∠A=30°.根据折叠的性质∠CBE=∠D=30°.在△BCE 和△DCE中运用三角函数求解.解答:解:∵∠ACB=90°,BC=3,AB=6,∴sinA=BC:AB=1:2,∴∠A=30°,∠CBA=60°.根据折叠的性质知,∠CBE=∠EBA=∠CBA=30°,∴CE=BCtan30°=,∴DE=2CE=2.故选C.点评:本题考查了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,锐角三角函数的概念求解.7.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cm B.5cm C.6cm D.8cm考点:平行四边形的性质.分析:由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.解答:解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选A.点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.8.矩形、菱形、正方形都具有的性质是( )A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角考点:菱形的性质;矩形的性质;正方形的性质.分析:矩形、菱形、正方形都是特殊的平行四边形,共有的性质就是平行四边形的性质.解答:解:矩形、菱形、正方形共有的性质是对角线互相平分.故选B.点评:本题考查矩形、菱形、正方形的性质,熟记这些性质才能熟练做题.9.下列各组数中,能构成直角三角形的是( )A.4,5,6 B.1,1,C.6,8,11 D.5,12,23考点:勾股定理的逆定理.专题:计算题.分析:根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.解答:解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.点评:此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.10.在x轴上,且到原点的距离为2的点的坐标是( )A.(2,0)B.(﹣2,0)C.(2,0)或(﹣2,0)D.(0,2)考点:两点间的距离公式.分析:找到纵坐标为0,且横坐标为2的绝对值的坐标即可.解答:解:∵点在x轴上,∴点的纵坐标为0,∵点到原点的距离为2,∴点的横坐标为±2,∴所求的坐标是(2,0)或(﹣2,0),故选C.点评:本题涉及到的知识点为:x轴上的点的纵坐标为0;绝对值等于正数的数有2个.二、细心填一填:(3&#215;10分)11.在▱ABCD中,添加条件AB=BC可得四边形ABCD是菱形.考点:菱形的判定.专题:证明题;开放型.分析:根据菱形的判定:有一组邻边相等的平行四边形是菱形,条件条件AB=BC 即可.解答:解:AB=BC,理由是:∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形.故答案为:AB=BC.点评:本题考查了菱形的判定定理的应用,此题是一个开放性的题目,答案不唯一,再如:AD=DC等.12.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是6.考点:三角形中位线定理.分析:利用三角形的中位线定理可以得到:DE=AC,EF=AB,DF=BC,则△DEF的周长是△ABC的周长的一半,据此即可求解.解答:解:∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×12=6.∴C△DEF故答案是:6.点评:本题考查了三角形的中位线定理,正确根据三角形中位线定理证得:△DEF 的周长是△ABC的周长的一半是关键.13.一个多边形每个外角都是30°,它的内角和是1800°.考点:多边形内角与外角.分析:先用多边形的外角和360°除以每一个外角的度数求出边数,再根据多边形的内角和公式(n﹣2)•180°列式进行计算即可得解.解答:解:∵多边形每个外角都是30°,∴这个多边形的边上为:360°÷30°=12,∴它的内角和为(12﹣2)•180°=1800°.故答案为:1800°.点评:本题考查了多边形的内角与外角,根据多边形的每一个外角的度数与外角和求出边数是解题的关键.14.顺次连结任意四边形各边中点所得到的四边形一定是平行四边形.考点:中点四边形.分析:顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.解答:证明:如图,连接AC,∵E、F、G、H分别是四边形ABCD边的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC;∴EF=HG且EF∥HG;∴四边形EFGH是平行四边形.故答案是:平行四边形.点评:本题考查了平行四边形的判断及三角形的中位线定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半.15.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.考点:矩形的性质.专题:计算题.分析:根据矩形的性质,画出图形求解.解答:解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.点评:本题考查的知识点有:矩形的性质、勾股定理.16.点B(3a﹣9,a+1)在第二象限,则a的取值范围为﹣1<a<3.考点:点的坐标.分析:根据点在第二象限的条件是:横坐标是负数,纵坐标是正数解答.解答:解:根据题意得:,解得﹣1<a<3.故填:﹣1<a<3.点评:本题考查了象限内点的坐标的符号特征以及转化为解不等式组的问题.17.已知点A(a,﹣3),B(4,b)关于y轴对称,则a﹣b=﹣1.考点:关于x轴、y轴对称的点的坐标.分析:关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A 的对称点的坐标,求出a,b的值,进而求出a﹣b的值.解答:解:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),这样就可以求出A的对称点的坐标.则a=﹣4,b=﹣3,a﹣b=﹣1.故答案为:﹣1.点评:本题比较容易,考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.18.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为7.考点:勾股定理;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:根据x与y为正数,由已知等式,利用非负数的性质及算术平方根定义求出x与y的值,再利用勾股定理及正方形面积求法即可确定出所求.解答:解:∵x、y为正数,且|x2﹣4|+(y2﹣3)2=0,∴x2﹣4=0,y2﹣3=0,解得:x=2,y=.则以此直角三角形的斜边为边长的正方形的面积为x2+y2=4+3=7.故答案为:7.点评:此题考查了勾股定理,正方形的性质,以及非负数的性质,熟练掌握勾股定理是解本题的关键.19.已知线段MN平行于y轴,且MN的长度为3,若M(2,﹣2),那么点N的坐标是(2,1)或(2,﹣5).考点:坐标与图形性质.分析:若MN∥y轴,则点M与点M的横坐标相同,因而点N的横坐标是2,根据两点之间的距离公式可求解.解答:解:∵MN∥y轴,∴点M与点N的横坐标相同,∴点N的横坐标是2,设纵坐标是y,因而|y﹣(﹣2)|=3,解得y=1或﹣5,∴点N的坐标是(2,1)或(2,﹣5).故本题答案为:(2,1)或(2,﹣5).点评:本题主要考查了与坐标轴平行的点的坐标的关系,与x轴的点的纵坐标相同,与y轴平行的线上的点的横坐标相同.20.在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有3个.考点:坐标与图形性质.分析:因为点A的坐标是(3,4),所以OA=5,以5为半径的圆与坐标轴的交点,圆与原点的交点有1个,另外与两正半轴有2个交点,共有3的点.解答:解:点A的坐标是(3,4),因而OA=5,坐标轴上到点A(3,4)的距离等于5的点就是以点A为圆心,以5为半径的圆与坐标轴的交点,圆与坐标轴的交点是原点,另外与两正半轴有两个交点,共有3的点.所以坐标轴上到点A(3,4)的距离等于5的点有3个.故答案填:3.点评:正确确定满足条件的点是解决本题的关键.三、耐心做一做(60分)21.已知:▱ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5cm,求这个平行四边形各边的长.考点:平行四边形的性质.分析:平行四边形周长为60cm,即相邻两边之和为30,△AOB的周长比△DOA的周长长5cm,而AO为共用,OB=OD所以由题可知AB比AD长5,可列方程解答.解答:解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵△AOB的周长比△DOA的周长长5cm,∴AB﹣AD=5(cm),又∵▱ABCD的周长为60cm,∴AB+AD=30cm,则,AB=CD=cm,AD=BC=cm.点评:此题主要考查了平行四边形的对角线互相平分的性质,难易程度适中.22.已知:如图,点E、F是平行四边行ABCD的对角线AC上的两点,AE=CF.求证:∠CDF=∠ABE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:由四边行ABCD是平行四边形,可得AB=CD,AB∥CD,即可证得∠BAE=∠DCF,又由AE=CF,则可证得△ABE≌△CDF,继而证得结论.解答:证明:∵四边行ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠CDF=∠ABE.点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.注意平行四边形的对边平行且相等.23.如图,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG 与BC交于点H.求证:HC=HF.考点:旋转的性质.专题:证明题.分析:连结AH,如图,根据正方形的性质得AD=AB=BC=CD,∠B=∠D=90°,再根据旋转的性质得AG=AD,GF=CD,∠G=∠D=90°,于是可利用“HL”判断Rt△AGH≌△ABH,则GH=BH,所以BC﹣BH=GF﹣GH,即HC=HF.解答:证明:连结AH,如图,∵四边形ABCD为正方形,∴AD=AB=BC=CD,∠B=∠D=90°,∵正方形ABCD绕着点A按顺时针方向旋转得到正方形AEFG,∴AG=AD,GF=CD,∠G=∠D=90°,∴AG=AB,在Rt△AGH和△ABH中,,∴Rt△AGH≌△ABH,∴GH=BH,∴BC﹣BH=GF﹣GH,即HC=HF.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.24.如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.考点:菱形的性质.专题:几何图形问题.分析:(1)首先根据菱形的性质可得菱形的边长为48÷4=12cm,然后再证明△ABC是等边三角形,进而得到AC=AB=12cm,然后再根据勾股定理得出BO的长,进而可得BD的长即可;(2)根据菱形的面积公式=对角线之积的一半可得答案.解答:解:(1)菱形ABCD的周长为48cm,∴菱形的边长为48÷4=12cm∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°(菱形的邻角互补),∴∠ABC=60°,∠BCD=120°,∴△ABC是等边三角形,∴AC=AB=12cm,∵菱形ABCD对角线AC、BD相交于点O,∴AO=CO,BO=DO且AC⊥BD,∴BO==6cm,∴BD=12cm;(2)菱形的面积:AC•BD=×12×12=72(cm2).点评:此题主要考查了菱形的性质,以及菱形的面积计算,关键是掌握菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.25.矩形ABCD的对角线相交于点O,DE∥AC,CE∥DB,CE、DE交于点E,请问:四边形DOCE是什么四边形?请说明理由.考点:菱形的判定;平行线的性质;矩形的性质.专题:探究型.分析:首先判断出DOCE是平行四边形,而ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出DOCE是菱形.解答:解:四边形DOCE是菱形.理由:∵DE∥AC,CE∥DB,∴四边形DOCE是平行四边形,又∵四边形ABCD是矩形,∴AC=BD,OC=OA=AC,OB=OD=BD,∴OC=OD,∴四边形DOCE是菱形(一组邻边相等的平行四边形是菱形).点评:本题属于开放型试题,一般先从已知出发,推出一些中间结论,将它们结合起来,得出问题的结论.26.如图,梯形OABC是正六边形的一部分,画出它关于x轴对称的其余部分,如果AB的长为2,求出各顶点的坐标.考点:作图-轴对称变换.分析:首先找出A、B点关于x轴的对称点,再顺次连接,然后根据正六边形的性质可得AO=AB=BC=2,∠AOC=60°,再根据三角函数值计算出OM、NC的长,进而得到各点坐标.解答:解:如图所示:∠AOC=60°,过A作AM⊥OC,过B作BN⊥⊥OC,∵梯形OABC是正六边形的一部分,∴∠AOC=60°,AO=AB=BC=2,∴OM=AO×cos60°=1,AM=AO×sin60°=,CN=CB×cos60°=1,BN=,∴A(1,),B(3,),C(4,0),D(3,),E(1,).点评:此题主要考查了做轴对称变换,以及正多边形的性质,关键是掌握正六边形每个内角都是120°,每条边都相等.27.如图,将长为2.5米长的梯子AB斜靠在墙上,BE长0.7米.(1)求梯子上端到墙的底端E的距离(即AE的长);(2)如果梯子的顶端A沿墙下滑0.4米(即AC=0.4米),则梯脚B将外移(即BD长)多少米?考点:勾股定理的应用.分析:(1)在Rt△ABE中利用勾股定理求出AC的长即可;(2)首先在Rt△CDE中利用勾股定理求出DE的长,然后再计算出DB的长即可.解答:解:(1)由题意得:AB=2.5米,BE=0.7米,∵AE2=AB2﹣BE2,∴AE==2.4米;(2)由题意得:EC=2.4﹣0.4=2(米),∵DE2=CD2﹣CE2,∴DE==1.5(米),∴BD=0.8米.点评:此题主要考查了勾股定理的应用,关键是掌握正确运用勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.。

