函数奇偶性课件公开课
合集下载
函数的奇偶性ppt课件
(3) f (x) x x2 非奇非偶函数
关于原点对称
f (x) 1x2
1 x2
既是奇函数又是偶函数
f (x)
f (x)为偶函数
七、回顾总结——提纲挈领
知识
函数
奇偶性
方法
数学思想
偶函数 类比的方法 奇函数
分析 函数
表格中数字的特 点猜想出一般的 结论
特殊到 一般
奇偶函数
奇偶函数
的定义 数形结合 图象性质
四、判断偶函数的方法
方法一:定义法
是 否
方法二:图象法
五、自主探究——概念形成(奇函数)
偶函数 类比的方法 奇函数
分析 f (x) x f (x) x2 表格中数字的特点猜
想出一般的结论
特殊到 一般
偶函数 数形结 偶函数 定义 合 图象性质
判断偶函 数的方法
五、自主探究——概念形成(奇函数)
判断奇偶函数的 方法
• 奇函数定义:
设函数 y f ( x) 的定义域为D,
如果对定义域D内的任意一个 x,都有 x D
且 f (x) f (x) ,则这个函数叫做奇函数.
• 奇函数
图象 关于原点对称
• 判断奇函数的方法: 定义法 图象法
六、学以致用——概念强化
1、已知f (x)是偶函数,且x 3, a,求a的值。
f (x) x … 3 2 1 0 1 2 3 … f (x) x2 … 9 4 1 0 1 4 9 …
特 f (1) =f (1)
例 f (2) = f (2)
f (3) =f (3)
f (a)= f (a)
一般 规律: f(-x)= f(x)
结论:当自变量x在定义域内任取一对相反数时,
关于原点对称
f (x) 1x2
1 x2
既是奇函数又是偶函数
f (x)
f (x)为偶函数
七、回顾总结——提纲挈领
知识
函数
奇偶性
方法
数学思想
偶函数 类比的方法 奇函数
分析 函数
表格中数字的特 点猜想出一般的 结论
特殊到 一般
奇偶函数
奇偶函数
的定义 数形结合 图象性质
四、判断偶函数的方法
方法一:定义法
是 否
方法二:图象法
五、自主探究——概念形成(奇函数)
偶函数 类比的方法 奇函数
分析 f (x) x f (x) x2 表格中数字的特点猜
想出一般的结论
特殊到 一般
偶函数 数形结 偶函数 定义 合 图象性质
判断偶函 数的方法
五、自主探究——概念形成(奇函数)
判断奇偶函数的 方法
• 奇函数定义:
设函数 y f ( x) 的定义域为D,
如果对定义域D内的任意一个 x,都有 x D
且 f (x) f (x) ,则这个函数叫做奇函数.
• 奇函数
图象 关于原点对称
• 判断奇函数的方法: 定义法 图象法
六、学以致用——概念强化
1、已知f (x)是偶函数,且x 3, a,求a的值。
f (x) x … 3 2 1 0 1 2 3 … f (x) x2 … 9 4 1 0 1 4 9 …
特 f (1) =f (1)
例 f (2) = f (2)
f (3) =f (3)
f (a)= f (a)
一般 规律: f(-x)= f(x)
结论:当自变量x在定义域内任取一对相反数时,
函数的奇偶性课件(公开课)
y
5 4 3 2 1
-4 -3 -2 -1 0 1 2 3 4 x -1 -2 -3 -4
-4 -3 -2 -1 0 1 2 3 4 x -1 -2 -3 -4
x
f ( x) x 2
-3 -2 -1 0 1 2
3
x
f ( x) x
-3 -2 -1 0 1 2
3 3
9 4
1 0 1 4 9
3 2 1 0 1 2
函数图 象关于y 轴对称
这样的函数我们称之为偶函数
函数奇偶性的定义一(“形”的角度)
一般地,图象关于原点对称的函数叫做奇函数 . 反之,奇函数的图象一定关于原点对称 . y 一般地,图象关于 轴对称的函数称为偶函数 . y 反之,偶函数的图象一定关于 轴对称. f ( x) 当函数 是奇函数或偶函数时,称函数具有 奇偶性.
请同学们回答一下什么是轴对称图形?
轴对称图形:在平面内,如果一个图形沿一条直线折叠,直线 两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条 直线叫做对称轴.
1 请同学们观察函数 f ( x) x与函数 f ( x) 的图象 . x
函数图 象关于 原点对 称
这样的函数我们称之为奇函数
请同学们观察函数 f ( x) x2与函数f ( x) x的图象 .
