2.1不等关系和不等式的基本性质

合集下载

北师大版数学八年级下册2.1《不等关系》教案

北师大版数学八年级下册2.1《不等关系》教案

北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。

这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。

但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

三. 教学目标1.了解不等式的概念和基本性质。

2.学会用不等式表示实际问题中的不等关系。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.不等式的概念和基本性质。

2.如何用不等式表示实际问题中的不等关系。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。

六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。

2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。

3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。

4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。

5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。

6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。

7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。

8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。

教学过程每个环节所用的时间如上所示,供您参考。

2.1不等式的基本性质

2.1不等式的基本性质

不对
议一议
x < -1
不等式的基本性质与等式的基本性质有什么相同点和不同点?
练习 课本第31页1、2 课堂作业:课本第32页习题1-5
本课节内容 2.1
不等式的基本性质
1.不等关系
探究 用怎样的数学式子表示以下不等关系?
(1)在今年的校田径运动会上,小明的跳高成绩是hm,打破了
该校男子跳高记录1.88m.h与1.88有怎样的大小关系?
(2)某工厂生产直径为10cm的传动轴,误差不超过0.02cm为合 格产品.某技师生产的传动轴直径为dcm,经检测属合格品,则d 满足什么条件?
数,不等号的方向不变.(乘法法则)
即,如果a>b,c>0,那么 ac > bc.
不等式基本性质3 不等式的两边同时乘以同一个 负数,不等号的方向要改变.(乘法法则)
即,如果a>b,c <0,那么 ac < bc.
不等式基本性质4 不等式具有传递性.
即,如果a>b,b>c,那么 a>c.
例4 用符号“>”或“<”填空,并说明运用了不等 式的哪个性质.
(3)用10m长的篱笆围一块矩形菜地,当菜地的一边长x(m)满 足什么条件时,菜地面积大于6m2?
用不等式表示数量之间的不等关系
例1 用不等式表示下面的不等关系: (1)实数a的平方是非负数; (2)两个实数x,y的积是正数; (3)某公路立交桥对通过车辆的高度H(单位:m)“限 高4m”.
解:
(1) a2≥0; (2) xy>0; (3) 0<H≤4
问题解决 某公园的门票每张30元,15人以上(含15人) 的团体票八折优惠,那么不足15人时,怎样购 票最省钱?

2.1 等式性质与不等式性质 教师版

2.1 等式性质与不等式性质 教师版

不等关系与不等式要点一、符号法则与比较大小实数的符号:任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立. 两实数的加、乘运算结果的符号具有以下符号性质:①两个同号实数相加,和的符号不变:符号语言:0,00a b a b >>⇒+>;0,00a b a b <<⇒+<②两个同号实数相乘,积是正数:符号语言:0,00a b ab >>⇒>;0,00a b ab <<⇒>③两个异号实数相乘,积是负数符号语言:0,00a b ab ><⇒<④任何实数的平方为非负数,0的平方为0符号语言:20x R x ∈⇒≥,200x x =⇔=.比较两个实数大小的法则:对任意两个实数a 、b①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.对于任意实数a 、b ,a b >,a b =,a b <三种关系有且只有一种成立.要点二、不等式的性质不等式的性质可分为基本性质和运算性质两部分基本性质有:(1) 对称性:a>b b<a ⇔(2) 传递性:a>b, b>c a>c ⇒(3) 可加性:a b a c b c >⇔+>+ (c ∈R)(4) 可乘性:a>b ,⎪⎩⎪⎨⎧<⇒<=⇒=>⇒>bc ac c bc ac c bc ac c 000运算性质有:(1) 可加法则:,.a b c d a c b d >>⇒+>+(2) 可乘法则:,a b>0c d>0a c b d>0>>⇒⋅>⋅(3) 可乘方性:0,,10n n a b n N n a b +>>∈>⇒>>(4)可开方性:a b 0,n N ,n 1+>>∈>>要点三、比较两代数式大小的方法作差法:任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小. ①0b a b a ->⇔>;②0b a b a -<⇔<;③0b a b a -=⇔=.作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较a b与1的关系,进一步比较a 与b 的大小. ①1b a a b>⇔>;②1b a a b<⇔<; ③1b a a b =⇔=. 中间量法:若a>b 且b>c ,则a>c (实质是不等式的传递性).一般选择0或1为中间量.利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.作差比较法的步骤:第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化为“积”;第三步:定号,就是确定差是大于、等于还是小于0;最后下结论.【典型例题】类型一:用不等式表示不等关系例1.某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为218m , 可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式.【解析】假设装修大、小客房分别为x 间,y 间,根据题意,应由下列不等关系:(1) 总费用不超过8000元(2) 总面积不超过2180m ;(3) 大、小客房的房间数都为非负数且为正整数.即有:**1800(0(100060080001815))x x N y y N x y x y ≤≥∈≥∈+≤⎧⎪+⎪⎨⎪⎪⎩ 即**600(0(534065))x x N y y N x y x y ≤≥∈≥∈+≤⎧⎪+⎪⎨⎪⎪⎩此即为所求满足题意的不等式组举一反三:【变式】某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?【答案】假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:类型二:不等式性质的应用例2.已知22ππαβ-≤<≤,求2αβ+,2αβ-的取值范围.【解析】 因为22ππαβ-≤<≤,所以424παπ-≤<,424πβπ-<≤. 两式相加,得222παβπ+-<<. 因为424πβπ-<≤,所以424πβπ-≤-<,则222παβπ--≤<. 又α<β,所以02αβ-<,则022παβ--≤<.举一反三:【变式1】【变式】已知23,14a b <<<<,求(1),a b - (2)a b的取值范围.【答案】(1)22a b -<-<;(2)132a b<<【变式2】已知实数x ,y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩,则4x+2y 的取值范围是________。

2.1.1不等关系与重要不等式课件(人教版)

2.1.1不等关系与重要不等式课件(人教版)
∴ 2 + 2 + 2 ≥ + + .
当且仅当 = = 时,等号成立
4 课堂训练
4
课堂训练
C
C
4
课堂训练
≥ 0
+ >
16 ≤ ≤ 18
2 + 2 > 3
5 预习自测
5
预习自测


×

5
预习自测
C
<
= 2 + 5 + 6 − 2 + 5 + 4
=2
∵2>0,
∴ +2 +3 > +1 +4 .
作差
变形
0是相等与不等的分界
限,它也为比较实数的大
定号
定论
小提供了标杆.
2
实数大小的比较