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。

2019年周口市初二数学下期中模拟试卷(含答案)

2019年周口市初二数学下期中模拟试卷(含答案)

2019年周口市初二数学下期中模拟试卷(含答案)一、选择题1.如右图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x 的函数关系的图像大致是()A.B.C.D.2.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.73.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a+bB .a ﹣bC .222a b +D .222a b - 4.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3555.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( )A .8和14B .10和14C .18和20D .10和346.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直7.函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1 C .x ≥一1 D .x ≥-1且x ≠18.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .15 9.下列各式正确的是( ) A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-= 10.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm11.下列各组数据中,不可以构成直角三角形的是( )A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.5 12.如图,点EFGH 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.如图,已知在Rt △ABC 中,AB =AC =3,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.15.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.16.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.17.482x x 可取的最小正整数为________.18.在Rt ABC ∆中,a ,b ,c 分别为A ∠,B Ð,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.19.在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题 21.已知长方形的长1322a =1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.二次根式中也有这种相辅相成的“对子”.如:(23)(23)1+-=,52)(52)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:333333==⨯23(23)(23)74323(23)(23)+++==+-+-母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题:(1)37的有理化因式是_________25-的分母有理化得__________; (2)计算: ①已知:331x =-,331y =+22x y +的值; (12233420192020)++++++. 23.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC V 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =V ,的准外心P 在AC 边上,试求PA 的长.24.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型, B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,∠AOB=∠ADC,∠OAB=∠DAC ,AB=AC∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.2.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:22OB BC +5. ∴5故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.3.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】 设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD =222a b +, 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.4.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310.故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.5.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.6.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .7.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .8.C解析:C【解析】【分析】证明30BAEEAC ACE ????,求出BC 即可解决问题.【详解】解:Q 四边形ABCD 是矩形,90B ∴∠=︒, EA=EC Q ,EAC ECA ∴∠=∠,EACBAE ??Q , 又∵将纸片沿AE 折叠,点B 恰好落在AC 上,30BAE EAC ACE \????, 3AB =Q , 333BC AB \==,∴矩形ABCD 的面积是33393AB BC =?g .故选:C .【点睛】本题考查矩形的性质,翻折变换,直角三角形30°角性质等知识,解题的关键是灵活运用所学知识解决问题.9.D解析:D【解析】【分析】 【详解】解:因为()()222550.50.50.5-=-==,,所以A ,B ,C 选项均错, 故选D 10.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度,Q 圆柱底面的周长为4dm ,圆柱高为2dm ,2AB dm \=,2BC BC dm =?,22222448AC \=+=+=,22AC dm \=,∴这圈金属丝的周长最小为242AC dm =.故选:A .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.11.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.A解析:A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形,故④选项正确,故选A .【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴BO=22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.15.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.16.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.17.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】==∴∴x可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.18.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.19.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC 为对角线三种情况进行求解【详解】如图所示①AC 为对角线时AB=5∴点D 的坐标为(-53)②BC 为对角线时AB=5∴点D 的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB 、BC 、AC 为对角线三种情况进行求解.【详解】如图所示,①AC 为对角线时,AB=5,∴点D 的坐标为(-5,3),②BC 为对角线时,AB=5,∴点D 的坐标为(5,3),③AB 为对角线时,C 平移至A 的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D 的坐标为(3,−3),综上所述,点D 的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.三、解答题21.(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯= 正方形的面积也为4.2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.22.(1)(或-3),-6-2)①14,②1【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x 与y 分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(3)(=9-7=2,(3)(-3)=7-9=-2∴3的有理化因式是(或-3)32+=故答案为:(或-3);(2)①当21422x +===+212y ==== x 2+y 2=(x +y )2−2xy=(2+2−2×(2=16−2×1=14.②...12233420192020++++++++ =213243...20202019-+-+-++-=20201-.=2505-1【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.23.2PA =或78 【解析】【分析】先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==Q224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力.24.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩ 所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。

