《用三种方式表示二次函数》优质PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
议一议 5
悟 出真谛
驶向胜利 的彼岸
在上述问题中,自变量x的取值范围是什么?
因为x表示周长为20cm矩形的边长,所以自 变量x的取值范围是:0<x<10.
x
y
当x取何值时,长方形的面积最大?它的 最大面积是多少?你是怎么得到的?请你 描述一下y随x的变化而变化的情况.
当x=5cm时,长方形的面积最大,它的最大面积=25cm2. 由表达式的顶点式,表格中结果,图象的最高点都可得到. y随x的变化而变化的情况是:当0<x<5时,y随x的增大而增 大;当5<x<10时,y随x的增大而减小.
-1 3
0 0
1 -1
2 0
3 3
4 8
… … …
用列表法表示函数的优点,缺点分别是什么?
做一做 9
图象法—用图象表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们的积y 是如何随x的变化而变化的?
y x2 2x
用图象表示:
用图象法表示函数的优点,缺点分别是什么? 比较三种表示方式,你能得出什么结论?与同伴交流.
3.如何描述y随x的变化而变化的情况?
由表格和图象可知,y随x的变化而变化的情况是:当x<1 时,y随x的增大而减小;当x>1时,y随x的增大而增大.
4.你是分别通过哪种表示方式回答一面三个问题的?
议一议 11
知识在于积累
驶向胜利 的彼岸
二次函数的三种表示方式各有什么特点? 它们之间有什么联系?与同伴进行交流.
x
y
用函数表达式表示:
y x10 x即y x2 10 x0 x 10.
用解析法表示函数的优点,缺点分别是什么?
做一做 3
列表法—用表格表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
用表格表示:
x
123456789
10-x 9 8 7 6 5 4 3 2 1
表示 表达式 表格
优点
变量间关系简捷明了,便于分析 计算.
能直接得到某些具体的对应值
缺点 需要通过计算,才能得到所需结 果.
不能反映函数整体的变化情况
图象
直观表示了变量间变化过程和 变化趋势.
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表 关系 格的基础上对函数的总体概括和形象化的表达.
做一做 6
梅花香自苦寒来
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么 它们的积y是如何随x的变化而变化的? ?
用你能分别用函数表达式,表格和图象表示这 种变化吗?
做一做 7
解析法—用表达式表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们 的积y是如何随x的变化而变化的? ?
议一议 10
悟出经验
驶向胜利 的彼岸
根据以上三种表示方式,回答下列问题: 1.自变量x的取值范围是什么? ∵x表示任意一个数,∴自变量x的取值范围是:全体实数.
2.图象的对称轴和顶点坐标分别是什么? 由表达式的顶点式和图象,可知图象的对
பைடு நூலகம்
y x2 2x
称轴是:直线x=1,顶点坐标是:(1,-1).
用三种方式表示二次函数
做一做 1
函数的表示方式
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
y随x的而变化的规律是什么?你能分别用函数表达式, 表格和图象表示出来吗?
勇敢表现奖属于自信的人!
做一做 2
解析法—用表达式表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
小结 拓展 回味无穷
函数的表示方式
解析法—用表达式表示函数 , 列表法—用表格表示函数, 图象法—用图象表示函数.
二次函数的三种表示方式的特点, 它们之间的联系.
驶向胜利 的彼岸
知识的升华
独立 作业
祝你成功! 驶向胜利
的彼岸
结束寄语
下课了!
• 观察,思考,感悟是能否进入数 学大门,领略数学奥妙的关键.
y
9 16 21 24 25 24 21 16 9
用列表法表示函数的优点,缺点分别是什么?
做一做 4
图象法—用图象表示函数
驶向胜利 的彼岸
已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2.
x
y
用图象表示:
用图象法表示函数的优点,缺点分别是什么? 比较三种表示方式,你能得出什么结论?与同伴交流.
用函数表达式表示:
y xx 2即y x2 2x.
或y x 12 1.
用解析法表示函数的优点,缺点分别是什么?
做一做 8
列表法—用表格表示函数
驶向胜利 的彼岸
两个数相差2,设其中较大的一个数为x,那么它们 的积y是如何随x的变化而变化的? ?
用表格表示:
x y x 12 1.
… … …
-2 8