第二章 信号分析与处理-3

合集下载

信号分析与处理答案第二版完整版

信号分析与处理答案第二版完整版

信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。

解已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

信号分析与处理基础PPT课件 共90页

信号分析与处理基础PPT课件 共90页
第2章 信号分析与处理基础
华南农业大学工程学院
被测对象
传感器
信号调理
显示记录 装置
信息输入 系统 信息输出
2
华南农业大学工程学院
物理上:信号是信息的载体,是信息的一种表现形 式,在测试技术中常常通过波形体现。
A 0
t
3
华南农业大学工程学院
第2章 信号分析与处理基础
主要内容如下:
一、信号的分类与描述 二、周期信号和离散频谱(傅里叶级数) 三、瞬态非周期信号和连续频谱(傅里叶变换) 四、随机信号分析
3)从信号的能量上 --能量信号与功率信号。
5
华南农业大学工程学院
1) 确定性信号和随机信号 可以用明确数学关系式描述的信号称为确定性信号。 不能用数学关系式描述的信号称为随机信号。
随机信号
6
华南农业大学工程学院
a) (确定性信号)周期信号:经一定时间间隔可重复出现的
信号 b)
x ( t ) = x ( t + nT0 ) (n =1,2,3….)
32
华南农业大学工程学院
33
华南农业大学工程学院
34
华南农业大学工程学院
第三节 瞬态非周期信号与连续频谱
离散频谱所对应的时域信号是否一定是周期信号
具有离散频谱的信号不一定是周期信号。 只有其各简谐分量的频率具有一个公约数(即频率 比为有理数)—基频,它们才能在某个时间间隔后 周而复始,合成后的信号才是周期信号。 把具有离散频谱的非周期信号称准周期信号。
0 30 50 ()
5 /2
0 30 50
/2

0 30 50
在频域中每个信号都需同时用幅频谱和相频谱来描述 15

第二章 测试信号的分析与处理(3)

第二章  测试信号的分析与处理(3)

(4)两周期信号的互相关函数仍然是同频率的周期信号, 且保留原了信号的相位信息。
(5)两个非同频率的周期信号互不相关。
(6)随机噪声信号的自相关函数将随 的增大快速衰 减。
12
4 相关分析的工程应用
案例:机械加工表面粗糙度自相关分析
被测工件
相关分析
性质3,性质6:提取出回转误差等周期性的故障源。
13
案例:地下输油管道漏损位置的探测
X1 t
X2
14
5 功率谱分析及其应用(补充)
(1) 功率谱密度函数的定义 随机信号的自功率谱密度函数(自谱)是该随机信号自 相关函数的傅立叶变换,记为Sx(f):
其逆变换为:
15
(2) 功率谱密度函数的物理意义
Sx(f)随机信号的频域描述函数。
当τ =0时,有:
17
(3)功率谱在设备诊断中的应用
上图是汽车变速箱上加速度信号的功率谱图。图(a)是变速箱正
常工作谱图,(b)为机器运行不正常时的谱图。可以看到图(b)比
(a)增加了9.2Hz和18.4Hz两个谱峰,这两个频率就为设备故障
的诊断提供了依据。
18
19
11
3 相关函数的性质
相关函数描述了两个信号间或信号自身不同时刻的相似 程度,通过相关分析可以发现信号中许多有规律的东西。
(1)自相关函数是 的偶函数,RX()=Rx(- ); (2)当 =0 时,自相关函数具有最大值。
(3)周期信号的自相关函数仍然是同频率的周期 但不保留原信号的相位信息。
信号,
从而:
上式表明:Sx(f)曲线下的总面积与x2(t)/T曲线下的总面积相等。 从物理意义上讲,x2(t)是信号x(t)的能量,x2(t)/T是信号x(t)的