答:定义域必须关于原点对称!
偶函数定义: 一般地,如果对于函数 f ( x ) 定义域内的任意一个x , 都有 f ( x) f ( x)成立,则称函数 f ( x ) 为偶函数. f ( x ) 和 f ( x )的值相等,即 反之,偶函数 f ( x ) 中, f (- x) f ( x) .
该函数是非奇非偶函数
(4)f ( x) x 1
奇偶性第课时函数奇偶性的应用公开课一等奖优质课大赛微课获奖课件
5 第5页
探究点1 依据函数奇偶性画函数图象
偶函数图象关于y轴对称,假如能够画出偶函数在y 轴一侧图象,则依据对称性就可补全该函数在y轴另一 侧图象.
奇函数图象关于坐标原点对称,假如能够画出函数在 坐标原点一侧图象,则依据对称性能够补全该函数在原 点另一侧图象.
6 第6页
例1.画出下列函数图象
(1)y x2 2 x
9 第9页
探究点2 依据函数奇偶性求函数解析式
例2.已知函数f(x)在(0,+∞)上解析式是f(x)=2x+1,依 据下列条件求函数在(-∞,0)上解析式. (1)f(x)是偶函数; (2)f(x)是奇函数.
10 第10页
分析:求函数f(x)在(-∞,0)上解析式,就是求当
x (时, ,0)如何用含x表示式表示f(x)
21 第21页
但凡人能想象到事物,必定有些人能 将它实现。
——凡尔纳
22 第22页
8 第8页
(2)函数是奇函数,能够证实这个函数在区间(0,1] 上单调递减,在区间(1,+∞)上单调递增,且在(0, +∞)上函数值都是正值,函数在(0,+∞)上最小值 为2.(这些都能够依据函数单调性定义进行证实)
依据函数在(0,+∞)上性质, 作出函数图象,如图第一象限内 如图所表示. 依据奇函数图象关于坐标原点 对称画出这整个函数图象,如 图。
3 第3页
假如对于定义域I内某个区间D上任意两个自变量值 x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x) 在区间D上是减函数.
4 第4页
普通地,假如对于函数f(x)定义域内任意一个x,都 有f(-x)=f(x) ,那么函数f(x)就叫做偶函数.
探究点1 依据函数奇偶性画函数图象
偶函数图象关于y轴对称,假如能够画出偶函数在y 轴一侧图象,则依据对称性就可补全该函数在y轴另一 侧图象.
奇函数图象关于坐标原点对称,假如能够画出函数在 坐标原点一侧图象,则依据对称性能够补全该函数在原 点另一侧图象.
6 第6页
例1.画出下列函数图象
(1)y x2 2 x
9 第9页
探究点2 依据函数奇偶性求函数解析式
例2.已知函数f(x)在(0,+∞)上解析式是f(x)=2x+1,依 据下列条件求函数在(-∞,0)上解析式. (1)f(x)是偶函数; (2)f(x)是奇函数.
10 第10页
分析:求函数f(x)在(-∞,0)上解析式,就是求当
x (时, ,0)如何用含x表示式表示f(x)
21 第21页
但凡人能想象到事物,必定有些人能 将它实现。
——凡尔纳
22 第22页
8 第8页
(2)函数是奇函数,能够证实这个函数在区间(0,1] 上单调递减,在区间(1,+∞)上单调递增,且在(0, +∞)上函数值都是正值,函数在(0,+∞)上最小值 为2.(这些都能够依据函数单调性定义进行证实)
依据函数在(0,+∞)上性质, 作出函数图象,如图第一象限内 如图所表示. 依据奇函数图象关于坐标原点 对称画出这整个函数图象,如 图。
3 第3页
假如对于定义域I内某个区间D上任意两个自变量值 x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x) 在区间D上是减函数.
4 第4页
普通地,假如对于函数f(x)定义域内任意一个x,都 有f(-x)=f(x) ,那么函数f(x)就叫做偶函数.
函数的奇偶性对称性周期性课件共19张PPT
(2)已知 f (x) 是奇函数,且当 x 0 时,f (x) eax .若 f (ln 2) 8 ,则a ___-_3______.
(3)(2020·海南 8)若定义在 R 的奇函数 f(x)在(, 0) 单调递减,且 f(2)=0,则满足
xf (x 1) 0 的 x 的取值范围是( D )
A.13
B. 2
C.