2018-2019年八年级第二学期期中考试数学试卷

2018-2019年八年级第二学期期中考试数学试卷

2019~2019学年度第二学期期中考试八年级数学(考试时间:120分钟 满分:150分)一、选择题(本大题共8题,每小题3分,共24分.)1.当b a >时,下列不等式中正确的是 ( )A .22ba < B .11-<-b a C .c b c a +>+22 D .b a ->- 2.若式子||22x x -+的值为0,则x 的值是 ( )A .2B .-2C .±2D .0 3.把分式ba ab+中的a 、b 都扩大2倍,则分式的值 ( ) A .扩大8倍 B .扩大4倍 C .扩大2倍 D .不变4.若反比例函数3my x-=的图象在第一、第三象限内,则m 的取值范围是 ( ) A .3m ≤ B .3m ≥ C .3m < D .3m > 5.不等式组⎩⎨⎧<-≥+02312x x 的解集在数轴上表示为 ( )6.如图,点P 是反比例函数ky x=图象上一点,过点P 分别作x 轴、y 轴的垂线,如果构 成的矩形面积是4,那么反比例函数的解析式是 ( ) A.2y x =- B. 2y x = C. 4y x = D. 4y x=-12A . 12B .12C . 12D .O PABxy 第6题OB ACDE xy第8题班级 姓名 考试号……………………………………………… 装…… 订…… 线…………………………………………………7.反比例函数xy 2=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<,则1y ,2y ,3y 的大小关系是 ( ) A. 321y y y << B .312y y y << C .213y y y << D .123y y y <<8.如图,平行四边形ABCD 的顶点A 的坐标为(—2,0),顶点D 在双曲线xky =(0>x )上,AD 交y 轴于点E (0,25),且四边形BCDE 的面积是△ABE 面积的3倍,则k 的值 为 ( ) A .5 B .10 C .12 D .15 二、填空题(本大题共10题,每小题3分,共30分.) 9.不等式23≥-x 的解集为 . 10.若分式32-x 有意义,则实数x 的取值范围是___________. 11.当2013=x 时,分式242--x x 的值为 .12.化简:=-+-ab bb a a . 13.若分式11-m 的值为整数,则整数m = . 14.反比例函数xky =的图象经过点P (3,-2),则k = . 15.当m = 时,关于x 的方程xmx x -+=-3132会产生增根. 16.在同一坐标系中,正比例函数kx y =与反比例函数xmy =的图象交于点A 、B ,若交点A 的坐标为(-2,1),则交 点B 的坐标为 .17.当x 、y 满足条件 时,分式xyx --1的值为0. OA Bxy第16题18.若不等式组⎩⎨⎧><-ax x 312的解集中含有3个整数,则a 的取值范围是 .三、解答题(本大题共10题,共96分.) 19.(本题满分8分)解不等式:(1)0)2(3)1(2<--+x x (2)312621-≤--x x20.(本题满分8分)计算或化简:(1)b a a bc cb a ÷-⋅)2(222 (2))2(424x x x x ----21.(本题满分8分)解分式方程:12112-=--x x x22.(本题满分8分)先化简:1)11(22-÷+-+a aa a a ,再从1,1-,2中选一个你认为合适的数作为a 的值代入求值.23.(本题满分10分)反比例函数xky =的图象经过点A (2,—3). (1)求这个函数的解析式;(2)请判断点B (—5,1)是否在这个反比例函数的图象上,并说明理由.24.(本题满分10分)函数x y 2=与3-=x y 的图象有一个交点的坐标为(a ,b ),求aab b bab a ---+2232的值.25.(本题满分10分)一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系:vkt =,其图象为如图所示的一段曲线且端点为A (20,1)和 B (m ,0.5). (1)求k 和m 的值;(2)若行驶速度不得超过30km/h ,则汽车 通过该路段最少需要多少时间?第25题26.(本题满分10分)一项工程,如果甲、乙两公司合做,12天完成;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍.问:甲、乙两公司单独完成此项工程,各需多少天?27.(本题满分12分)为了保护环境,某企业决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:A 型B 型 价格(万元/台) 12 10 处理污水量(吨/月) 240 200 年消耗费(万元/台)11经预算,该企业购买设备的资金不高于105万元. (1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案? (3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)班级 姓名 考试号……………………………………………… 装…… 订…… 线…………………………………………………OABxy第28题28.(本题满分12分)如图,已知反比例函数xk y 11=的图象与一次函数b x k y +=22的图象交于A ,B 两点,A (1,n ),B (21-,2-). (1)求反比例函数和一次函数的解析式; (2)观察图象,直接写出不等式021≥--b x k xk 的解集; (3)若点P 在x 轴上,则在平面直角坐标系内是否存在点Q ,使以A 、O 、P 、Q 为顶点的四边形是菱形?若存在,请你直接写出所有符合条件的Q 点的坐标;若不存在,请说明理由.。

8—19学年下学期八年级期中考试数学试题(附答案)

8—19学年下学期八年级期中考试数学试题(附答案)

2018-2019学年第二学期初二数学期中考试试卷时间:120分钟 总分 :120分一、选择题(本题共10小题,每小题3分,共30分) 1.下列几种图案中,既是中心对称图形又是轴对称图形的是( )A B C D2.下列调查方式,你认为最合适的是 ( ) A .调查市场上某种白酒的塑化剂的含量,采用普查方式 B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式 C .旅客上飞机前的安检,采用抽样调查方式 D .了解我市每天的流动人口数,采用抽样调查方式3. 下列各式中,是分式的为( ) A .1m B .x -2y 3 C .12x -13y D .754. 对于函数y =1x ,下列说法错误的是 ( )A .它的图像分布在第一、三象限B .它的图像与直线y =-x 无交点C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小 5. 如图,在平行四边形ABCD 中,BD 为对角线,E 、F 分别是AD 、BD 的中点,连结EF .若EF=3,则CD 的长为( ) A .2 B .3C .4D .66. 为了早日实现 “绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( ) A .4000x -4000x -10=2 B .21040004000=+-x x C .24000104000=-+x x D . 24000104000=--xx 7.如果把分式2xx y-中的x 和y 都扩大为原来的5倍,那么分式的值 ( ) A. 扩大为原来的5倍 B. 扩大为原来的10倍 C. 不变 D. 缩小为原来的15倍 8.如图,在△ABC 中,∠ABC=90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG=BD ,连接BG 、DF .若CF=6,AC=AF+2,则四边形BDFG 的周长为( )A. 9.5B. 10C. 12.5D. 209.如图,把 6 张长为 a 、宽为 b (a >b )的小长方形纸片不重叠地放在长方形 ABCD 内,未被覆 盖的部分(两个长方形)用阴影表示,设这两个长方形的面积的差为 S .当 BC 的长度变化时, 按照同样的放置方式,S 始终保持不变,则 a 、b 满足 ( )A .a =1.5bB .a =2.5bC .a =3bD .a =2b10. 如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为100cm 2,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形ABDC 的面积是 ( ) A .40 cm 2 B . 60 cm 2 C .70 cm 2 D . 80 cm 2第5题 第8题二、填空题(本大题共8小题,每空3分,共24分) 11. 当x 时,分式11-+x x 的值为0. 12. 已知分式有意义,则x 的取值范围是 .13.已知双曲线y=xk经过点(﹣2,1),则k 的值等于 . 14.某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是 .15.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是 .(第10题)16. 若关于x 的分式方程131=---xx a x 有增根,则a = .第15题 第17题17.如图,在Rt △ABC 中,∠C=90°,BC=5,AC=12,M 为斜边AB 上一动点,过M 作MD ⊥AC ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .18.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,2)、(8,8)、(2,6),若一次函数y =mx -6m +2(m ≠0)的图像将四边形ABCD 的面积分成1:3两部分,则m 的值为___________. 三、解答:(共66分)19.计算:(每小题3分,共6分)(1)2422m m m +-- (2) 22()a b a ba b b a a b++÷---20. (本题满分5分)先化简42122)231(-+-÷+-a a a a ,再从-2、2、0 、1四个数中选一个恰当的数作为a 的值代入求值.21.解方程:(每小题4分,共8分) (1)2102x x -=- (2)12112-=--x x x22.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标___________.23.(本题满分8分)我市大力发展绿色交通,构建公共绿色交通体系,“共享单车”的投入使用给人们的出行带来便利.小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是;(2)补全条形统计图;(3)在扇形统计图中,求表示A组(t≤10分)的扇形圆心角的度数;(4)如果骑共享单车的平均速度为12km/h,请估算,在租用共享单车的市民中,骑车路程不超过6km的人数所占的百分比.24.(本题满分5分))已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.25. (本题满分8分)如图,已知()n A ,4-,()4,2-B 是一次函数b kx y +=1的图象和反比例函数xmy =2的图象的两个交点. (1) 求一次函数、反比例函数的关系式; (2) 求△AOB 的面积.(3) 当自变量x 满足什么条件时,y 1>y 2 .(直接写出答案) (4)将反比例函数xmy =2的图象向右平移p (n >0)个单位,得到的新图象经过点(3,-4),求对应的函数关系式y 3.(直接写出答案)26、(本题满分10分)如图1,四边形ABCD 是菱形,AD=10,过点D 作AB 的垂线DH ,垂足为H ,交对角线AC 于M ,连接BM ,且AH=6.(1)求证:DM=BM ;(2)求MH 的长;(3)如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式;(4)在(3)的条件下,当点P 在边AB 上运动时是否存在这样的 t 值,使∠MPB 与∠BCD 互为余角,若存在,则求出t 值,若不存,在请说明理由.27.(本题满分10分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.。