《信号分析与处理》课件

《信号分析与处理》课件

06
信号处理的实际应用
信号处理在通信领域的应用
01
信号调制与解调
利用信号处理技术对信号进行调 制和解调,实现信号的传输和接 收。
02
信号压缩与解压缩
03
信号增强与恢复
通过信号处理技术对信号进行压 缩和解压缩,以减少传输带宽和 存储空间。
针对信道噪声和干扰,采用信号 处理算法对信号进行增强和恢复 ,提高通信质量。
调制解调的应用
无线通信
移动通信
在无线通信中,调制解调技术是实现 信号传输的关键环节,通过不同的调 制解调方式可以实现高速、可靠、低 成本的无线通信。
在移动通信中,由于信道条件变化大 、传输环境复杂,调制解调技术对于 提高信号传输质量和降低干扰具有重 要作用。
卫星通信
卫星通信中,由于传输距离远、信道 条件复杂,调制解调技术对于提高信 号传输质量和降低误码率具有重要意 义。
备或算法。
02
滤波器的作用
对信号进行预处理,提高信号质量,提取有用信息,抑制噪声和干扰。
03
滤波器的分类
按照不同的分类标准,可以将滤波器分为多种类型,如按照处理信号的
类型可以分为模拟滤波器和数字滤波器;按照功能可以分为低通滤波器
、高通滤波器、带通滤波器和带阻滤波器等。
滤波器的特性
频率特性
描述滤波器对不同频率信 号的通过和抑制能力,是 滤波器最重要的特性之一 。
通过将信号从时间域转换到频率域,可以更好地 揭示信号的内在特征和规律。
频域分析的基本概念包括频率、频谱、带宽等。
频域变换的性质
傅里叶变换
将信号从时间域转换到频率域的常用方法,具有 线性、时移、频移等性质。
频谱分析
通过分析信号的频谱,可以得到信号的频率成分 和幅度信息。