13 2
D.123
专题三:函数的周期性
变式 5:(1)设定义在 R 上的函数 f x 满足 f x 2 f x ,若 f 1 2 ,则 f 99 _-_2__.
(2)(2022·湖北模拟)定义在 R 上的函数 f x 满足 f x 1 f x 2 ,则下列是周期函数的是 ( D )A. y f x x B. y f x x C. y f x 2x D. y f x 2x
叫做偶函数 一般地,设函数f(x)的定义域为I,如果∀x∈I, 奇函数 都有-x∈I,且_f_(-__x_)_=__-__f_(x_)_,那么函数f(x) 关于_原__点__对称 就叫做奇函数
复习回顾 2.周期性 (1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数 T,使得对每一个x∈D都有x+T∈D,且_f_(_x+__T__)=__f_(x_)_,那么函数y=f(x) 就叫做周期函数,非零常数T叫做这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最_小___的正数, 那么这个_最__小__正__数__就叫做f(x)的最小正周期.
课堂小结
函数的性质
奇偶性
判断 求解析 求参数
对称性
轴对称: 中心对称:
周期性
求值 求解析 比较大小
祝同学们前程似锦!
函数的奇偶性课件(公开课中职班)
物理学中的应用
电磁学
奇偶性在电磁学中有着广泛的应用, 例如在研究电磁波的传播、电磁场的 分布以及电磁力的作用时,常常需要 利用函数的奇偶性进行分析和计算。
波动方程
在研究波动现象时,如声波、水波等 ,函数的奇偶性可以帮助我们更好地 理解波的传播规律和特性。
经济学中的应用
金融分析
在金融数据分析中,奇偶性可以帮助我们更好地理解和预测股票、债券等金融 产品的价格走势。例如,股票价格的波动可能呈现出一定的周期性,而函数的 奇偶性可以帮助我们判断这种周期性的规律。
非奇非偶函数的定义
既不是奇函数也不是偶函数的函数称为非奇非偶函数。
非奇非偶函数的特性
非奇非偶函数的图像既不关于原点对称,也不关于y轴对称。
非奇非偶函数的例子
正切函数、正弦函数等。
02 奇偶性的判断方法
定义法
判断步骤包括:首先确定函数定义域是否关于原点对 称,然后计算$f(-x)$并与$f(x)$比较,最后根据定义 判断$f(-x)$与$f(x)$的关系得出结论。
函数的奇偶性课件(公开课中职班)
目录
• 函数奇偶性的定义 • 奇偶性的判断方法 • 奇偶性在生活中的应用 • 奇偶性的扩展知识 • 习题与解答
01 函数奇偶性的定义
奇函数
01
02
03
奇函数的定义
如果对于函数$f(x)$的定 义域内任意一个$x$,都 有$f(-x)=-f(x)$,则称 $f(x)$为奇函数。
统计学
在统计学中,数据的分布和变化规律常常可以用函数来描述,而函数的奇偶性 可以帮助我们更好地分析这些数据,例如判断数据的对称性、偏态等。
计算机科学中的应用
图像处理
在图像处理中,奇偶性可以帮助我们分析和处理图像的对称性、翻转等操作。例 如,在图像识别和计算机视觉中,可以利用函数的奇偶性进行特征提取和匹配。
奇偶性第课时函数奇偶性的概念省公开课一等奖全国示范课微课金奖PPT课件
(2)若函数定义域不关于原点对称,则函数既不是奇函数也不 是偶函数.
2024/2/18
研修班
5
第5页
判断下列函数是否具有奇偶性.
(1)f(x)=x-1x (2)f(x)=x2-1,x∈[-3,3] (3)f(x)=2xx2++36x
【思路点拨】 由题目可获取以下主要信息:
①函数 f(x)的解析式均已知;
2024/2/18
研修班
17
第17页
【证实】 令x=0,y=x, 则f(x)+f(-x)=2f(0)·f(x)① 又令x=x,y=0得 f(x)+f(x)=2f(x)·f(0)② ①②得f(-x)=f(x) ∴f(x)是偶函数.
2024/2/18
研修班
18
第18页
1.准确了解函数奇偶性定义
(1)①偶函数(奇函数)定义中“对D内任意一个x,都有-x∈D
(2)函数按奇偶性能够分为四类:奇函数,偶函数,既是奇函
数又是偶函数,既不是奇函数又不是偶函数.
2024/2/18
研修班
19
第19页
判断函数 f(x)=(x-1)
11+-xx的奇偶性.