已知,均为正数,且 ≠ ,比较3 + 3与2 + 2的大小
【解】运用作差法:
【问题4】 :如何证明重要不等式?
2
2
2
证明: (a b ) - 2ab (a b)
当a b时, (a b) 0
2
当a b时, ( a b )2 0
(a 2 b 2 ) 2ab 0,
当 且 仅 当 a b时 , 等 号 成 立 。
3
一个重要不等式
B
D
(3)S与S’会出现相等的情况吗,什么时候相
当a=b时
等? 当a=b时,S=S',即 + =
A
C
E(FGH)
B
综上, + ≥
重要不等式

中职数学基础模块上册2.1《不等式的基本性质》ppt课件1

中职数学基础模块上册2.1《不等式的基本性质》ppt课件1

问题解决:
▪ 某公园的门票每张30元,15人以上(含15人) 的团体票八折优惠,那么不足15人时,怎样 购票最省钱?
二、不等式的基本性质
性质1、如果a b,那么a c b c
性质2、如果a b, c 0,那么ac bc 性质3、如果a b, c 0,那么ac bc 性质4、如果a b,b c,那么a c
(2)两个实数x、y的积是正数
(3)某公路立交桥对通过车辆的高度H“限高4米”
常用的等价关系:
a b ab0

a b ab0 ab ab0
——“做差法”
例2、比较下列各组数的大小
(1)5 ,6 77
2
(2)
,2
35
2
(3)
,5
37
例3、已知x是实数,试比较3x+1和2x+1的
大小
分类讨论!
例4、已知x是实数,试比较2(x+1)2与2x2+1的 大小.

()
▪ 若a>b,c>d,则ac>bd
√( )
▪ 若a<0,-1<b<0,则a+bd<0 (× )

税率(%) 速算扣除数
3
0
10
105
20
555
25
1,005
30
2,755
35
5,505
45
13,505
★全月应纳税所得额=月薪金收入总额(包括加班费等)3500-个人支付的社保和公积金费用
★全月应纳税额=全月应纳税所得额×适用税率-速算扣除数
例题
例1、用不等式表示下列的不等关系 (1)实数a的平方是非负数
一、不等关系

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

2.1 不等式的基本性质课件-2023届广东省高职高考数学第一轮复习第二章不等式

A.x2>y2
B.ax>ay
C.x+5>y+5
D.x+2y>3y
【解析】 B选项中,当a=0时,ax=ay,故选项B不成立.
2.a、b、c 为实数,且 c≠0,下列命题中正确的是( D ) A.a>b⇒ac>bc B.ac<bc⇒a<b C.a>b⇒1a<1b D.a>b⇒ca2>cb2 【解析】 利用不等式的性质或举反例进行判断,取 a=2、b=-1、c=-1 来检验,对 A 有ac<bc,故 A 错;对 B 有 a>b,故 B 错;对 C 有a1>1b,故 C 错;对 D,∵ c≠0,∴ c12>0,由不等式的性质知,选项 D 正确.
【融会贯通】 比较大小. (1)( 2+ 3)2 与 4+2 6; (2)2x2+5x+6 与(x+3)(x+2),x∈R. 解:(1)∵( 2+ 3)2-(4+2 6)=(5+2 6)-(4+2 6)=1>0,∴( 2+ 3)2 >(4+2 6). (2)∵(2x2+5x+6)-(x+3)(x+2)=(2x2+5x+6)-(x2+5x+6)=x2≥0, ∴(2x2+5x+6)≥(x+3)(x+2).
2.1 不等式的基本性质
知识点1 知识点2 知识点3 知识点4 知识点5
1.不等式的概念 用不等号“≠、>、<、≥、≤”表示不等关系的式子叫做不等 式.如:f(x)>g(x),f(x)≤g(x),等等.
知识点1 知识点2 知识点3 知识点4 知识点5
2.几个恒不等式 任意实数的平方不小于0,即a2≥0. 任意实数的绝对值不小于0,即|a|≥0.
B.必要非充分条件
C.充要条件
D.既非充分也非必要条件
【解析】 根据不等式的性质可知,a>3 且 b>3⇒a+b>6 成立,a>3 且 b

中职数学2.1不等式的基本性质课件

中职数学2.1不等式的基本性质课件

例3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
用符号“ ”或“ ”填空,并说明利用了不等式的哪(几)条
基本性质.
(2)如果 > ,那么 + 4
+ 2;
(2)根据不等式性质1,不等式 > 两边同时加上4,不等号
方向不变,即 + 4 > + 4,
又因为 + 4 > + 2,所以根据不等式性质3,可以得到
当>0时,点和点同时向右平移个单
位,即可到达点′和点′的位置;
当<0时,点和点同时向左平移
个单位,即可到达点′和点′的位置.
显然,两种情况中,点′点′的左右位置与点和点的情况相同.
2.1不等式的性质 —不等式的性质
性质3
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
5
2
例1 比较 7 与 3 的大小.
解 因为 5 2 15 14 15 14 1 0
7
3
21
5 2
所以

7 3
21
21
21
,
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
大于b(或b小于a).
2.1不等式的性质 —实数的大小
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
因为实数与数轴上的点是一一对应的,对于任意实数,都可以
在数轴上找到对应的点和,如图所示.

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结不等式是数学中非常重要的概念之一,它在数学的各个领域和实际问题中有着广泛的应用。

在高考数学中,不等式也是一个考查频率较高的知识点。

下面是对不等式的基本性质的总结:1.不等关系性质不等关系具有自反性、对称性、传递性。

即对任意实数a,b,有:自反性:a≥a,a≤a对称性:如果a≥b,则b≤a;如果a≤b,则b≥a传递性:如果a≥b,b≥c,则a≥c;如果a≤b,b≤c,则a≤c2.加减性质对于不等式a<b和任意实数c,有:a+c<b+ca-c<b-c3.乘除性质(1)正数乘除:对于不等式a<b,如果c是正数,则有:正数乘性:ac < bc正数除性:如果c是正数且c≠0,则有:a/c<b/c(2)负数乘除:对于不等式a<b,如果c是负数,则有:负数乘性:ac > bc负数除性:如果c是负数且c≠0,则有:a/c>b/c(3)双边不等式乘除:对于不等式a<b和任意非零实数c,有:a/c<b/c(当c>0时)a/c>b/c(当c<0时)4.基本不等式基本不等式是指在特定条件下,可以将不等式简化为更为简单形式的不等式。

(1)三角形不等式:对于三角形的三边长a,b,c,有:a+b>ca+c>bb+c>a(2) 平均值不等式:对于任意n个非负实数a1,a2,...,an,有:平均值不等式:(a1+a2+...+an)/n ≥ √(a1a2...an)5.同向不等式同向不等式的性质和解法与等式类似。