信号分析与处理答案第二版完整版

信号分析与处理答案第二版完整版

信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。

解已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

信号分析与处理

信号分析与处理

信号分析与处理第一章绪论:测试信号分析与处理(de)主要内容、应用;信号(de)分类,信号分析与信号处理、测试信号(de)描述,信号与系统.测试技术(de)目(de)是信息获取、处理和利用.测试过程是针对被测对象(de)特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定(de)目(de)对信号进行分析和处理,从而探明被测对象内在规律(de)过程.信号分析与处理是测试技术(de)重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术.一切物体运动和状态(de)变化,都是一种信号,传递不同(de)信息.信号常常表示为时间(de)函数,函数表示和图形表示信号.信号是信息(de)载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息.信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷(de)含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号(de)频谱分析是信号分析中一种最基本(de)方法:将频率作为信号(de)自变量,在频域里进行信号(de)频谱分析;信号分析是研究信号本身(de)特征,信号处理是对信号进行某种运算.信号处理包括时域处理和频域处理.时域处理中最典型(de)是波形分析,滤波是信号分析中(de)重要研究内容;测试信号是指被测对象(de)运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述.常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约(de)事物组成(de)具有某种功能(de)整体.被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统.系统(de)主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统.第二章连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号(de)傅立叶变换、周期信号(de)傅立叶变换、采样信号分析(从连续开始引入到离散).信号分析研究信号如何表示为各分量(de)叠加,并从信号分量(de)组成情况去观察信号(de)特性.信号(de)分解可以看作为函数(de)分解;完备正交实变函数集信号(de)分解,只要满足狄里赫利条件,任何周期信号可以分解为直流分量和许多余弦或正弦分量,这些余弦和正弦分量(de)角频率是基频(de)整数倍.基频分量、弦波分量;周期信号(de)幅度谱和相位谱,谱线、包络线、是离散频谱.谱线间隔与周期长短(de)关系.复数幅度频谱和复数相位频谱,偶函数和奇函数周期信号(de)平均功率等于直流、基波和各次谐波分量有效值(de)平方和.周期信号(de)功率谱表示信号各次谐波分量(de)功率分布规律.线性非时变系统(de)(de)冲激响应与输入信号(de)卷积积分就是该系统(de)零状态响应.非周期信号(de)幅频谱和相位谱是连续谱.一个非周期信号也可以表示成无穷多个以F(w)(de)相应值加权(de)指数函数组合而成.⎰∞∞-=ωωπωd e F t f t j )(21)(非周期信号分解为许多不同频率(de)分量,分量频率包含从零到无穷大之间(de)一切频率成分,频率分量(de)振幅无穷小,振幅密度给出,振幅频谱和相位频谱.傅立叶变换(de)线性性质说明信号加权和(de)频谱等于各信号频谱(de)加权和.冲激信号中所有频率分量(de)强度均相等,其频带为无限宽.信号在时域中产生一个延迟时间,该信号各频率分量(de)幅值大小不变,但各频谱分量(de)相位缺附加了一个与频率分量线性关系(de)相移.从信号(de)频移特性可以理解调制与解调P29信号在时域中(de)时间函数压缩了α倍,则它在频域中(de)频谱函数就要扩展α倍.信号(de)微分特性可以直接应用在微分方程转频域分析两个函数在时域中进行卷积积分(de)频谱函数等于这两个函数(de)频谱直接相乘.两个函数时域相乘(de)频谱函数等于这两个函数(de)频谱函数进行卷积.周期信号(de)傅立叶变换可以利用周期信号傅立叶级数系数或者信号一个周期所对应非周期信号(de)傅立叶变换(de)结果计算得到.∑∞-∞=-=n n T n F t f F )(2)}({1ωωδπ1|)(101ωωωn n F T F == 理想采样信号(de)频谱,是原连续时间信号频谱(de)周期延拓.香农采样定理说明采样频率必须等于或大于信号所具有最高频率(de)两倍.实际可以选择4-10倍.常用两种近似(de)内插方法来恢复原来(de)连续时间信号,他们是零阶保持法和一阶保持法.第三章:离散时间序列及其Z 变换:离散时间系统、离散系统(de)分类、离散时间信号序列、序列(de)基本运算、Z 正变换与逆变换、常用序列Z 变换、Z 变换性质、离散信号(de)Z 变换,离散系统函数与单位冲激响应、Z 变换与差分方程、零极点分布与系统稳定性.由离散线性系统引出了卷积和;时不变是指输入在时间上有一个平移,引起(de)输出也产生同样(de)时间上(de)平移.仅当系统(de)单位冲激响应满足∞<∑∞-∞=n n h |)(|离散时间系统是稳定(de)系统当单位冲激响应满足0,0)(<=n n h线性时不变系统才是因果系统任意时间序列可以∑-=kk n k x n x )()()(δZ 变换分为双边Z 变换和单边Z 变换,Z 变换(de)收敛域:左内右外双边环,有限序列有限平面.单位圆上(de)Z 变换就是离散序列(de)傅立叶变换实现Z 反变换(de)方法有三种:留数法、幂级数法和部分分式法.离散系统(de)零状态响应可以通过卷积和求得:)(*)()(n h n x n y =也可以通过Z 逆变换来求得:)]()([)]([)(11z H z X Z z Y Z n y --==离散时间系统(de)离散函数用H(z)表示,它是单位冲激响应(de)Z 变换;在离散系统中,Z 变换建立了时间函数与Z 域函数(de)之间(de)转换关系.将差分方程进行Z 变换,转换为Z 域中分析 离散系统(de)极点会影响单位冲激响应(de)最终表现形式.如果一个系统,对某些激励输入不能产生一个稳定(de)输出响应,那么这个系统是不能应用(de).稳定(de)因果离散系统(de)收敛域为1||≥z ,离散系统(de)系统函数极点全部限制在单位圆内,系统稳定.第四章:离散傅立叶变换及其快速算法:序列(de)傅立叶变换、离散傅立叶级数、离散傅立叶变换、快速傅立叶变换、频率域采样定理.序列(de)傅立叶变换定义为单位圆上(de)z 变换.序列傅立叶变换存在(de)条件是序列必须绝对可和.序列傅立叶变换(de)特点在于它是数字角频率(de)连续(de)周期函数,周期为π2,即序列频谱是连续(de)周期谱. 