【错解】 将解析式变形为:
f(x)=- (1-x)211+-xx=- (1+x)(1-x)
=- 1-x2.
∴f(-x)=- 1-(-x)2=- 1-x2 ∴f(-x)=f(x),∴f(x)为偶函数. 【错因】 没有考察函数定义域的对称性.
2024/2/18
研修班
11
第11页
(3)x∈R, f(-x)=|-x+2|-|-x-2| =|x-2|-|x+2| =-(|x+2|-|x-2|)=-f(x), ∴f(x)是奇函数.
已知 f(x)=x-2+x2x++x1-1
2024/2/18
研修班
5
第5页
判断下列函数是否具有奇偶性.
(1)f(x)=x-1x (2)f(x)=x2-1,x∈[-3,3] (3)f(x)=2xx2++36x
【思路点拨】 由题目可获取以下主要信息:
①函数 f(x)的解析式均已知;
2024/2/18
研修班
17
第17页
【证实】 令x=0,y=x, 则f(x)+f(-x)=2f(0)·f(x)① 又令x=x,y=0得 f(x)+f(x)=2f(x)·f(0)② ①②得f(-x)=f(x) ∴f(x)是偶函数.
2024/2/18
研修班
18
第18页
1.准确了解函数奇偶性定义
(1)①偶函数(奇函数)定义中“对D内任意一个x,都有-x∈D
(2)函数按奇偶性能够分为四类:奇函数,偶函数,既是奇函
数又是偶函数,既不是奇函数又不是偶函数.
2024/2/18
研修班
19
第19页
判断函数 f(x)=(x-1)
11+-xx的奇偶性.
【错解】 将解析式变形为:
f(x)=- (1-x)211+-xx=- (1+x)(1-x)
=- 1-x2.
∴f(-x)=- 1-(-x)2=- 1-x2 ∴f(-x)=f(x),∴f(x)为偶函数. 【错因】 没有考察函数定义域的对称性.
2024/2/18
研修班
11
第11页
(3)x∈R, f(-x)=|-x+2|-|-x-2| =|x-2|-|x+2| =-(|x+2|-|x-2|)=-f(x), ∴f(x)是奇函数.
已知 f(x)=x-2+x2x++x1-1
3.2.1 函数的奇偶性 课件(共26张PPT)(2024年)
f(x)
g(x) f(x)+g(x) f(x)-g(x)
偶函数 偶函数 偶函数
f(x)g(x
)
f[g(x)]
注
意:f[g(x)]
偶函数 偶函数 偶函数 中,g(x)的
偶函数 奇函数 不能确定 不能确定 奇函数 偶函数 值域是f(x)
奇函数 偶函数 不能确定 不能确定 奇函数 偶函数 的定义域
奇函数 奇函数 奇函数
活动二:新知探究
偶函数的定义:
一般地,设函数 f(x)的定义域为 I ,如果∀x∈I,都
有-x∈I,且f(-x)=f(x), 那么函数 f(x)就叫做偶函数.
活动二:新知探究
偶函数的几点说明:
(1)偶函数的定义域必关于原点对称,即若 x 是定义域内的
一个值,则 –x 也一定在定义域内.
(2)“函数 f(x)为偶函数”是“函数 f(x)图象关于y轴对
奇函数 偶函数 奇函数 的子集.
活动二:新知探究
类比函数单调性,你能用符号语言精确地描述“函数图象
关于y轴对称”这一特征吗?
不妨取自变量的一些特殊值,观察相应函数值的情况
x
···
-3
-2
-1
0
1
2
3
···
f(x)=x²
···
9
4
1
0
1
4
9
···
g(x)=2-|x|
···
-1
0
1
2
1
0
-1
···
可以发现,当自变量取一对相反数时,相应的两个函数值相等.
称”的充要条件.