2018-2019学年人教版八年级数学第二学期期中试卷(含答案解析)

2018-2019学年人教版八年级数学第二学期期中试卷(含答案解析)

2018-2019学年八年级(下)期中数学试卷一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)2.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD3.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°5.下列曲线中,表示y不是x的函数是()A.B.C.D.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和47.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣48.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+29.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第象限.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1y2.(填“>”,“<”或“=”)17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于度.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.26.(10分)如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.2018-2019学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来每小题3分,满分36分)1.直线y=2x﹣4与y轴的交点坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【分析】令x=0,求出y的值,即可求出与y轴的交点坐标.【解答】解:当x=0时,y=﹣4,则函数与y轴的交点为(0,﹣4).故选:D.【点评】本题考查了一次函数图象上点的坐标特征,要知道,y轴上的点的横坐标为0.2.如图,下面不能判断是平行四边形的是()A.∠B=∠D,∠BAD=∠BCDB.AB∥CD,AD=BCC.∠B+∠DAB=180°,∠B+∠BCD=180°D.AB∥CD,AB=CD【分析】由平行四边形的判定方法得出选项A、C、D正确,选项B不正确,即可得出结论.【解答】解:∵∠B=∠D,∠BAD=∠BCD,∴四边形ABCD是平行四边形,A选项正确;∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,B选项不正确;∵∠B+∠DAB=180°,∠B+∠BCD=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,C选项正确;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,D选项正确.故选:B.【点评】本题考查了平行四边形的判定方法;熟记平行四边形的判定方法是解决问题的关键.3.在圆的周长公式C=2πR中,是变量的是()A.C B.R C.π和R D.C和R【分析】根据变量是改变的量,据此即可确定周长公式中的变量.【解答】解:圆的周长公式C=2πR中,变量是C和R,故选:D.【点评】本题考查了常量和变量的定义,明确变量是改变的量,常量是不变的量.4.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE 的度数为()A.53°B.37°C.47°D.123°【分析】设EC于AD相交于F点,利用直角三角形两锐角互余即可求出∠EFA的度数,再利用平行四边形的性质:即两对边平行即可得到内错角相等和对顶角相等,即可求出∠BCE的度数.【解答】解:∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°,∴∠DFC=37∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCE=∠DFC=37°.故选:B.【点评】此题主要考查了平行四边形的性质和对顶角相等,根据题意得出∠E=90°和的对顶角相等是解决问题的关键.5.下列曲线中,表示y不是x的函数是()A.B.C.D.【分析】根据函数的意义即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 不正确.故选:B.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.6.如图,在▱ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E.则线段BE、EC的长度分别为()A.2和3B.3和2C.4和1D.1和4【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【解答】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2.故选:B.【点评】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE =∠AEB是解决问题的关键.7.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选:B.【点评】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x 的增大而减小.8.将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A.y=2x﹣1B.y=2x﹣2C.y=2x+1D.y=2x+2【分析】根据函数图象平移的法则进行解答即可.【解答】解:直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x﹣1),即y=2x﹣2.故选:B.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.9.已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将(2,﹣1)与(﹣3,4)分别代入一次函数解析式y=kx+b中,得到关于k与b的二元一次方程组,求出方程组的解得到k与b的值,确定出一次函数解析式,利用一次函数的性质即可得到一次函数图象不经过第三象限.【解答】解:将(2,﹣1)、(﹣3,4)代入一次函数y=kx+b中得:,①﹣②得:5k=﹣5,解得:k=﹣1,将k=﹣1代入①得:﹣2+b=﹣1,解得:b=1,∴,∴一次函数解析式为y=﹣x+1不经过第三象限.故选:C.【点评】此题考查了利用待定系数法求一次函数解析式,以及一次函数的性质,灵活运用待定系数法是解本题的关键.10.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【分析】由菱形ABCD中,OE∥DC,可得OE是△BCD的中位线,又由AD=6cm,根据菱形的性质,可得CD=6cm,再利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE是△BCD的中位线是解此题的关键.11.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选:D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.12.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有()A.4个B.3个C.2个D.1个【分析】根据含30°角所对的直角边等于斜边一半,然后依次判断直角三角形中能否找到一个角等于30°,从而判断出答案.【解答】解:设正方形的边长为a,在图①中,由折叠知,BC=BD=a,AB=a,在Rt△ABC中,根据勾股定理得,AC=a,∴CF=AF﹣AC=a,设CE=ED=x,则EF=a﹣x,在Rt△CEF中,(a﹣x)2+(a)2=x2,∴x=2﹣,∴CE=ED=2﹣,在Rt△BDE中,tan∠DBE==2﹣故∠DBE=∠CBE<30°,故△ECB,故不能满足它的一条直角边等于斜边的一半.在图②中,BC=a,AC=AE=a,故∠BAC=30°,从而可得∠CAD=∠EAD=30°,故能满足它的一条直角边等于斜边的一半.在图③中,AC=a,AB=a,故∠ABC=∠DBC≠30°,故不能满足它的一条直角边等于斜边的一半.在图④中,AE=a,AB=AD=a,故∠ABE=30°,∠EAB=60°,从而可得∠BAC=∠DAC=60°,∠ACB=30°,故能满足它的一条直角边等于斜边的一半.综上可得有2个满足条件.故选:C.【点评】此题主要考查了直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力,难度较大,注意细心、耐心思考.二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分.)13.在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第二象限.【分析】先根据正比例函数y=﹣3mx中,函数y的值随x值的增大而增大判断出﹣3m的符号,求出m的取值范围即可判断出P点所在象限.【解答】解:∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为:二.【点评】本题考查的是正比例函数的性质,根据题意判断出m的符号是解答此题的关键.14.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C的坐标为(3,1).【分析】画出图形,根据平行四边形性质求出DC∥AB,DC=AB=3,根据D的纵坐标和CD=3即可求出答案.【解答】解:∵平行四边形ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),∴AB=CD=2﹣(﹣1)=3,DC∥AB,∴C的横坐标是3,纵坐标和D的纵坐标相等,是1,∴C的坐标是(3,1),故答案为:(3,1).【点评】本题考查了平行四边形的性质和坐标与图形性质的应用,能根据图形进行推理和求值是解此题的关键,本题主要考查学生的观察能力,用了数形结合思想.15.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是m<0.【分析】根据一次函数y=mx+3的图象经过第一、二、四象限判断出m的取值范围即可.【解答】解:∵一次函数y=mx+3的图象经过第一、二、四象限,∴m<0.故答案为:m<0.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.16.如果点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,则y1>y2.(填“>”,“<”或“=”)【分析】根据一次函数图象上点的坐标特征,将点P1、P2的坐标分别代入已知函数的解析式,分别求得y1、y2的值,然后再来比较一下y1、y2的大小.【解答】解:∵点P1(3,y1),P2(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2;故答案是:>.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.解题时也可以根据一次函数的单调性进行解答.17.如图,矩形ABCD沿AE折叠,使D点落在BC边上的F点处,若∠BAF=58°,则∠DAE等于16度.【分析】根据翻折不变性可知,∠DAE=∠FAE,又因为∠BAF=58°且长方形的一个角为90度,可求出∠EAD的度数.【解答】解:根据翻折不变性设∠DAE=∠FAE=x度,又∵∠BAF=58°,∠BAD=90°,∴x+x+58°=90°,解得x=16∴∠EAD=16°.故答案为:16【点评】此题考查了翻折不变性,要注意运用长方形的性质.此题有诸多隐含条件,解答时要注意挖掘.18.菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5cm.【分析】根据菱形的对角线互相垂直平分求出对角线一半的长度,然后利用勾股定理列式计算即可得解.【解答】解:如图,∵菱形ABCD中,对角线长AC=8cm,BD=6cm,∴AO=AC=4cm,BO=BD=3cm,∵菱形的对角线互相垂直,∴在Rt△AOB中,AB===5cm.故答案为:5.【点评】本题主要考查了菱形的对角线互相垂直平分的性质,作出图形更形象直观且有助于理解.19.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是3.【分析】根据平行四边形的对边相等,可得CD=AB=4,又因为S▱ABCD=BC•AE=CD•AF,所以求得DC边上的高AF的长,进而利用勾股定理解得即可.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=4,∴S▱ABCD=BC•AE=CD•AF=6×2=12,∴AF=3.∴DC边上的高AF的长是3.在Rt△ADF中,DF=,故答案为3.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.还要注意平行四边形的面积的求解方法:底乘以高.20.已知点A(1,5),B(3,﹣1),点M在x轴上,当AM﹣BM最大时,点M的坐标为(,0).【分析】作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.利用待定系数法求出直线AB′的解析式,然后求出其与x轴交点的坐标,即M点的坐标.【解答】解:如图,作点B关于x轴的对称点B′,连接AB′并延长与x轴的交点,即为所求的M点.此时AM﹣BM=AM﹣B′M=AB′.不妨在x轴上任取一个另一点M′,连接M′A、M′B、M′B′.则M′A﹣M′B=M′A﹣M′B′<AB′(三角形两边之差小于第三边).∴M′A﹣M′B<AM﹣BM,即此时AM﹣BM最大.∵B′是B(3,﹣1)关于x轴的对称点,∴B′(3,1).设直线AB′解析式为y=kx+b,把A(1,5)和B′(3,1)代入得:,解得,∴直线AB′解析式为y=﹣2x+7.令y=0,解得x=,∴M点坐标为(,0).故答案为:(,0).【点评】本题考查了轴对称﹣﹣最短路线问题、坐标与图形性质.解题时可能感觉无从下手,主要原因是平时习惯了线段之和最小的问题,突然碰到线段之差最大的问题感觉一筹莫展.其实两类问题本质上是相通的,前者是通过对称转化为“两点之间线段最短”问题,而后者(本题)是通过对称转化为“三角形两边之差小于第三边”问题.可见学习知识要活学活用,灵活变通.三、解答题:(本大题共7个小题,满分74分.解答时请写出必要的演推过程21.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.【点评】此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.22.(12分)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【分析】(1)利用两点法就可以画出函数图象;(2)利用函数解析式分别代入x=0与y=0的情况就可以求出交点坐标;(3)通过交点坐标就能求出面积;(4)观察函数图象与x轴的交点就可以得出结论.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),=×2×4=4,(3)S△AOB(4)x<﹣2.【点评】本题考查了一次函数的图象和一次函数图象上点的坐标特征.正确求出一次函数与x轴与y轴的交点是解题的关键.23.(10分)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.【分析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用角的关系求出∠BEF和∠EBG,∠EGC=∠EBG+∠BEF求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.【点评】本题主要考查了正方形,三角形全等判定和性质及等腰三角形,解题的关键是求得△AEB ≌△CFB,找出相等的线段.24.(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B 骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?【分析】(1)根据CO与DE可得出A比B后出发1小时;由点C的坐标为(3,60)可求出B 的速度;(2)利用待定系数法求出OC、DE的解析式,联立两函数解析式建立方程求解即可.【解答】解:(1)由图可知,A比B后出发1小时;B的速度:60÷3=20(km/h);(2)由图可知点D(1,0),C(3,60),E(3,90),设OC的解析式为s=kt,则3k=60,解得k=20,所以,s=20t,设DE的解析式为s=mt+n,则,解得,所以,s=45t﹣45,由题意得,解得,所以,B出发小时后两人相遇.【点评】本题考查利用一次函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图并获取信息是解题的关键.25.(10分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若AB=3,BC=4,求四边形OCED的面积.【分析】(1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,(2)由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半,问题得解.【解答】解:(1)∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OD=OC,∴四边形CODE是菱形;(2)∵AB=3,BC=4,∴矩形ABCD的面积=3×4=12,∵S △ODC =S 矩形ABCD =3,∴四边形OCED 的面积=2S △ODC =6.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE 是菱形是解此题的关键.26.(10分)如图,已知直线l 1:y =2x +1、直线l 2:y =﹣x +7,直线l 1、l 2分别交x 轴于B 、C 两点,l 1、l 2相交于点A .(1)求A 、B 、C 三点坐标;(2)求△ABC 的面积.【分析】(1)联立两直线解析式,解方程即可得到点A 的坐标,两直线的解析式令y =0,求出x 的值,即可得到点A 、B 的坐标;(2)根据三点的坐标求出BC 的长度以及点A 到BC 的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l 1:y =2x +1、直线l 2:y =﹣x +7联立得,, 解得,∴交点为A (2,5),令y =0,则2x +1=0,﹣x +7=0,解得x =﹣0.5,x =7,∴点B 、C 的坐标分别是:B (﹣0.5,0),C (7,0);(2)BC =7﹣(﹣0.5)=7.5,∴S △ABC =×7.5×5=.【点评】本题考查了两直线的相交问题,联立两直线的解析式,解方程即可得到交点的坐标,求直线与x轴的交点坐标,令y=0即可,求直线与y轴的交点坐标,令x=0求解.27.(12分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.。