对于同向不等式,如果对不等号两边同时乘除以同一个正数,或者对不等号两边同时乘除以同一个负数,则不等号方向不变。

例如,对于不等式2x+1<3x-2,可以同时减去2x,得到1<-2x-2,再同时减去1,得到0<-2x-3,再同时乘以(-1/2),得到0>(2x+3)/2,最后反转不等号得到(2x+3)/2<0。

2.1 不等式的基本性质

2.1  不等式的基本性质

【课题】2.1不等式的基本性质
【教学目标】
知识目标:
(1)理解不等式的基本性质;
(2)了解不等式基本性质的应用.
能力目标:
通过不等关系的学习与探究,培养数学思维能力.
情感目标:
(1)经历比较实数大小及证明不等关系的过程,关注逻辑判断与推理;
(2)感受生活中的不等关系模型,体会数学知识的应用.
【教学重点】
⑴比较两个实数大小的方法;
⑵不等式的基本性质.
【教学难点】
比较两个实数大小的方法.
【教学设计】
(1)以实例引入知识内容,提升学生的求知欲;
(2)抓住解不等式的知识载体,复习与新知识学习相结合;
(3)加强知识的巩固与练习,培养学生的思维能力.
【教学备品】
教学课件.
【课时安排】
1课时.(45分钟)
【教学过程】。

北师大版八年级下册数学《2.1 不等关系》教案

北师大版八年级下册数学《2.1 不等关系》教案

北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。

通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。

二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。

但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。

2.掌握不等式的基本性质,能运用不等式解决实际问题。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.不等式的定义和基本性质。

2.如何运用不等式解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。

六. 教学准备1.准备相关的实例和练习题。

2.准备课件和教学素材。

七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。

2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。

同时,给出相关的实例和练习题,让学生巩固所学知识。

3.操练(10分钟)让学生分组进行练习,解决实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。

5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。

6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。

7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。

8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。

第二章 不等式 2.1不等式的基本性质

第二章 不等式  2.1不等式的基本性质

例5 某工人要在规定的时间内加工400 个零件,如果他每小时加工50个便可 按时完成任务,但当他加工3个小时 后,因有事停工50分钟,而后继续加 工零件,问为了能按时或提前完成任 务,该工人在以后的时间内平均每小 时至少要加工多少个零件?
解:设该工人在以后的时间内平均每小 时至少要加工x个零件,根据题意得
400 50 50 3 ( 3 )X 400 50 60 5 25 150 (8 3 )x 400, 150 x 400, 6 6
25 x 400, 6
x 60
因此,该工人在以后的时间内平均每小时 至少要加工60个零件。
小结:
不等式性质1:不等式的两边都加上(或减去) 同一个数,不等号的方向不变.
如:比较-12.73与-13.56的大小。
因为(-12.73)-(-13.56)= 0.83 > 0
所以-12.73比-13.56大,即-12.73 > -13.56 二、例题 3 2 例1. 比较 与 的大小。
3 5 10 9 2 3 1 = = 解: 3 15 15 5 2 3 因此 > 。 5 3
不等式性质2:不等式的两边都乘以(或除以) 同一正个数,不等式的方向不变。 不等式性质3: 不等式的两边都乘以(或除以) 同一个负数,不等式的方向改变。
பைடு நூலகம்
布置作业:课本P22 2.(2)(3)3.(1)。
=(a+c)- (b+c), 所以(a+c)- (b+c)> 0, 因此 a+c>b+c
不等式的两边都加上(或减去)同一个数, 不等号的方向不变. 性质3 (乘法性质)如果a>b,c>0,则ac >bc;如果a>b,c<0,则ac<bc。 不等式的两边都乘以(或除以)同一个 正数,不等式的方向不变。 不等式的两边都乘以(或除以)同一个 负数,不等式的方向改变。

专题2.1 不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1 不等式的性质及常见不等式解法(精讲)(解析版)