活动二:新知探究
1
探究:观察函数 f(x)=x和g(x)= 的图象,你能发现这两个函数
函数的奇偶性(数学教学课件)课件
附录
奇函数举例
偶函数举例
数学符号标记
一些常见的奇函数示例及其图像。 一些常见的偶函数示例及其图像。 一些相关的数学符号和标记。
函数的奇偶性(数学教学 课件)ppt课件
本次课程将深入讲解函数的奇偶性概念及其应用。通过丰富的实例和图像, 我们将带您领略数学中的奥秘。
奇偶函数的定义
定义式
奇函数的定义和性质以及其与偶函数的关系。
函数图像
奇函数和偶函数的图像有什么特点,如何自行对称。
奇偶函数的性质
1
合成
如何通过奇函数和偶函数的合成得到一个新的函数。
奇阳偶阴
如何快速判断一个函数在正数和负数轴上的取值。
经典例题
1
解析式判断
看到一个函数的解析式,如何快速判断其是奇函数还是偶函数。
2
化简函数
如何通过奇偶性来化简给定函数。
总结
定义和性质
奇偶函数的基本概念和数学 性质。
判断方法
如何快速、有效地判断一个 函数的奇偶性。
应用场景
奇偶函数在数学和工数,偶数次幂的函数是偶函数。
3
积分
在奇函数或偶函数的范围内进行积分,得到什么样的结果。
如何判断函数的奇偶性
函数公式
如何看出一个函数的公式是奇函数还是偶函数。
图像判断
如何通过图像的对称性判断一个函数的奇偶性。
奇偶函数的应用
加减乘
如何通过奇函数和偶函数的性质来化简函数的加减 和乘积。
函数的奇偶性共课时省公开课一等奖全国示范课微课金奖PPT课件
思索3:普通地,若函数y=f(x)图象关于坐标
原点对称,则f(x)与f(-x)有什么关系?反之
成立吗?
f(x)=-f(-x)
思索4:我们把含有上述特征函数叫做奇函数, 那么怎样定义奇函数?
假如对于函数f(x)定义域内任意一个x, 都有f(-x)=-f(x)成立,则称函数f(x)为奇 函数.
第7页
思索5:等式f(-x)=-f(x)用文字语言怎样表 述?
第9页
例3 确定函数 f (x) x2 2 | x | 3单调区间.
y
x -1 o 1
第10页
作业: P36练习:1,2
第11页
1.3.2 函数奇偶性 第二课时 函数奇偶性性质
第12页
问题提出
1.奇函数、偶函数定义分别是什么? 2.奇函数和偶函数定义域、图象分别有 何特征? 3.函数奇偶性有那些基本性质?
f(x) + f(-x)是偶函数 f(x) - f(-x)是奇函数
第16页
思索3:二次函数 f (x) ax2 bx c 是偶函
数条件是什么? 一次函数 f (x) kx b 是奇函数条件
是什么? b=0
第17页
理论迁移
例1 已知f(x)是奇函数,且当 x 0时,
f (x) x2 3x
思索5:常数函数 f (x) a(a 0) 含有奇)
思索1:假如函数f(x)和g(x)都是奇函数,那 么f(x) + g(x),f(x) - g(x), f(x)×g(x) ,f(x)÷g (x)奇偶性怎样?
思索2:假如f(x)是定义在R上任意一个函数, 那么f(x) + f(-x),f(x) - f(-x)奇偶性怎 样?
第2页
知识探究(一)
函数奇偶性完整(公开课课件)ppt课件
精品课件
21
(3)f(x)=0 (xR)
解:函数f(x)的定义域为R. ∵ f(-x)=f(x)=0, 又 f(-x)=-f(x)=0, ∴f(x)为既奇又偶函数.
(4) f(x)=x+1
解:函数定义域为R. ∵ f(-x)= -x+1, - f(x)= -x-1, ∴f(-x)≠f(x),且f(-x)≠ –f(x). ∴f(x)为非奇非偶函数.
临沂三中 李法学
精品课件
3
教学目标
➢1、理解奇函数、偶函数的概念; ➢2、函数奇偶性的判断; ➢3、奇、偶函数图象的性质
【重点】函数奇偶性的概念
【难点】函数奇偶性的判断
精品课件ቤተ መጻሕፍቲ ባይዱ
4
观察下列两个函数图象并思考以下问题:
(1)这两个函数图象有什么共同特征吗?
这两个 函数的图像
(2)当自变量x取一对相反数时,相应的
说明f(-x)与f(x)都有意义,
即-x、x必须同时属于定义域,
因此偶函数的定义域关于原点对称的。
精品课件
7
思考:(1)下列函数图像是偶函数的图像吗?
y
y
y
。
1
x
1x
-1 1
x
f (x) x2
f(x)x2 x(,1] f(x)x2(x1) x(,1] [1,)
(2)下列说法是否正确,为什么?
①若f (-2) = f (2),则函数 f (x)是偶函数. ②若f (-2) ≠ f (2),则函数 f (x)不是偶函数.
● f(x)就叫做偶函数.
● 2、奇函数的图象关于
对称。
● 二、判断正误:
● 1、偶函数的图形不一定关于y轴对称…………( )
1 第1课时 函数奇偶性的概念(共45张PPT)
【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.