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度新人教版八年级(下)期中考试数学试卷(含答案解析)

2018-2019学年度八年级(下)期中考试数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. 任何数都有两个平方根B. 若a2=b2,则a=bC. √4=±2D. −8的立方根是−22.下列二次根式中,能与√3合并的是()A. √24B. √12C. √32D. √183.数轴上点A表示的数为-√105,点B表示的数为√77,则A、B之间表示整数的点有()A. 21个B. 20个C. 19个D. 18个4.不等式9-3x<x-3的解集在数轴上表示正确的是()A.B.C.D.5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.等式√x−1•√x+1=√x2−1成立的条件是()A. x>1B. x<−1C. x≥1D. x≤−17.下列各式计算正确的是()A. √102−82=√102−√82=10−8=2B. √(−4)×(−9)=√−4×√−9=(−2)×(−3)=6C. √14+19=√14+√19=12+13=56D. −√1916=−√2516=−458.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是√3和-1,则点C所对应的实数是()A. 1+√3B. 2+√3C. 2√3−1D. 2√3+19.在△ABC中,BC=8cm,AC=5cm,若△ABC的周长为xcm,则x应满足()A. 15<x<24B. 18<x<21C. 10<x<26D. 16<x<2610.如图,每个小正方形的边长都为1,A、B、C是小正方形各顶点,则∠ABC的度数为()A. 90∘B. 60∘C. 45∘D.30∘11. 已知关于x 的不等式组的{2x −a <2b +1x−a≥b 解集为3≤x <5,则ba 的值为( )A. −2B. −12C. −4D. −1412. 如图,ABCD 是一张矩形纸片,AB =3cm ,BC =4cm ,将纸片沿EF 折叠,点B 恰与点D 重合,则折痕EF 的长等于( )A. 3.25cmB. 3.5cmC. 3.6cmD. 3.75cm二、填空题(本大题共6小题,共18.0分) 13. 已知533=148877,那么5.33等于______.14. 已知x -2=√5,则代数式(x +2)2-8(x +2)+16的值等于______.15. 设√10的整数部分为a ,小数部分为b ,则b (√10+a )的值为______.16. 已知关于x 的不等式组{5−2x >1x−a≥0只有四个整数解,则实数a 的取值范是______. 17. 已知实数a 、b 、c 在数轴上的位置如图所示,化简代数式|a |-√(a +c)2+√(c −a)2-√−b 33的结果等于______.18. 观察下列式子:当n =2时,a =2×2=4,b =22-1=3,c =22+1=5 n =3时,a =2×3=6,b =32-1=8,c =32+1=10 n =4时,a =2×4=8,b =42-1=15,c =42+1=17…根据上述发现的规律,用含n (n ≥2的整数)的代数式表示上述特点的勾股数a =______,b =______,c =______.三、计算题(本大题共1小题,共12.0分)19. 实验中学计划从人民商场购买A 、B 两种型号的小黑板,经洽谈,购买一块A 型小黑板比购买一块B 型小黑板多用20元,且购买5块A 型小黑板和4块B 型小黑板共需820元.(1)求购买一块A 型小黑板、一块B 型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号的小黑板总费用不超过5240元,并且购买A 型小黑板的数量至少占总数量的13,请你通过计算,求出购买A 、B 两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20. (1)已知a 、b 为实数,且√1+a +(1-b )√1−b =0,求a 2017-b 2018的值;(2)若x 满足2(x 2-2)3-16=0,求x 的值.21. 计算下列各题(1)√−0.1253+√3116+3(78−1)2-|−112| (2)(√7+√3)(√7−√3)2 (3)(2√27+14√48-6√13)÷√1222. (1)解不等式组:{1−x+12≤x +2x(x −1)>(x +3)(x −3)并把解集在数轴上表示出来. (2)解不等式组:{3x −4(x −2)≥3x 2−1<2x−1323. 如图,四边形ABCD 中,AD =4,AB =2√5,BC =8,CD =10,∠BAD =90°.(1)求证:BD ⊥BC ;(2)计算四边形ABCD 的面积.24. 如图,在⊙O 中,DE 是⊙O 的直径,AB 是⊙O 的弦,AB 的中点C 在直径DE 上.已知AB =8cm ,CD =2cm (1)求⊙O 的面积;(2)连接AE ,过圆心O 向AE 作垂线,垂足为F ,求OF的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】【解答】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.【分析】本题主要考查了无理数的估量,解题关键是确定无理数的整数部分即可解决问题.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8=76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S菱形BFDE=EF×BD=BF×CD,∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE 是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1.则实数a的取值范围是:-3<a≤-2.故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】a+b-2c【解析】解:原式=|a|-|a+c|+|c-a|+b,=a-(a+c)+(a-c)+b,=a-a-c+a-c+b,=a+b-2c.故答案为:a+b-2c.根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可.此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质.18.【答案】2n;n2-1;n2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5 n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…∴勾股数a=2n ,b=n 2-1,c=n 2+1.故答案为:2n ,n 2-1,n 2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n ,b=n 2-1,c=n 2+1,满足勾股数.此题主要考查了数据变化规律,得出a 与b 以及a 与c 的关系是解题关键. 19.【答案】解:(1)设一块A 型小黑板x 元,一块B 型小黑板y 元.则{5x +4y =820x−y=20,解得{y =80x=100.答:一块A 型小黑板100元,一块B 型小黑板80元.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块则{100m +80(60−m)≤5240m ≥13×60, 解得20≤m ≤22,又∵m 为正整数∴m =20,21,22则相应的60-m =40,39,38∴共有三种购买方案,分别是方案一:购买A 型小黑板20块,购买B 型小黑板40块;方案二:购买A 型小黑板21块,购买B 型小黑板39块;方案三:购买A 型小黑板22块,购买B 型小黑板38块.方案一费用为100×20+80×40=5200元; 方案二费用为100×21+80×39=5220元; 方案三费用为100×22+80×38=5240元. ∴方案一的总费用最低,即购买A 型小黑板20块,购买B 型小黑板40块总费用最低,为5200元【解析】(1)设购买一块A 型小黑板需要x 元,一块B 型为y 元,根据等量关系:购买一块A 型小黑板比买一块B 型小黑板多用20元;购买5块A 型小黑板和4块B 型小黑板共需820元;可列方程组求解.(2)设购买A 型小黑板m 块,则购买B 型小黑板(60-m )块,根据需从公司购买A 、B 两种型号的小黑板共60块,要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A 、B 两种型号小黑板的总费用不超过5240元.并且购买A 型小黑板的数量至少占总数量的,列出不等式组求解. 20.【答案】解:(1)∵a ,b 为实数,且√1+a +(1-b )√1−b =0,∴1+a =0,1-b =0,解得a =-1,b =1,∴a 2017-b 2018=(-1)2017-12018=(-1)-1=-2;(2)2(x 2-2)3-16=0,2(x 2-2)3=16,(x 2-2)3=8,x 2-2=2,x 2=4,x =±2.【解析】(1)根据+(1-b )=0和二次根式有意义的条件,可以求得a 、b 的值,从而可以求得所求式子的值; (2)根据立方根的定义求出x 2-2=2,再根据平方根的定义即可解答本题. 本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)√−0.1253+√3116+3(78−1)2-|−112| =-0.5+74-12-32=-34;(2)(√7+√3)(√7−√3)2=(√7+√3)×(√7-√3)×(√7-√3)=4√7-4√3;(3)(2√27+14√48-6√13)÷√12 =(6√3+√3-2√3)÷2√3=52. 【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用平方差公式计算得出答案;(3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1){1−x+12≤x +2①x(x −1)>(x +3)(x −3)②, 解不等式①得x ≥-1,解不等式②得x <9,故不等式的解集为-1≤x <9,把解集在数轴上表示出来为:(2){3x −4(x −2)≥3①x 2−1<2x−13②, 解不等式①得x ≤5,解不等式②得x >-4,故不等式的解集为-4<x ≤5.【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可; (2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD =4,AB =2√5,∠BAD =90°, ∴BD =√AB 2+AD 2=6.又BC =8,CD =10,∴BD 2+BC 2=CD 2,∴BD ⊥BC ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积 =12×4×2√5+12×6×8=4√5+24.【解析】(1)先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明BD ⊥BC ;(2)根据图形得到四边形ABCD 的面积=2个直角三角形的面积和即可求解. 此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA ,如图1所示∵C 为AB 的中点,AB =8cm ,∴AC =4cm又∵CD =2cm设⊙O 的半径为r ,则(r -2)2+42=r 2解得:r =5∴S =πr 2=π×25=25π(2)OC =OD -CD =5-2=3EC =EO +OC =5+3=8∴EA =√AC 2+EC 2=√42+82=4√5∴EF =EA2=4√52=2√5 ∴OF =√EO 2−EF 2=√25−20=√5【解析】(1)连接OA ,根据AB=8cm ,CD=2cm ,C 为AB 的中点,设半径为r ,由勾股定理列式即可求出r ,进而求出面积.(2)在Rt △ACE 中,已知AC 、EC 的长度,可求得AE 的长,根据垂径定理可知:OF ⊥AE ,FE=FA ,利用勾股定理求出OF 的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.。

周口市八年级下学期期中数学试卷

周口市八年级下学期期中数学试卷

周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·高新期末) 如图,函数和的图象相交于A(m,3),则不等式的解集为()A .B .C .D .2. (2分) (2019八下·邢台期中) 小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确是().A . 两人从起跑线同时出发,同时到达终点B . 小苏跑全程的平均速度大于小林跑全程的平均速度C . 小苏前跑过的路程大于小林前跑过的路程D . 小林在跑最后的过程中,与小苏相遇2次3. (2分) (2017八上·辽阳期中) 若式子有意义,则一次函数的图象可能是()A .B .C .D .4. (2分)(2017·广元) 为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A .B .C .D .5. (2分)(2019·新乡模拟) 已知一次函数y=kx+b中,x取不同值时,y对应的值列表如下:则不等式kx+b >0(其中k,b,m,n为常数)的解集为()A . x>2B . x>3C . x<2D . 无法确定6. (2分)(2020·石家庄模拟) 下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A .B .C .D .7. (2分)甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A . 甲乙两人8分钟各跑了800米B . 前2分钟,乙的平均速度比甲快C . 5分钟时两人都跑了500米D . 甲跑完800米的平均速度为100米∕分8. (2分)(2014·四川理) 函数y=3x-6和y=-x+4的图象交于一点,这一点的坐标是()A .B .C .D . (-2,3)9. (2分)函数y=x-2的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。

2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学年八年级(下)期中数学试卷1  解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。

2018-2019学年度第二学期八年级数学期中考试题及参考答案

2018-2019学年度第二学期八年级数学期中考试题及参考答案

学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。

2018-2019学年度第二学期期中质量检测八年级数学试卷及答案

2018-2019学年度第二学期期中质量检测八年级数学试卷及答案
26.(本题满分 12 分) (1)【方法回顾】证明:三角形中位线定理. 已知:如图 1,在△ABC 中,D、E 分别是 AB、AC 的中点.
1
求证:DE∥BC,DE= BC.
2
证明:如图 1,延长 DE 到点 F,使得 EF=DE,连接 CF; 请继续完成证明过程:
图1
图2
图3
(2)【问题解决】 如图 2,在矩形 ABCD 中,E 为 AD 的中点,G、F 分别为 AB、CD 边上的点,若 AG=3, DF=7,∠GEF=90°,求 GF 的长.
三、解答题(本大题共有 10 小题,共 72 分.请在答题卡指定区域内作答,解答时应写出文字说
明、推理过程或演算步骤)
17.(本题满分 4 分)
解方程: 2x 2 1. x2 2x
18.(本题满分 5 分)
先化简再求值:
a 2 3ab a2 b2


a
1
b

a
1
b

(1)人均捐赠图书最多的是 ▲ 年级; (2)估计该校九年级学生共捐赠图书多少册? (3)全校大约共捐赠图书多少册?
20.(本题满分 5 分) 如图,在ABCD 中,点 E、F 分别在 AD、BC 上, 且 AE=CF. 求证:BE=DF.
21.(本题满分 6 分) 已知△ABC 的三个顶点的坐标分别为 A(-5,0)、B(-2,3)、C(-1,0) (1)画出△ABC 关于坐标原点 O 成中心对称的△A1B1C1; (2)将△ABC 绕坐标原点 O 顺时针旋转 90°, 画出对应的△A'B'C'; (3)若以 A'、B'、C'、D'为顶点的四边形为平行四边 形, 请直接写出在第一象限中的 点 D′的坐标 ▲ .