序列频谱(de)表达式是序列频谱傅立叶级数(de)展开式,序列是这一级数(de)各项系数.输出傅立叶变换等于输入傅立叶变换与系统频率响应(de)乘积.傅立叶变换在不同域上关于周期性和离散性(de)对称规律是:一个域中是连续(de),在另外一个域中是非周期(de).一个域中是离散(de),另外一个域中是周期(de).一个域中是周期(de),在另外一个域中是离散(de),在一个域中是非周期(de),在另外一域中连续(de).一个非周期序列可以在频域上分解为一系列连续(de)不同频率(de)复指数序列(de)叠加积分.一个周期为N(de)周期序列可以分解为N 个不同频率(de)复指数系列分量(de)叠加和.分量(de)系数就是周期序列(de)频谱. 离散傅立叶变换是对有限长序列进行傅立叶变换(de)表示.有限长序列(de)离散傅立叶变换是这一序列频谱(de)抽样值,也是序列Z 变换以N /21π=Ω为间隔(de)抽样值.长度为N1和N2(de)两个序列,通过补零(de)方式加长到N>=N1+N2-1,做N 点圆卷积,则圆卷积(de)结果与线卷积(de)结果相同.序列(de)长度为M,只有当频域采样点数大于M 时,才可以用X(k)恢复原序列.第五章:离散傅立叶变换(de)应用:用DFT逼近连续时间信号(de)频谱、线性卷积与圆周卷积用有限长抽样序列(de)DFT来近似无限长连续信号(de)频谱,产生(de)主要误差有栅栏效应、混叠效应和频谱泄露.频谱分辨率是将信号中两个靠得很近(de)谱保持分开(de)能力.频谱泄露是由于时域信号(de)截断引起(de),减少泄露(de)方法有:增加截断长度、改变窗口形状.不管采用那种窗函数,频谱泄露只能减弱,不能消除,抑制旁瓣和减少主瓣宽度不可能同时兼顾,应根据实际情况进行综合考虑.第六章:滤波器原理与结构:滤波器原理及分类,模拟滤波器(de)设计、IIR数字滤波器(de)基本网络结构.滤波器是具有一定传输特性(de)、对信号进行加工处理(de)装置,滤波技术上从复杂信号中提取所需(de)信号,抑制不需要(de)信号.滤波器也可以理解为具有选频特性(de)一类系统.设计不同(de)频率响应函数,可以得到不同(de)滤波效果.滤波器可以分为模拟滤波器和数字滤波器,低通、高通、带通和带阻滤波器.数字滤波器可以分成无限脉冲响应滤波器和有限脉冲响应滤波器.常用模拟滤波器有巴特沃斯滤波器和切比雪夫滤波器,巴特沃斯低通滤波器模平方函数(de)表示N c a j H 22)(11|)(|ωωω+= 低通巴特沃斯滤波器(de)设计步骤为:根据设计指标计算滤波器(de)阶数;利用阶次查表求归一化(de)传递函数;利用计算(de)截止频率进行去归一化处理.切比雪夫滤波器与巴特沃斯滤波器相比具有较窄(de)过渡特性.数字滤波器中(de)三种基本运算单元是延迟、乘法和加法运算.IIR 滤波器(de)基本网络结构有直接型、级联型和并联型.FIR 滤波器(de)基本网络结构有直接型、级联型、线性相位型和频率采样结构.第七章:数字滤波器设计:IIR 滤波器(de)设计设计一个数字滤波器,实质上是寻找一组系数,使其满足预定(de)技术要求,然后再设计一个网络结构去实现它.数字滤波器(de)设计步骤:1 根据需要,确定数字滤波器应达到(de)性能指标;2 确定数字滤波器(de)系统函数,使其频率特性满足技术指标要求;3 用一个有限精度(de)运算去实现系统函数或者单位冲激响应;4 确定工程实现方法.IIR低通滤波器(de)设计过程是:按照技术要求设计一个模拟低通滤波器,再按一定(de)转换关系转换成数字低通滤波器(de)系统函数,常用(de)转换方法有冲激响应不变法和双线性变换法.冲激响应不变法设计数字滤波器,不适合高通和带阻滤波器(de)设计双线性变换法适合于片段常数滤波器(de)设计FIR数字滤波器(de)优点是恒稳定和线性相位特性,FIR滤波器设计任务是选择有限长度h(n),是频率特性满足要求.题目类型:填空题 10分选择题 20分简答题 20分计算题 40分实验题 10分1.若要让抽样后(de)信号不产生频谱混叠,在抽样过程中应该满足什么条件答:抽样频率满足奈奎斯特采样定理,信号频谱(de)最高频率小于折叠频率.2.在处理有限长非周期序列时,采用FFT算法可以有效减少运算量,请简要说明你对FFT算法(de)理解以及FFT算法减少运算量(de)原因W对称性、周期性和可约性,不断地将长序列答:快速离散傅里叶变换(FFT)并不是一种新变换形式,但它应用了系数kn N(de)DFT分解成几个短序列(de)DFT,以此达到减少运算(de)次数.3. 若按数学表示法来分,可将日常生活中(de)信号分为确定性信号和随机信号,请谈谈你对这两类信号(de)理解.答:确定性信号时变量(时间)(de)确定函数,对应于变量(de)每一个值,信号值都可唯一地用数学关系式或图表确定.随机信号可用数学式或图表描述,但与变量(时间)没有确定(de)对应关系,准确(de)说,这类信号只能在统计意义上进行研究.4.在FIR数字滤波器设计中,我们知道了FIR滤波器有一个显着特点是线性相位,请谈谈你对这个线性相位(de)理解.答:线性相位指(de)是在信号(de)各个频率分量(de)延时都是相同(de),在时域分析里有利于信号波形(de)保持.5 数字滤波器(de)设计步骤:1 根据需要,确定数字滤波器应达到(de)性能指标;2 确定数字滤波器(de)系统函数,使其频率特性满足技术指标要求;3 用一个有限精度(de)运算去实现系统函数或者单位冲激响应;4 确定工程实现方法.6 IIR低通滤波器(de)设计过程是:按照技术要求设计一个模拟低通滤波器,再按一定(de)转换关系转换成数字低通滤波器(de)系统函数,常用(de)转换方法有冲激响应不变法和双线性变换法.7 低通巴特沃斯滤波器(de)设计步骤为:根据设计指标计算滤波器(de)阶数;利用阶次查表求归一化(de)传递函数;利用计算(de)截止频率进行去归一化处理.8.连续信号经过等间隔采样后,其频谱将发生怎样变化从采样信号无失真(de)恢复出原始信号又应该具备哪些条件答:频谱产生周期延拓,频谱(de)幅度是Xa(jΩ)(de)1/T 倍(2 分,每小点1 分),条件:连续信号必须带限于fc,且采样频率s c f ≥ 2 f 2分和z变换之间(de)关系是什么和序列(de)傅里叶变换之间(de)关系又是什么答:X(k)是序列傅里叶变换X (e jω )在区间[0,2π]上(de)等间隔采样值,采样间隔为ω=2π/N,X(k)是序列z 变换X (z)在单位圆上(de)等距离采样10.在离散傅里叶变换中引起频谱混叠和泄漏(de)原因是什么,怎样减小这种效应频谱混叠是因为不等式s c f ≥ 2 f 没有得到满足,可令s c f ≥ 2 f ;漏泄是因截断而起,可选用其它形式(de)窗函数.(4 分,各1 分)11请写出框图中各个部分(de)作用12简述频率采样法设计线性相位FIR滤波器(de)一般步骤.13设计一个数字高通IIR滤波器(de)主要步骤及主要公式14 从信号分析与处理(de)知识去理解采样定理、调制与解调.计算题:信号周期判别系统特性分析卷记积分和卷积和计算线性卷积和循环卷积系统微分方程(de)频域复频域(S和Z域)求解、DFT去逼近连续信号频谱(de)参数选择 Z变换(de)零极点分布及求反变换连续和离散信号(de)表示。