函数的奇偶性(数学教学课件)课件
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 f(-x)= - f(x),
∴f(x)为奇函数.
1奇偶性定义: 对于函数f(x),在它的定义域内,
①若有f(-x)=-f(x), 则f(x)叫做奇函数;
②若有f(-x)=f(x), 则f(x)叫做偶函数。 2图象性质: 奇函数的图象关于原点对称; 偶函数的图象关于y轴对称. 3判断奇偶性方法: 图象法,定义法。 4定义域关于原点对称是函数具有奇偶性的 2 2
3 9 3 3
x
f ( x) x
-3 -2 -1 1 2 3
● 我们得到: ● 1 这两个函数图象都关于y轴对称. ● 2 从函数值对应表可以看到: ● 当自变量x取一对相反数时,相应的两个函数值相同. 即点(x,f(x))在图象上,相应的点(-x,f(x))也在函数图象 上。
作业
课本P58 2 (1)、(2)
f(-x)与f(x)
f(x)是偶函数或奇函数或非奇非偶函 数或即是奇函数又是偶函数。
结论
练习2.判断下列函数的奇偶性
1 (1) f ( x ) x x
解:定义域为{x|x≠0},
f ( x ) ( x ) ( 1 ) x x 1 , x
(2)f(x)=5 解:f(x)的定义域为R. ∵ f(-x)=f(x)=5 ∴f(x)为偶函数. y 5 o x
1 2
0
0
1
1
2
8
3
27
x
f ( x) 1 x
-1
1
2
1 2
3
1 3
1 3
1
1
概念形成
2.奇函数的概念
如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=-f(x),那么函数f(x)就叫做奇函数.
奇函数的特征:
①解析式的基本特征: ②图像特征:
f (-x)=-f (x)
关于原点对称.
概念形成
1. 偶函数的概念
如果对于函数f(x)的定义域内任意一个x,都有 f(-x)=f(x),那么函数f(x)就叫做偶函数.
偶函数的特征:
①解析式的基本特征:
f (-x)=f (x)
②图像特征: 关于y轴对称.
下列函数是偶函数吗?
y y y
。
1
2
x
1
x
f ( x) x x (,1]
对于奇、偶函数定义的几点说明:
(1) 定义域关于原点对称是函数具有奇偶性的先决条 件。
[-b,-a]
o
[a ,b]
x
(2) 如果一个函数f(x)是奇函数或偶函数,
那么我们就说函数f(x)具有奇偶性.
(3) 函数的奇偶性是函数的整体性质.
(1)图像法
(2)定义法
图象法
例1.根据下列函数图象,判断函数奇偶性.
y y
偶
x
奇
x
2 f ( x) 2 x 11
y
f ( x) x
-1
2
非奇 非偶 x
y
-1 1
奇
x
f ( x) x 2 , x [1,2]
f ( x) x 3 , x [1,1]
定义法
例2. 判断下列函数的奇偶性
(1) f(x)=x3+2x; (2) f(x)=2x4+3x2; 解: 函数定义域为R. ∵f(-x)=2(-x)4+3(-x)2 =2x4+3x2 = f(x) ∴f(x)为偶函数. 解: 函数定义域为R. ∵f(-x)=(-x)3+2(-x) = -x3-2x = -(x3+2x) = - f(x) ∴f(x)为奇函数.
f ( x) x2(x 1)
-1
1
x
f ( x) x 2 x (, 1] [1, )
不是
不是
是
再观察下列函数的图象,它们又有什么样的特点 y 规律呢?
O x0 x
fx = x3
f ( x)
1 ( x 0) x
x
f ( x) x3
-3 -2 -1 27 8 1 -3 -2
授课人:冯祥云 班级:高一二班
请 你 欣 赏
观察下列两个函数图象并思考以下问题: (1)这两个函数图象有什么共同特征吗? (2)当自变量x取一对相反数时,相应的两个函数值如 y 何? y
o x
o
x
f ( x) x 2
f ( x) x
x
f ( x) x 2
-3 -2 9 4
-1
1
0 0 0 0
用定义法判断函数奇偶性解题步骤:
一看 二找
三判断
给出函数
(1)先确定函数定义域,并判断 定义域是否关于原点对称; (2)求f(-x),找 f(x)与f(-x)的关系; 若f(-x)=f(x),则f(x)是偶函数; 若f(-x)= - f(x),则f(x)是奇函数. (3)作出结论.
判断定义域 是否对称 是 否