专题2.1 不等式的性质及常见不等式解法【考纲要求】1.不等关系:了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式:(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式.3.会解|x+b|≤c,|x+b|≥c,|x-a|+|x-b|≥c,|x-a|+|x-b|≤c 型不等式.4.掌握不等式||a|-|b||≤|a+b|≤|a|+|b|及其应用.5.培养学生的数学抽象、数学运算、数学建模、逻辑推理等核心数学素养.【知识清单】1.实数的大小(1)数轴上的任意两点中,右边点对应的实数比左边点对应的实数大.(2)对于任意两个实数a和b,如果a-b是正数,那么a>b;如果a-b是负数,那么a<b;如果a-b等于零,那么a=b.2.不等关系与不等式我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些符号的式子,叫做不等式.3.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)性质2:如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)性质3:如果a>b,那么a+c>b+c.(4)性质4:①如果a>b,c>0那么ac>bc.②如果a>b,c<0,那么ac<bc.(5)性质5:如果a>b,c>d,那么a+c>b+d.(6)性质6:如果a >b >0,c >d >0,那么ac >bd . (7)性质7:如果a >b >0,那么a n >b n ,(n ∈N ,n ≥2). (8)性质8:如果a >b >0,那么n a >nb ,(n ∈N ,n ≥2). 4.一元二次不等式的概念及形式(1)概念:我们把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2)形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).(3)一元二次不等式的解集的概念:一般地,使某个一元二次不等式成立的x 的值叫做这个不等式的解,一元二次不等式的所有解组成的集合叫做这个一元二次不等式的解集. 5.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为__分式不等式__. f (x )g (x )>0⇔f (x )g (x )__>__0,f (x )g (x )<0⇔f (x )·g (x )__<__0. f (x )g (x )≥0⇔⎩⎪⎨⎪⎧f (x )g (x ) ≥ 0,g (x )≠0. ⇔f (x )·g (x )__>__0或⎩⎪⎨⎪⎧ f (x )=0g (x )≠0.f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )·g (x ) ≤ 0,g (x )≠0⇔f (x )·g (x )__<__0或⎩⎪⎨⎪⎧f (x )=0g (x )≠0. 6.简单的高次不等式的解法高次不等式:不等式最高次项的次数高于2,这样的不等式称为高次不等式. 解法:穿根法①将f (x )最高次项系数化为正数;②将f (x )分解为若干个一次因式的积或二次不可分因式的积;③将每一个一次因式的根标在数轴上,自上而下,从右向左依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根穿过);④观察曲线显现出的f (x )的值的符号变化规律,写出不等式的解集. 7.不等式恒成立问题 1.一元二次不等式恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧ a >0Δ<0;(2)ax 2+bx +c ≥0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧ a >0Δ≤0;(3)ax 2+bx +c <0(a ≠0)恒成立(或解集为R )时,满足⎩⎨⎧a <0Δ<0;(4)ax 2+bx +c ≤0(a ≠0)恒成立(或解集为R )时,满足⎩⎪⎨⎪⎧a <0Δ≤0.2.含参数的一元二次不等式恒成立.若能够分离参数成k <f (x )或k >f (x )形式.则可以转化为函数值域求解. 设f (x )的最大值为M ,最小值为m .(1)k <f (x )恒成立⇔k <m ,k ≤f (x )恒成立⇔k ≤m . (2)k >f (x )恒成立⇔k >M ,k ≥f (x )恒成立⇔k ≥M . 8.绝对值不等式的解法1.形如|ax +b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解. 2.形如|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式 (1)绝对值不等式|x|>a 与|x|<a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法|ax +b|≤c ⇔-c≤ax +b≤c (c>0),|ax +b|≥c ⇔ax +b≥c 或ax +b≤-c(c>0). 9.绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab≥0时,等号成立.【考点梳理】考点一 :用不等式表示不等关系【典例1】某种杂志原以每本2.5元的价格销售,可以售出8万本.根据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本,若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元? 【答案】见解析【解析】提价后杂志的定价为x 元,则销售的总收入为(8-x -2.50.1×0.2)x 万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为:(8-x -2.50.1×0.2)x ≥20.【规律总结】用不等式(组)表示实际问题中不等关系的步骤:①审题.通读题目,分清楚已知量和待求量,设出待求量.找出体现不等关系的关键词:“至少”“至多”“不少于”“不多于”“超过”“不超过”等.②列不等式组:分析题意,找出已知量和待求量之间的约束条件,将各约束条件用不等式表示.【变式探究】某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.试写出满足上述所有不等关系的不等式. 【答案】见解析 【解析】分析:应先设出相应变量,找出其中的不等关系,即①两种钢管的总长度不能超过4 000 mm ;②截得600 mm 钢管的数量不能超过500 mm 钢管数量的3倍;③两种钢管的数量都不能为负.于是可列不等式组表示上述不等关系.详解:设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根,依题意,可得不等式组:⎩⎪⎨⎪⎧500x +600y ≤4 0003x ≥yx ≥0y ≥0,即⎩⎪⎨⎪⎧5x +6y ≤403x ≥y x ≥0y ≥0考点二:比较数或式子的大小【典例2】(1)比较x 2+y 2+1与2(x +y -1)的大小; (2)设a ∈R 且a ≠0,比较a 与1a 的大小.【答案】见解析【解析】 (1)x 2+y 2+1-2(x +y -1)=x 2-2x +1+y 2-2y +2=(x -1)2+(y -1)2+1>0, ∴x 2+y 2+1>2(x +y -1). (2)由a -1a =(a -1)(a +1)a当a =±1时,a =1a;当-1<a <0或a >1时,a >1a ;当a <-1或0<a <1时,a <1a.【领悟技法】 1.比较大小的常用方法 (1)作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、通分、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法一般步骤:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. 【变式探究】已知x <y <0,比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小. 【答案】见解析【解析】∵x <y <0,xy >0,x -y <0,∴(x 2+y 2)(x -y )-(x 2-y 2)(x +y )=-2xy (x -y )>0, ∴(x 2+y 2)(x -y )>(x 2-y 2)(x +y ). 考点三:不等式性质的应用【典例3】(2020·黑龙江省佳木斯一中高一期中(理))对于任意实数a b c d ,,,,下列正确的结论为( ) A .若,0a b c >≠,则ac bc >; B .若a b >,则22ac bc >; C .若a b >,则11a b <; D .若0a b <<,则b a a b<. 【答案】D 【解析】A :根据不等式的基本性质可知:只有当0c >时,才能由a b >推出ac bc >,故本选项结论不正确;B :若0c时,由a b >推出22ac bc =,故本选项结论不正确;C :若3,0a b ==时,显然满足a b >,但是1b没有意义,故本选项结论不正确; D :22()()b a b a b a b a a b ab ab-+--==,因为0a b <<,所以0,0,0b a ab a b ->>+<, 因此0b a b aa b a b-<⇒<,所以本选项结论正确. 故选:D【典例4】 若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 【答案】B【解析】方法一 易知a ,b ,c 都是正数, b a =3ln44ln3=log 8164<1,所以a >b ; b c =5ln44ln5=log 6251 024>1,所以b >c .即c <b <a . 方法二 对于函数y =f (x )=ln xx ,y ′=1-ln x x2, 易知当x >e 时,函数f (x )单调递减. 因为e <3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .【典例5】设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4”,则f (-2)的取值范围是 . 【答案】[5,10]【解析】方法一(待定系数法)设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b ,于是得⎩⎪⎨⎪⎧ m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.所以f (-2)=3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,即5≤f (-2)≤10. 方法二(解方程组法)由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b , ⎩⎨⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)].