第二章_信号分析与处理基础 共101页PPT资料

第二章_信号分析与处理基础 共101页PPT资料

如下周期方波的时域描述:
x(t)
A
x ( t ) x ( t nT 0 )


x
(t)


A

A
0 t T0 2
T0 t 0
T0


2
应用傅里叶级数展开:
x (t) 4 A (s0 it n 1 3 s3 in 0 t 1 5 s5 in 0 t ...)式中:
21
华南农业大学工程学院
傅立叶级数的三角函数形式还可以改写成:

xta0 (anco n0 stb nsin n0t) n 1

x(t) a0 An cos(n0t n ) n1
周期信号是由一个或几个、乃至无穷多 个不同频率的谐波叠加而成的。式中第 一项a0为周期信号中的常值或直流分量, 从第二项依次向下分别称为信号的基波 或一次谐波、二次谐波、三次谐
3)从信号的能量上 --能量信号与功率信号。
5
华南农业大学工程学院
1) 确定性信号和随机信号 可以用明确数学关系式描述的信号称为确定性信号。 不能用数学关系式描述的信号称为随机信号。
随机信号
6
华南农业大学工程学院
a) (确定性信号)周期信号:经一定时间间隔可重复出现的
信号 b)
x ( t ) = x ( t + nT0 ) (n =1,2,3….)
0