河南省周口市2018-2019学年八年级数学下册期中试题

河南省周口市2018-2019学年八年级数学下册期中试题

河南省周口市周口港区第九中学2018-2019学年八年级数学下学期期中试题2018—2018学年度下期期中考试试卷 八年级数学参考答案一、选择题:1.(D )2.(B )3.(B )4.(D )5.(B )6.(D )7.(D )8.(C ) 二、填空题: 9.【】10.【0】11.【在同一个三角形中,等边对等角】12.13.【22或42】14.【15.【2或4】三、解答题: 16.【⑴原式=(12=】【(2)原式76-17.【⑴∵1m =,1n =,∴2m n +=,m n -=,2mn =-。

∴222m mn n +-=()()222(2)4m n m n mn +-+=⨯-=】【⑵∵1x x+,∴2218x x+=。

∴222112826x x x x ⎛⎫-=+-=-= ⎪⎝⎭。

∴1x x-=。

】 18.【⑴连接AC ,∵CD AD =,90D ∠=︒,∴∠DAC =45°,222A C D A D C =+ 2212=⨯=。

在△ABC 中,∵222221216BA BC AC +=+==,∴∠BAC =90°。

∵2BC AC =,∴30ACB ∠=︒。

∴BAD ∠=BAC ∠+CAD ∠=90°+45°=135°,BCD ∠=BCA ∠+ACD ∠=30°+45°=75°.】【⑵3ABC ACD ABCD S S S =+=△△四边形.】19.【如图,在△ABC 中,AD DB =,AE EC =。