所以f (-2)=4a -2b =3f (-1)+f (1). 又因为1≤f (-1)≤2,2≤f (1)≤4,所以5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.【规律总结】1.判断不等式的真假.(1)首先要注意不等式成立的条件,不要弱化条件.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.(3)若要判断某结论正确,应说明理由或进行证明,推理过程应紧扣有关定理、性质等,若要说明某结论错误,只需举一反例. 2.证明不等式(1)要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推证时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则. 3.求取值范围(1)建立待求范围的代数式与已知范围的代数式的关系,利用不等式的性质进行运算,求得待求的范围. (2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.4.掌握各性质的条件和结论.在各性质中,乘法性质的应用最易出错,即在不等式的两边同时乘(除)以一个数时,必须能确定该数是正数、负数或零,否则结论不确定. 【变式探究】1.(2020·陕西省西安中学高二期中(文))已知0a b <<,则下列不等式成立的是 ( ) A .22a b < B .2a ab <C .11a b< D .1ba< 【答案】D 【解析】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.2. (2020·江西省崇义中学高一开学考试(文))下列结论正确的是( ) A .若ac bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <D <a b >【答案】C 【解析】对于A 选项,若0c <,由ac bc >,可得a b <,A 选项错误;对于B 选项,取2a =-,1b =,则88a b >满足,但a b <,B 选项错误; 对于C 选项,若a b >,0c <,由不等式的性质可得ac bc <,C 选项正确;对于D a b >,D 选项错误.故选:C. 3.已知12<a <60,15<b <36,求a -b 及ab的取值范围.【错解】∵12<a <60,15<b <36,∴12-15<a -b <60-36,1215<a b <6036,∴-3<a -b <24,45<a b <53.【辨析】错解中直接将12<a <60,15<b <36相减得a -b 的取值范围,相除得ab 的取值范围而致错.【正解】∵15<b <36,∴-36<-b <-15.∴12-36<a -b <60-15, 即-24<a -b <45.又15<b <36,∴136<1b <115.又12<a <60,∴1236<a b <6015,即13<a b <4.综上,-24<a -b <45,13<ab <4.【易错警示】错用不等式的性质致错. 考点四:一元二次不等式的解法【典例6】(2020·全国高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D. 【规律方法】1.解一元二次不等式的一般步骤(1)化:把不等式变形为二次项系数大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根. (4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,往往需要对参数进行分类讨论.(1)若二次项系数为常数,首先确定二次项系数是否为正数,再考虑分解因式,对参数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.(2)若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次不等式,然后再讨论二次项系数不为零的情形,以便确定解集的形式. (3)对方程的根进行讨论,比较大小,以便写出解集. 【易错警示】忽视二次项系数的符号致误 【变式探究】1.(2019·全国高考真题(理))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .2. (2020·黑龙江省大庆实验中学高三一模(文))已知集合1|03x A x x -⎧⎫=≥⎨⎬-⎩⎭,集合{|15}B x N x =∈-≤≤,则A B =( )A .{0,1,4,5}B .{0,1,3,4,5}C .{1,0,1,4,5}-D .{1,3,4,5}【答案】A 【解析】 因为集合{1|033x A x x x x -⎧⎫=≥=⎨⎬-⎩⎭或}1x ≤, 集合{|15}{0,1,2,3,4,5}B x N x =∈-≤≤=,所以A B ={0,1,4,5}.故选:A考点五:绝对值不等式的解法【典例7】(2020·江苏省高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x <<所以解集为:2(2,)3-【典例8】(2020·周口市中英文学校高二月考(文))(1)求不等式|x -1|+|x +2|≥5的解集;(2)若关于x 的不等式|ax -2|<3的解集为51|33x x ⎧⎫-<<⎨⎬⎩⎭,求a 的值.【答案】(1) {x |x ≤-3或x ≥2} (2) a =-3 【解析】(1)当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3; 当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}. (2)∵|ax -2|<3,∴-1<ax <5. 当a >0时,15x a a -<< , 153a -=-,且513a =无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,51x a a <<-,553a =-,且113a -=, 解得a =-3. 【规律方法】形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a|+|x -b|>c(c>0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a|+|x -b|≥|x-a -(x -b)|=|a -b|.(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解. 【变式探究】1.(2017天津,文2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥,则2x ≤,11x -≤,则111,02x x -≤-≤≤≤,{}{}022x x x x ≤≤⊂≤ ,据此可知:“20x -≥”是“11x -≤”的的必要的必要不充分条件,本题选择B 选项. 2.(2014·广东高考真题(理))不等式的解集为 .【答案】(][),32,-∞-⋃+∞. 【解析】令()12f x x x =-++,则()21,2{3,2121,1x x f x x x x --<-=-≤≤+>,(1)当2x <-时,由()5f x ≥得215x --≥,解得3x ≤-,此时有3x ≤-; (2)当21x -≤≤时,()3f x =,此时不等式无解;(3)当1x >时,由()5f x ≥得215x +≥,解得2x ≥,此时有2x ≥; 综上所述,不等式的解集为(][),32,-∞-⋃+∞.考点六:绝对值不等式的应用如果a ,b 是实数,那么|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.【典例9】(2020·陕西省西安中学高二期中(理))已知不等式53m x x ≤-+-对一切x ∈R 恒成立,则实数m 的取值范围为( ) A .2m ≤B .2m ≥C .8m ≤-D .8m ≥-【答案】A【解析】()()-+-≥---=,∴根据题意可得2x x x x53532m≤.故选:A【典例10】(2018年理新课标I卷)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.【总结提升】1.两类含绝对值不等式的证明问题一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值符号转化为常见的不等式证明题,或利用绝对值三角不等式性质定理:||a|-|b||≤|a±b|≤|a|+|b|,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明.2.含绝对值不等式的应用中的数学思想(1)利用“零点分段法”求解,体现了分类讨论的思想;(2)利用函数的图象求解,体现了数形结合的思想.3.求f(x)=|x+a|+|x+b|和f(x)=|x+a|-|x+b|的最值的三种方法(1)转化法:转化为分段函数进而利用分段函数的性质求解.(2)利用绝对值三角不等式进行“求解”,但要注意两数的“差”还是“和”的绝对值为定值. (3)利用绝对值的几何意义. 【变式探究】1.(2020·宁夏回族自治区高三其他(理))已知函数()|21||2|f x x x =-+-. (1)若()4f x <,求实数x 的取值范围;(2)若对于任意实数x ,不等式()|21|f x a >-恒成立,求实数a 的值范围.【答案】(1) 17,33⎛⎫- ⎪⎝⎭;(2) 15,44⎛⎫- ⎪⎝⎭【解析】(1)由题,()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩;当12x ≤时,334x -+<,解得1132x -<≤;当122x <<时,14x +<恒成立,解得122x <<; 当2x ≥时,334x -<,解得723x ≤<.综上有3137x -<<.故实数x 的取值范围为17,33⎛⎫- ⎪⎝⎭(2)因为()133,211,2233,2x x f x x x x x ⎧-+≤⎪⎪⎪=+<<⎨⎪-≥⎪⎪⎩,当12x ≤时,()1322f x f ⎛⎫≥= ⎪⎝⎭;当122x <<时,()332f x <<;当2x ≥时,()()23f x f ≥=. 故()f x 的最小值为32.故3212a -<,即332122a -<-<,解得1544a -<<.故实数a 的值范围为15,44⎛⎫-⎪⎝⎭2.已知函数f(x)=|x−1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).【答案】(1) {x|x≤−5或x≥3} (2)见解析【解析】(1)f(x)+f(x+4)=|x−1|+|x+3|={−2x−2,x<−3, 4,−3≤x≤1, 2x+2,x>1,当x<−3时,由−2x−2≥8,解得x≤−5;当−3≤x≤1时,f(x)≥8不成立;当x>1时,由2x+2≥8,解得x≥3.所以不等式f(x)+f(x+4)≥8的解集为{x|x≤−5或x≥3}.(2)f(ab)>|a|f(ba),即|ab−1|>|a−b|.因为|a|<1,|b|<1,所以|ab−1|2−|a−b|2=(a2b2−2ab+1)−(a2−2ab+b2)=(a2−1)(b2−1)>0,所以|ab−1|>|a−b|,故所证不等式成立.。