2 T0
将上式改写为:
x(t)4A( 1sint) n1n
式中:
n0
以 为独立变量,得到该周期方波的频域描述。
n1,3,5,...
13
华南农业大学工程学院

信号分析与处理答案

信号分析与处理答案

2.3 10
已知信号
x(t)
=
sin(t)
×
(u(t)

u(t

π)),求(1) x1(t)
=
d2 dt2
x(t)
+
x(t);
(2)
x2
(t)
=
∫t
−∞
x(τ )dτ 。
答:(1)
dx(t) dt
=
cos(t) × (u(t) − u(t − π)) + sin(t) × (δ(t) − δ(t − π))
6 第五章
24
6.1 补 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 补 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1+cos(2t) 2
,
E
= ∞, P
= 1/2.
(4) E = 4/3, P = 0;
(5) E = ∞, P = 1;
(6) E = ∞, P = 1/2.
2 第二章 P. 23
2.1 1
应用∫冲∞激信号的抽样特性,求下列表达式的函数值
(1) f (t − t0) · δ(t)dt = f (−t0) ∫−∞∞
x2(t)
=

1
− cos(t) ∞
, ,
if (t ∈ (0, π]) if (t > π)

信号分析与处理-信号的时域分析

信号分析与处理-信号的时域分析

第二章信号的时域分析◆典型、基本信号(连续、离散)◆信号的时域运算和分解
◆连续系统的时域分析
◆离散系统的时域分析
§ 2.1 典型基本信号
rt
ωrt
θ
ω
θ
周期复指数信号( a=±jω)
at
at
)(
f=
t
Ce
奇异信号:本身、其导数或其积分有不连续点的函数。

▪单位阶跃信号▪符号函数▪斜变信号▪单位冲激信号▪冲激偶信号
奇异信号
G
)(t
已知f(t)在(0,t)区间按e-t规律变化,试写出
3斜变信号
4单位冲激信号奇异信号

)
(t δ
定义:
(2)狄拉克(Dirac)定义
⎪⎩⎪⎨⎧≠==⎰∞+∞
-0
0)(1)(t t dt t δδ)
(t δ)
1(0
t
)
(t δ)
1(0
t
t ⎪⎩⎪⎨⎧≠=-=-⎰∞+∞-0
000)(1)(t t t t dt t t δδ移位的冲激信号:
δ
)(t
δ
)(t
t
d δ=
t)(
)('δ
应用冲激信号的抽样性,求下列表示式的函数值:练习
二离散时间信号u(n)常用来表示序列
的定义域。

离散时间信号
β
αj =
C+。

信号分析与处理 第二章 频域分析

信号分析与处理 第二章 频域分析

-1500
0
0.2 0.4 0.6 0.8 Normalized Angular Frequency (´p rads/sample)
1
10
Magnitude (dB)
0 -10 -20 -30
0
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 Normalized Angular Frequency (´p rads/sample)
| H( e
j
) |~
幅频特性 相频特性
( ) ~
50
Magnitude (dB)
0 -50 -100 -150
0
0.2 0.4 0.6 0.8 Normalized Angular Frequency (´p rads/sample)
1
0
Phase (degrees)
-500
-1000
Random Sequence 1 0.8
x(n)
0.6 0.4 0.2 0 0 2 4 6 10 12 n Random Sequence 8 14 16 18 20
3 2
y(n)
1 0 -1 -2 0 2 4 6 8 10 n 12 14 16 18 20
6.序列的线性卷积 ——“smp118.m”
y(n)=x(n)*h(n) y=conv(x,h)
Time response 2.5 2 1.5 1 0.5
x y y1
0 -0.5 -1 -1.5 -2 -2.5
0
10
20
30
40
50 n
60
70
80
90
100
与信号处理直接有关的工具箱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式写成矩阵形式
R(0) R(1) ... R( p) 1 2