】【DE ∥BC ,12DE BC =。

】【∵DF DE =,AD BD =,∴四边形AEBF 是平行四边形。

∴BF ∥AE ,FB AE =,12DE EF =。

∵AE CE =,∴BF ∥CE ,BF CE =。

∴四边形BCEF 是平行四边形。

∴DE ∥BC ,1122DE EF BC ==。

】20.【在□ABCD 中,DC =AB ,AD =BC ,DC ∥AB ,∴∠CDE =∠DEA . ∵DE 平分ADC ∠,∴∠ADE =∠CDE .在□ABCD 中,∵DC ∥AB ,∴∠CDE =∠DEA . ∴∠ADE =∠DEA .∴AD =AE .同理可得CB CF =. ∴DF =BE ,∴四边形EBFD 是平行四边形.】21.【证明:连接BE ,∵∠ACD =∠DCE ,∴∠BCE =∠ACD . 又∵,AC BC DC EC ==,∴△BCE ≌△ACD .∴BE =AD ,∠BEC =∠D =45°.∴∠BEA =45°+45°=90°. 在Rt △ABE 中,由勾股定理,22222BE AE AB AC +==. 即2222AE AD AC +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省周口市扶沟县2019-2019学年八年级下学期期中数学试卷一、选择题(每题3分)1.(3分)下列二次根式中,是最简二次根式的是()A.2B.C.D.2.(3分)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、263.(3分)在△ABC中,三边长满足b2﹣a2=c2,则互余的一对角是()A.∠A与∠B B.∠C与∠A C.∠B与∠C D.∠A、∠B、∠C4.(3分)在下列定理中,没有逆定理的是()A.有斜边和一直角边对应相等的两个直角三角形全等B.直角三角形两个锐角互余C.全等三角形对应角相等D.角平分线上的点到这个角两边的距离相等5.(3分)平行四边形的一条对角线长为10,则它的一组邻边可能是()A.4和6 B.2和12 C.4和8 D.4和36.(3分)已知菱形的周长为40cm,两对角线的长度之比是3:4,那么两对角线的长分别为()A.6cm8cm B.3cm4cm C.12cm16cm D.24cm32cm7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对8.(3分)已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm二、填空题9.(3分)直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的面积为cm2.10.(3分)已知y=+﹣3,则2xy的值为.11.(3分)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为.12.(3分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.13.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.14.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为.15.(3分)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为.三、计算题16.(8分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.17.(9分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.18.(9分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(9分)如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于F 点,连接AC、DF,请判断四边形ACFD是什么特殊四边形?并证明你的结论.20.(9分)观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?21.(9分)如图所示,平行四边形ABCD的周长是10+6,AB的长是5,DE⊥AB 于E,DF⊥CB交CB的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.22.(10分)已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.23.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).河南省周口市扶沟县2019-2019学年八年级下学期期中数学试卷参考答案与试题解析一、选择题(每题3分)1.(3分)下列二次根式中,是最简二次根式的是()A . 2B .C .D .考点: 最简二次根式.分析: 根据最简二次根式的定义对各选项分析判断利用排除法求解.解答: 解:A 、2是最简二次根式,故本选项正确; B 、=,故本选项错误; C 、=,故本选项错误; D 、=x ,故本选项错误.故选A .点评: 本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)判断×之值会介于下列哪两个整数之间?()A . 22、23B . 23、24C . 24、25D .25、26考点: 估算无理数的大小.分析: 先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案. 解答: 解:∵×=,又∵24<25, ∴×之值会介于24与25之间,故选C .点评: 本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.3.(3分)在△ABC 中,三边长满足b 2﹣a 2=c 2,则互余的一对角是()A.∠A与∠B B.∠C与∠A C.∠B与∠C D.∠A、∠B、∠C考点:勾股定理的逆定理.分析:先由勾股定理的逆定理得出∠B=90°,再根据直角三角形两锐角互余即可求解.解答:解:∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,且∠B=90°,∴∠C与∠A互余.故选B.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且最长边所对的角是直角.同时考查了直角三角形两锐角互余的性质.4.(3分)在下列定理中,没有逆定理的是()A.有斜边和一直角边对应相等的两个直角三角形全等B.直角三角形两个锐角互余C.全等三角形对应角相等D.角平分线上的点到这个角两边的距离相等考点:命题与定理.分析:先写出各选项的逆命题,判断出其真假即可解答.解答:解:A、其逆命题是“两个直角三角形全等,那么斜边和一直角边对应相等”,正确,所以有逆定理;B、其逆命题是“两个锐角互余的三角形是直角三角形”,正确,所以有逆定理;C、其逆命题是“对应角相等的三角形是全等三角形”,错误,所以没有逆定理;D、其逆命题是“到角两边距离相等的点在角的平分线上”,正确,所以有逆定理;故选C.点评:本题考查的是命题与定理的区别,正确的命题叫定理.5.(3分)平行四边形的一条对角线长为10,则它的一组邻边可能是()A.4和6 B.2和12 C.4和8 D.4和3考点:平行四边形的性质;三角形三边关系.分析:平行四边形的一条对角线正好把平行四边形分成两个三角形,平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,所以要讨论第三边与两边之和的关系.解答:解:由题意得:平行四边形的一组邻边长正好是三角形的两边,平行四边形的对角线正好为三角形的第三边,∵平行四边形的一条对角线长为10,∴它的一组邻边必须:满足之和大于10,差小于10,∴它的一组邻边可能是:4和8,故选:C.点评:此题主要考查了平行四边形的性质和三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.6.(3分)已知菱形的周长为40cm,两对角线的长度之比是3:4,那么两对角线的长分别为()A.6cm8cm B.3cm4cm C.12cm16cm D.24cm32cm考点:菱形的性质.专题:计算题.分析:根据菱形的周长可以计算菱形的边长,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,求得x、y的值即可解题.解答:解:菱形的周长为40cm,则菱形的边长为10cm,设菱形的对角线分别是2x、2y,则x、y满足4y=3x,x2+y2=102,解得x=6cm,y=8cm,∴对角线的长为12cm,16cm.故选C.点评:本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中找出x、y的关系并求解x、y的值是解题的关键.7.(3分)已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对考点:矩形的判定;作图—复杂作图.分析:先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.解答:解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.点评:本题考查了作图﹣复杂作图的应用及矩形的判定,从两位同学的作图语句中获取正确信息及熟练掌握矩形的判定定理是解题的关键.8.(3分)已知一矩形的两边长分别为10cm和15cm,其中一个内角的平分线分长边为两部分,这两部分的长为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm考点:矩形的性质.分析:根据已知条件以及矩形性质证△ABE为等腰三角形得到AB=AE,注意“长和宽分别为15cm和10cm”说明有2种情况,需要分类讨论.解答:解:∵矩形ABCD中,BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE∴AB=AE.当AB=15cm时:则AE=15cm,不满足题意.当AB=10cm时:AE=10cm,则DE=5cm.故选B.点评:此题考查了矩形的性质与等腰三角形的判定与性质.注意出现角平分线,出现平行线时,一般出现等腰三角形,需注意等腰三角形相等边的不同.二、填空题9.