2.1不等式的基本性质高中

2.1不等式的基本性质高中

(1)作差; 常用手段:配方法,因式分
(2)变形;
解法。
常见形式:变形为常数;
(3)定号;
一个常数与几
(4)下结论;
个平方和; 几个因式的积。
作商比较两数大小的依据
若 b0
(1) a 1 a b b
(2) a 1 a b b
(3) a 1 a b b
例1:已知a 0,1 b 0 ,那么在
三、例题分析:
例2:(2)已知2x 4y 1 ,比较 x2 y2
作与差210比的较大法:小__xx2_2_y_y2_2__121_0 _
注:特殊值 法容易漏“=”
20

x2

(1 4

1 2
x)2

1(条件 20
2x

4y=1
的应用)
5 x2 - 1 x+ 1 5(x2 - 1 x+ 1 ) 4 4 80 4 5 100
3b 4
1 1 1(乘法单调性)
4 Q2

a
b
3
3

1

-
a

(1 乘法法则)
2b
1 a 1(乘法单调性)
b2
三、例题分析:
例5:已知 2 a 3, 4 b 3,求 a b, a b, a , ab, b2 的取值范围。
ba
解:(4)Q 4 b 3 3 b 4(乘法单调性)
• 上式中的左边反映的是实数的运算性质, 而右边则是实数的大小顺序,合起来就成 为实数的运算性质与大小顺序之间的关系。 这一性质不仅可以用来比较两个实数的大 小,而且是推导不等式的性质,不等式的 证明,解不等式的主要依据。

不等式-基本性质

不等式-基本性质

总结:不等式5大基本性质
1)传递性 2)加法性质 3)乘法性质 符号障碍 4)乘方性质 5)开方性质 其他问题处理技巧 减法问题:变减为加 负数乘法问题:变负为正 除法问题,倒数问题:变除为乘,化分为整
eg3.已知:a>b>0,c<d<0,e<o e e 用不等式性质证明 a-c b d
eg1.比较下列两数的大小 1)(a+3)(a-5)和(a+2)(a-4) 2)a 4b 和2a-4b-2
2 2
Байду номын сангаас
3)x 8和 2 x( x 2)
3
比差法的基本步骤: 1.做差 2.将差因式分解为几个因式的乘积或 平方和的形式 3.比较各因式和0的关系,判断符号
eg 2.a克糖水中有b克糖(a>b>0)在添上m克糖 (m>0)糖水变甜了,是根据这个事实提炼一个 不等式并证明
2
二实数a与b的大小关系的确定。
1)a为正数 a 0 b为负数 b 0 a 0, b 0则a>b a>0 -a<0 2)运算: b<0 -b>0 a, b同号 ab 0 a, b异号 ab 0
3)设a , b R, 则a b, a b, a b三种关系必 居且只居其一 a b a b 0, a b ab 0 a b ab 0
a eg 5.1) 2 a 3, 2 b 1, 求a b, a b, 的 b 取值范围 2) 1 a b 2, 求a b和2a -b的取值范围 3)A={y|y=x 2 x 2, x R} 1 求 ( x A)的取值范围 x+1

2.1 等式性质与不等式性质

2.1 等式性质与不等式性质


3.做一做
若x为实数,则x2-1与2x-5的大小关系是
.
解析:∵(x2-1)-(2x-5)=x2-2x+4=(x-1)2+3>0,∴x2-1>2x-5.
答案:x2-1>2x-5
课前篇
自主预习




三、重要不等式
1.∀a,b∈R,a2+b2与2ab大小有何关系?
提示:因为a2+b2-2ab=(a-b)2≥0恒成立,所以a2+b2≥2ab.
探究二
探究三
思维辨析
随堂演练
反思感悟 1.不等关系强调的是量与量之间的关系,可以用符号
“>”“<”“≠”“≥”或“≤”表示;而不等式则是用来表示不等关系的式
子,可用“a>b”“a<b”“a≠b”“a≥b”或“a≤b”等式子表示,不等关系是
通过不等式来体现的.
2.用不等式(组)表示不等关系的步骤:
(1)审清题意,明确条件中的不等关系的个数;
的画“×”.
①在一个不等式的两边同乘一个非零实数,不等式仍然成立.
(
)
②同向不等式具有可加性和可乘性.(
)
③若两个数的比值大于1,则分子上的数就大于分母上的数.
(
)
1
1
④当 x>-3 时,一定有<-3. (
1
1
⑤若 a>b,则 < . (
答案:①×
②×
)
)
③×
④×
⑤×
课前篇
自主预习




(2)若a>b,则下列各式正确的是(
.

第九讲不等关系、不等式的基本性质

第九讲不等关系、不等式的基本性质

第八讲不等关系、不等式的基本性质一、知识点精讲:(一)不等式的定义:用不等号把两个代数式连接起来,表示不等关系的式子叫不等式。

不等符号常见的有5种:“<”、“≤”、“>”、“≥”及“≠”。

注意:“≠”也是不等号,它说明两个量之间的关系是不等的,但不能确定哪个大,哪个小。

“≤”表示“小于或等于”或“不大于”,“≥”表示“大于或等于”或“不小于”。

(二)不等式的基本性质:1、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

2、不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向要变向。

注意:等式性质与不等式性质的最大区别在于不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变(三)不等式的解集:1.不等式的解:使不等式成立的每一个未知数的值,叫做不等式的解.2.不等式的解集:不等式的解的集合叫做不等式的解集.它包含两个方面的意思:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使该不等式成立。

因此,解集要达到不多不漏的严格要求。

3.不等式的解集可以在数轴上直观地表示出来,在表示的时候,要注意“两定”:一是定边界点,若边界点含于解集,为实心点,不含于解集为空心点;二是定方向,相对于边界点而言,“小于向左,大于向右”.不等式的解集在数轴上的表示如下:①当不等式的解集是x>a时.(如图1-1)图1-1②不等式的解集是x≥a时.(如图1-2)图1-2③当不等式的解集是x<a时.(如图1-3)图1-3④当不等式的解集是x≤a 时.(如图1-4)图1-44.不等式的解与解集的区别:解是一个或几个未知数的值,解集是所有的解组成的集合.。