R(1)
...
R( p)
R(2) ...
R( p 1)
... ... ...
R(
p

1)

a1

... ...
R(0)

a
p



0 ... 0
H (z) B(z) h(k)z k
A(z) k0
式中:
p
A(z) 1 ak z k
k 1
q
B(z) 1 br z r r 1
为了保证 H (z) 是一个稳定的,且有最小相位的系
统, A(z),B(z) 的零点都在单位圆内。
假定 u(n) 是一方差为 2 的白噪声序列,由随机信 号通过线性系统的理论可知,输出序列功率谱为
S (e j ) 2 H (e j ) 2
2 B(e j ) 2
A(e j ) 2


2 B(e j )B (e j A* (e j ) A(e j )
)
因此,如果能求出上述传递函数中的参数
ak (k 123... p) 和 br (r 123...q) ,那么便可求出H(Z) (1)若 ak 0 ,(k 1,2,3,...p) ,则:


h(r)Eu(n r)u(n r) (m r)
r 0

h(r) 2 (m r) r 0
2h(m)
仅在 m r 0 处有值
即:
0
E{x(n) u(n m)} 2h(0)
m0 m0
(对于因果系统,h(m) 0 ,当 m 0 时)
⑷反射系数 | akk | 1 , k 1,2,...,p
在递推中(由于舍入误差等的影响)若出
现 Ek 0 , 或 | akk | 1 应停止递推。
模型阶次p是AR模型的一个重要参数,在递推前, 通常是不知道的,需要事先给定一个值,或在递 推过程中确定在递推中由低阶到高阶的每一组参 数都将给出,且 Ek 在递减。当 Ek 减小到希望 值时,阶次p即可被确定了。
第二章.信号分析与处理3
2.5参数模型的功率谱估计
参数模型法是现代谱估计的主要内容,参数 模型法的思路是: (1)假定所研究的过程 x(n) 是由一个输入序列 u(n) 激励一个线性系统 H (z) 的输出。
(2)由已知的 x(n) ,或其自相关函数 Rx (m) 来估 计 H (z) 的参数。
(3)由 H (z) 的参数来估计 x(n) 的功率谱。
若 x(n) 是平稳的,且方差为有限值,则 ARMA 模 型或 MA模型都可以用一个阶次 p 为无限大的 AR 模型来近似。这一结论是重要的,因为如果模型 选择的不合适,但只要阶次足够高,那也能得到 好的结果。
2.5.2 AR模型和线性预测 随机序列x(n)的AR模型为
p
x(n) ak x(n k) u(n) k 1
由z变换的极限定理
lim H (z) h(0)
z
代入AR模型
lim H (z)
z
1
p
1 lim
z(0) 1
p
R(m)

0


2
ak R(m k)
k 1
p
ak R(k)
k 1
m 1 m0
∵ R(k) 是个偶函数, R(k) R(k)
若 x(n) 是平稳的,u(n) 是一个方差为 2
的白噪声序列,h(n) 是模型的单位样值响应,

的x(n自) 相关函数为
R(m) Ex(n)x(n m)
R(m) Ex(n)x(n m)

p

Ex(n)u(n m) ak x(n k m)
a p,i a p1,i a p, p a p1, pi
2
E p E p1 (1 a pp )
在上述递推中,总是先由上一阶的参数,先求出本
阶的参数 app ,然后求出 E p ,
再求 a p1 , a p2 ,..., a p, p1
若 x(n) 的自相关函数不是已知的,而知道的仅是
2.5.1 随机信号的参数模型
u(n)
x(n)
H (z)
图2.5.1 离散线性系统
上图中 H (z) 是一个稳定的因果的线性时不变离散
时间系统,其单位抽样响应 h(n) 是确定性的。
输出序列 x(n) 可以是平稳的随机序列,也可以是 确定性的时间序列。若 x(n) 是确定性的,则 u(n) 是一个冲击序列,若 x(n) 是随机的,u(n) 应是一 个白噪声序列。
N个数据, xN (n), n 0,1,..., N 1 ,则计算AR模型的 参数有两种方法
(a)先求出
x(n) 的自相关函数估计
^
R(m)
^
R(m)