(3分)直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的面积为cm2.考点:二次根式的乘除法.分析:根据三角形的面积公式求解.解答:解:S=××=(cm).故答案为:.点评:本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则.10.(3分)已知y=+﹣3,则2xy的值为﹣15.考点:二次根式有意义的条件.分析:根据非负数的性质列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,2x﹣5≥0且5﹣2x≥0,解得x≥且x≤,所以,x=,y=﹣3,所以,2xy=2××(﹣3)=﹣15.故答案为:﹣15.点评:本题考查的知识点为:二次根式的被开方数是非负数.11.(3分)已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为16.考点:菱形的性质;正方形的性质.专题:计算题.分析:根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.解答:解:∵B=60°,AB=BC∴△ABC是等边三角形∴AC=AB=4∴正方形ACEF的周长=4×4=16.16故答案为16.点评:本题考查菱形与正方形的性质.12.(3分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.考点:等腰三角形的性质;三角形内角和定理;正方形的性质.专题:计算题.分析:根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.解答:解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.点评:此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.13.(3分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=9cm.考点:三角形中位线定理;矩形的性质.分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.解答:解:在R t△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质.14.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为7.考点:全等三角形的判定与性质;勾股定理;正方形的性质.专题:计算题.分析:如图,根据正方形的性质得BC=BF,∠CBF=90°,AC2=3,DF2=4,再利用等角的余角相等得∠1=∠3,则可根据”AAS“证明△ABC≌△DFB,得到AB=DF,然后根据勾股定理得到BC2=AC2+AB2=AC2+DF2=7,则有b的面积为7.解答:解:如图,∵a、b、c都为正方形,∴BC=BF,∠CBF=90°,AC2=3,DF2=4,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC和△DFB中,∴△ABC≌△DFB,∴AB=DF,在△ABC中,BC2=AC2+AB2=AC2+DF2=3+4=7,∴b的面积为7.故答案为7.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了勾股定理和正方形的性质.15.(3分)如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为a2.考点:勾股定理.分析:根据勾股定理可得AC2+BC2=AB2,然后判断出阴影部分的面积=2S△ABE,再利用等腰直角三角形的面积等于斜边平方的一半计算即可得解.解答:解:∵△ABC是直角三角形,∴AC2+BC2=AB2,∵三个阴影部分三角形都是等腰直角三角形,∴阴影部分的面积=2S△ABE=2וa•(a)=a2.故答案为:a2.点评:本题考查了勾股定理,等腰直角三角形的性质,熟记定理与等腰直角三角形的面积的求法是解题的关键.三、计算题16.(8分)已知x=2﹣,y=2+,求下列代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.考点:二次根式的化简求值.专题:计算题.分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x2+2xy+y2=(x+y)2,然后利用整体代入的方法计算;(2)根据已知条件先计算出x+y=4,x﹣y=﹣2,再利用平方差公式得到x2﹣y2=(x+y)(x﹣y),然后利用整体代入的方法计算.解答:解:(1)∵x=2﹣,y=2+,∴x+y=4,∴x2+2xy+y2=(x+y)2=42=16;(2))∵x=2﹣,y=2+,∴x+y=4,x﹣y=﹣2,∴x2﹣y2=(x+y)(x﹣y)=4×(﹣2)=﹣8.点评:本题考查了二次根式的化简求值:先根据二次根式的性质和运算法则进行化简,然后把满足条件的字母的值代入求值.17.(9分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.考点:解直角三角形的应用.专题:应用题.分析:先根据题意画出示意图,过点C作CE⊥AD于点E,设BE=x,则在RT△ACE中,可得出CE,利用等腰三角形的性质可得出BC,继而在RT△BCE中利用勾股定理可求出x 的值,也可得出CE的长度.解答:解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,即可得AB=BC=30m,设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,解得:x=15,即可得CE=15m.答:小丽自家门前的小河的宽度为15m.点评:此题考查了解直角三角形的应用,解答本题的关键是画出示意图,将实际问题转化为解直角三角形的问题,注意直角三角形的构造,难度一般.18.(9分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AM=DM,MB=MC,∴△ABM≌△D CM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.(9分)如图,在▱ABCD中,点E是CD的中点,AE的延长线与BC的延长线相交于F点,连接AC、DF,请判断四边形ACFD是什么特殊四边形?并证明你的结论.考点:平行四边形的判定与性质.专题:证明题.分析:四边形ACFD为平行四边形,原因是由ABCD为平行四边形,根据平行四边形的对边平行得到AD与BF平行,根据两直线平行内错角相等得∠DAF与∠AFB相等,然后再根据对顶角相等,利用“ASA”证明△AED与△CEF全等,得到AE与FE相等,从而得到四边形ACFD对角线互相平分,故ACFD为平行四边形.解答:解:四边形ACFD为平行四边形,证明:∵ABCD为平行四边形,∴AD∥BF,∴∠DAF=∠AFB,又点E是CD的中点,∴DE=CE,且∠AED=∠FEC,∴△AED≌△CEF,∴AE=FE,∴四边形ACFD为平行四边形.点评:此题考查了平行四边形的性质与判定.平行四边形的判别方法有:两组对边平行的四边形为平行四边形;一组对边平行且相等的四边形为平行四边形;两组对边相等的四边形为平行四边形;两组对角相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形.20.(9分)观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.若132=a+b,则a,b的值可能是多少?考点:规律型:数字的变化类;勾股数.分析:观察三个数之间的关系可得出规律:第n组数为(2n+1)2,(),()由此规律解决问题.解答:解:题目蕴含的规律为:(2n+1)2=+;∵13=2×6+1,∴132=+=84+85,∴a=84,b=85.点评:本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,得出规律,解决问题.21.(9分)如图所示,平行四边形ABCD的周长是10+6,AB的长是5,DE⊥AB 于E,DF⊥CB交CB的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.考点:平行四边形的性质.分析:(1)在平行四边形中,周长是10+6,AB的长是5,所以AD的长为3,又因为DE垂直AB,且DE=3,所以在三角形ADE中,可求出∠A的值,根据平行四边形对角相等,可知∠C.(2)因为对于平行四边形ABCD来讲,以AB为底DE为高和以BC为底DF为高,面积都是一样的,所以可列方程解答.解答:解:(1)∵C▱ABCD=10+6,且AB=5,∴AD=;又∵DE⊥AB,DE=3,∴AE=3,∴AE=DE,∴∠A=∠C=45°(2)S▱ABCD=AB×DE=BC×DF,即,∴DF=.点评:“等面积法”是数学中的重要解题方法.在三角形和四边形中,以不同的边为底其高也不相同,但面积是定值,从而可以得到不同底的高的关系.22.(10分)已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.考点:线段垂直平分线的性质;梯形.专题:证明题.分析:此题要证明DE、AC互相垂直平分.则连接AE,只需证明四边形ADCE是菱形.根据已知条件首先运用两组对边分别平行的四边形是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.解答:证明:连接AE.∵在直角三角形ABC中,E是BC的中点,∴AE是Rt△ABC的中线,∴AE=CE=BE,∴∠EAC=∠ACE.∵AD∥BC∴∠ACE=∠ACD∴∠EAC=∠ACD∴AE∥CD∴四边形AECD是平行四边形.又AE=CE所以平行四边形AECD是菱形,所以DE、AC互相垂直平分.点评:熟练掌握特殊四边形的性质和判定.23.(12分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.分析:(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.解答:(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.点评:此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。

相关文档
最新文档