5.求不等式解集的过程叫做解不等式。

1. 判断不等式例1.判断下列各式哪些是不等式,哪些既不是等式又不是不等式.①y x + ;②73>x ; ③523=+; ④20x ≥; ⑤132=-y x ; ⑥01<-. 变式训练1. 下列式子2220,40,340,210,34,13a x y x y x x y a b -<-<+≥+-=+-+>-中,不等式有 个.2.据题意列不等式:例2.用不等式表示下列数量关系.⑴a 的相反数与5的和小于a 与7的差; ⑵5-与x -的和一定是负数;⑶长为2+a ,宽为a 的长方形面积小于边长为1+a 的正方形的面积.变式训练1. 用不等式表示下列数量关系.(1)a 的3倍与2的差小于a 的5倍与7的和; (2)x 的绝对值与1的和不小于1;(3)b a 、两数的平方和的2倍再加上c 小于10; (4) x 与3的和的一半时负数.3. 不等式的基本性质:例3.比较下列各题中两个式子的大小.(1) 33a -与44a-; (2)b a +与b a -.变式训练:(1). 若由y x <得到y a x a 22<,则一定有( ).A .0>aB .0<aC .0≠aD .a 为任意实数(2). 设c b a ,,的平均数为M ,b a ,的平均数为N ,N 与c 的平均数为P ,若c b a >>,则M 与P 的大小关系是( ). A .P M = B .P M > C .P M < D .不确定例4. 运用不等式的基本性质进行化简:1.已知b a >,则75+-a 75+-b 已知4646-<-b a ,则a b . 考点5 图像中比较大小2.如图所示,c b a ,,分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( ).A .b c a >>B .c a b >>C .c b a >>D .b a c >>变式训练(1). 如图所示,四个小朋友玩跷跷板,体重分别为S R Q P 、、、,则他们的体重大小关系是( ).A .Q S R P >>>B .R P S Q >>>C .R Q P S >>>D .Q R P S >>> 考点6: 不等式的解和解集(不等式中字母的取值范围)1.已知关于x 的方程4152435-=-m m x 的解是非负数,求m 的取值范围.2.已知关于y x ,的方程组⎩⎨⎧-=++=+134123a y x a y x 的解满足y x >,求a 的取值范围.3. 求同时满足不等式5043874756++++x x x x 和的整数解变式训练(1).已知关于y x ,的方程组⎩⎨⎧-=-+=+5854a y x a y x 的解满足不等式954<-y x ,求a的取值范围.3.关于x 不等式a bx b ax 2+>+的解集为3>x ,求关于x 的不等式b ax <7的解集.变式训练(1).不等式0)32()(<-++b a x b a 的解集为31-<x ,求关于x 的不等式b a x b a ->-2)3(的解集.4.关于x 的不等式134>+a x 的解都是不等式0312<+-x 的解,求a 的取值范围.变式1.已知不等式a x x 322434-<+(x 为未知数)的解集也是不等式21621<-x 的解集,求a 的值.A (基本训练)1.x 与4的和的2倍不大于x 的二分之一与3的差,用不等式表示为( ) (A )3x 21)4x (2-<+ (B )24x ⨯+≤3x 21-(C ))4x (2+≤3x 21- (D ))4x (2+≤)3x (21-2.若a<b ,则下列各式中不成立的是( ) (A )b 3a4+-<+- (B )a 3b 3-<- (C )33b a < (D )b 2a 2-<-3.若有理数a 、b 在数轴上的位置如图所示,在下列结论错误的是( )(A )0>-b a (B )0>ab (C )b c a c -<- (D )ba 11>4.如果x<0,那么x |x |-是( )(A )正数 (B )负数 (C )非正数 (D )非负数 5.下列不是不等式8x )5x (2-<-的解的数是( ) (A )-4 (B )-5 (C )-3 (D )2 6.如果不等式b ax <的解集为abx <,那么a 的取值范围是( ) (A )a≥0 (B )a≤0 (C )a>0 (D )a<0 7.如图所示,x <2用数轴表示正确的是( )8.不等式1x 43<的非负整数解是( )(A )无数个 (B )1 (C )0,1 (D )1,2 二、解答下列各题 1.用不等式表示:(1)5与x 的3倍的差是正数;(2)a 与b 的平方和不大于3; (3)a 与b 的和的平方不等于a 与b 的平方和; (4)x 除以2的商加上2,至多为5。

不等式的基本性质

不等式的基本性质
等价于方程:如果 ax = b 对于某个实数 x成立,那么 a = b(a,b ≠ 0)
等价于方程:如果 ax = b 对于某个实数 x不成立,那么 a ≠ b(a,b ≠ 0) 正值不等式的可加性:如果 a > b 和 c > d,那么 ac > bd。当且仅当 a > b > 0 和 c > d > 0时成立
5<7
x^2 +:2 > 3y^2 - 1
1.1 不等式的概念与表达
第一个不等式表示5小于7,而 第二个不等式表示一个表达式
x^2 + 2大于另一个表达式 3y^2 - 1
PART 2
1.2 不等式的性质
1.2 不等式的性质
不等式具有以 下基本性质
1.2 不等式的性质
反身性:对于任何实数 x,都有 x ≥ x 对称性:如果 x > y,那么 y < x,反之亦然 传递性:如果 x > y 且 y > z,那么 x > z
正值不等式的可乘性:如果 a > b > 0 和 c > d > 0,那么 ac > bd。当且仅当 a/d > b/c 时成立 正值不等式的可除性:如果 a > b > 0 和 c > d > 0,那么 ac/bd > 1。当且仅 当 ac > bd 时成立。如果 ac < bd,那 么 ac/bd < 1 正值不等式的可幂性:如果 a > b > 0 和 n 是正整数,那么 a^n > b^n。当且 仅当 n 是偶数时,等号成立
加法单调性:如果 x > y 且 z 为任意实数或整式,那么 x + z > y + z 乘法单调性:如果 x > y > 0 且 z 为任意实数或整式,那么 xz > yz

不等式的基本性质

不等式的基本性质

不足
IF语句的应用 《不等式的基本性质》
教材处理
学情分析
目标确立
教学设计
教学过程
资源整合
教学反思
• 知识和能力 1.学会用作差法比较两个实数或式子的大小 ; 重点 2.理解并掌握不等式的基本性质,并能利用该 性质将不等式进行变形. 1.会用作差法比较两个实数或代数式的大小; 2.理解并掌握均值不等式.
• 过程和方法
1.通过创设情境,复习初中已经学习的不等式知识; 2.合作完成探究,培养学生动手能力; 3.通过讲练结合,掌握作差法。
三维目标
难点
• 情感态度和价值观
正确判定差式的符号 形成合作交流的意识和乐于探究的良好思维品 质
IF语句的应用 《不等式的基本性质》
教材处理
学情分析
目标确立
教学设计
教学过程
优点
对策
1.认知结构:大部分学生知识基础较弱, 知识结构零散、不连贯,计算能力不强。 2.心理特点:这时的学生正值青春初期, 自我意识不够健全,自控能力差,而且进入 中职的学生,他们自卑,缺乏积极学习的动 机,学习目标不明确。
课堂上多引用身边的例子, 让学生多动手,多交流,在 实践中学习,在实践中进步
例2 用符号“>”或“<”填空,并说明运用了不等式的什么性质.
(1)如果3x 2 1, 那么3x ___ 3; (2)如果3x 6, 那么x ___ 2; (3)如果 - 5x 10,那么x___- 2.
IF语句的应用 《不等式的基本性质》
教材处理
学情分析
目标确立
教学设计
教学过程
2.对于这节课的内容,你觉得哪里最困难?
IF语句的应用 《不等式的基本性质》