1 N
N 1
xN (n)xN (n m)
n0
然后利用上述递推法求解。
m 0,1,2,...,p
(b)直接用数据 xN (n) ,利用最小方差误差原理,

k 1

p
Ex(n)u(n m) ak Ex(n)x(n k m) k 1
p
Ex(n)u(n m) ak R(m k) k 1
对于第一项为
Ex(n)u(n m) E h(r)u(n r)u(n m)
r0
2)若 b1,b2,...bq 全为零,则有
p
x(n) ak x(n k) u(n) k 1
H(z) 1
1
A(z)
p
1 ak z k
k 1
S (e j )
2
p
2
1 ak e jk
k 1
该模型称为自回归模型,简称 AR模型。它是一个
全极点的线性模型。“自回归”的含义是:该模
| akk | 1, 且 Ek Ek1 ... E0 因此,在递推过程中,如所有 Ek 0 , 或 Ek Ek1
所有的反射系数 | akk | 1 , 则AR模型是稳定的
判定AR模型稳定的依据有
⑴自相关矩阵正定
⑵ A(z) 的根都在单位圆内 ⑶预测误差能量 E1 E2 ... E p 0
器。该预测器最小预测均方E差p 等于AR模型激励
白噪声的能量(方 2差 ),反过来,若要求一AR
模型的输出是同阶预测的,那么该AR模型输入信号
的能量一定要等E p于 是等价的。
。所以AR模型和线性预测器
由此可以看出AR模型是在最小方差意义上对数据的 拟合。一般 A(z) 称逆滤器,或白化过滤器,即当阶 次 p 时,误差序列 e(n) 变成白噪声。
2.5.3 AR模型参数的计算
如果已知 x(n) 的自相关函数 R(0),R(1),...,R( p),可以 根据递推算法求解,即先由低阶 (a11, E1) (a21, a22 , E2 ) 开始,…递推到P阶的所有参数 (aki , E p ) ,式
中 aki 系数的下标,k 代表阶次,i 代表系数的序
不论 x(n) 是确定性信号还是随机信号,对于上述 线性系统, u(n) 和 x(n) 之间总有如下的输入、
输出关系。
p
q
x(n) ak x(n k) bru(n r)
k 1
r0


x(n) h(k)u(n k)
k 0
对上式两边分别取 z 变换,并假定 b0 1 ,可得
号 1 i k ,其递推步骤为
(1)给定 p 1 时的参数,作为逆推的初始条件 当 p 1 时,有
R(0)

R(1)
R(1) 1 R(0)a11


E1

0

可以解出:
a11 R(1) / R(0),
E1 R(0)(1 a11 2 )
...
... ...
R( p) R( p 1) ...
R(0)

则由该式所求出的系数 a1, a2 ,..., a p 所构成的 A(z) 的根都在单位圆内,因而AR模型是稳定的。
所求出的 E1, E2 ,..., E p 是对应相应的最小预测误
差能量,显然,他们都应大于零,即:

AR模型待求的参数: 一是激励白噪声的方差 2 ,二是模型的阶次p
三是一组系数 a1, a2 ,..., a p ,在给定阶次p和方差
2 后,用矩阵求逆的办法可以方便的求出系数 a1, a2 ,..., a p ,对上述矩阵存在高效的递推算法。
为了便于理解AR模型的一些性质,先介绍线性预测 的基本概念。
p
Elp E e2 (n) E{[ x(n) k x(n k)]2}
k 1
对上式求预测的最小均方误差

Elp 0
m
m 1,2,3,...,p
可得最小均方误差 E p
p
E p R(0) k R(k) k 1
(1)
对应于AR模型的自相关函数( m 0 时)
∵ R(0) E0
∴ E1 E0 (1 a11 2 )
(2)当阶次 p 2 时
若已知第 p 1 阶参数 a p1,1 , a p1,2 ,..., a p1, p1 , E p1, p1 ,
对第 p 阶参数:式中 i 1,2,...,p 1
p 1
a p, p [R( p) a p1,i R( p i)] / E p1 i 1
相关文档
最新文档