专题2.1-2.3 不等关系、不等式的基本性质、不等式的解集(教师版)

专题2.1-2.3 不等关系、不等式的基本性质、不等式的解集(教师版)

专题2.1-2.3 不等关系、不等式的基本性质、不等式的解集1.理解不等式的意义,能用不等关系符号刻画现实世界中的数量关系;2. 掌握不等式的三条基本性质,并能简单应用;3.认识不等式解集的概念并会在数轴上表示解集。

知识点01 不等式与不等式的基本性质【知识点】1、不等式的概念:一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.注意:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.2、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【知识拓展1】不等式的辨别例1.(2022·浙江·八年级练习)下列各式:①1﹣x:②4x+5>0;③x<3;④x2+x﹣1=0,不等式有()个.A.1B.2C.3D.4【答案】B【分析】依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x+5>0;③x<3,有2个.故选:B.【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式.【即学即练】1.(2022·黑龙江·哈尔滨市八年级期中)下列式子①15xx<+;②1>2;③3m-1≤4;④a+2≠a-2中,不等式有()A.1个B.2个C.3个D.4个【答案】D【分析】根据不等式的定义:“用不等号表示不相等关系的式子叫做不等式”分析即可.【详解】根据不等式的定义:“用不等号表示两个量间的不等关系的式子叫做不等式”分析可知,上述四个式子都是不等式.故选D.【点睛】本题考查了不等式的定义,理解不等式的定义是解题的关键.2.(2022·浙江余杭·八年级阶段练习)下列选项正确的是()A.a不是负数,表示为0a>B.a不大于3,表示为3a<C.x与4的差是负数,表示为40x-<D.x不等于34,表示为34x>【答案】C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A.a不是负数,可表示成0a…,故本选项不符合题意;B.a不大于3,可表示成3a…,故本选项不符合题意;C.x与4的差是负数,可表示成40x-<,故本选项符合题意;D.x不等于34,表示为34x≠,故本选项不符合题意;故选:C.【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.【知识拓展2】不等式应用例2.(2021·北京市八年级期中)2020年,一直活跃在全球公众视线中的新冠疫苗,成为人类对抗新冠疫情的“关键先生”.然而,研发只是迈出了第一步,疫苗运输的第一关考验,在于温度.作为生物制品,疫苗对温度极其敏感.一般来说,疫苗冷链按照温度的不同,有如下分类:类型深度冷链冻链冷藏链温度(t℃)t≤﹣70﹣70<t≤﹣202≤t≤8常见疫苗埃博拉疫苗水痘、带状疱疹疫苗流感疫苗我国研制的新型冠状病毒灭活疫苗,冷链运输和储存需要在2℃﹣8℃范围内,属于以下哪种冷链运输( )A.深度冷链B.冻链C.冷藏链D.普通运输【答案】C【分析】直接根据不等式的定义,观察表中t的范围可得答案.【详解】解:根据图表中t的取值范围得:冷链运输和储存需要在2℃—8℃范围内,属于冷藏链运输.故选:C.【点睛】此题考查的是不等式的概念,掌握不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式是解决此题关键.【即学即练】1.(2022·浙江嘉兴·八年级期末)根据数量关系“x的3倍小于4”,列不等式为______.【答案】34x<【分析】根据题意,表示出x的3倍,即可求解.【详解】解:“x的3倍小于4”,可表示为34x<x<故答案为:34【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.2.(2022·广东·八年级期末)在新冠肺炎疫情防控期间,体温T超过37.3C°的必须如实报告,并主动到发热门诊就诊.体温“超过37.3C °”用不等式表示为( )A .37.3CT >°B .37.3C T <°C .37.3C T £°D .37.3CT £-°【答案】A【分析】超过37.3C °即大于37.3C °,用不等式表示出来即可.【详解】解:A 、表示超过37.3C °,选项正确;B 、表示低于37.3C °,选项错误;C 、表示不高于37.3C °,选项错误;D 、表示不高于37.3C -°,选项错误.故选:A【点睛】本题考查不等式的概念,根据定义解题是关键.【知识拓展3】不等式的性质例3.(2022·湖南汉寿·八年级期末)下列不等式变形中不正确的是( )A .由a b >,得11a b ->-B .由12a b -<,得2a b >-C .由1123a b >,得32a b >D .由31a ->,得13a >-【答案】D【分析】根据不等式的性质,比较每一个选项变形是否符合不等式的性质,选出正确答案即可.【详解】A 、a b >,得11a b ->-,根据不等式两边同时加上或减去同一个数,不等式仍然正确,可知A 正确,不符合题意;B 、由12a b -<,得2a b >-,根据不等两边同时乘一个负数,不等号方向改变,可知B 正确,不符合题意;C 、由1123a b >,得32a b >,根据不等两边同时乘一个正数,不等号方向不变,可知C 正确,不符合题意;D 、由31a ->,得13a <-,根据不等两边同时除以一个负数,不等号方向改变,可知D 错误,符合题意;故选:D .【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解决本题的关键.【即学即练】1.(2022·浙江新昌·八年级期末)如果a b >,那么下列结论一定正确的是( )A .33a b +<+B .22a b <C .34a b +>+D .33a b ->-【答案】D【分析】根据不等式的基本性质求解即可.【详解】解:A 、如果a b >,则33a b +>+,错误,不符合题意;B 、如果a b >,则22a b >,错误,不符合题意;C 、如果a b >,则34a b +>+,不一定正确,不符合题意;D 、如果a b >,则33a b ->-,正确,符合题意,故选:D .【点睛】本题考查不等式的基本性质,熟练掌握不等式的基本性质是解答的关键.2.(2022·山东·八年级专项训练)根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式.(1)15x -<;(2)413x -³;(3)1142x -+³;(4)410x -<-.【答案】(1)6x <(2)1³x (3)6x £-(4)52x >【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答;(3)先根据不等式的性质1,再根据不等式的性质3解答;(4)根据不等式的性质3解答即可;【解析】(1)解:15x -<,两边加上1得:1151x -+<+,解得:6x <;(2)解:413x -³,两边加上1得:41131x -+³+,即44x ³,两边除以4得:1³x ;(3)解:1142x -+³,两边减去1得:111412x -+-³-,即132x -³,两边除以12-得:6x £-;(4)解:410x -<-,两边除以4-得:52x >.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.【知识拓展4】不等式性质的实际运用例4.(2022·山东·八年级期末)如图,A 、B 、M 、N 四人去公园玩跷跷板.设M 和N 两人的体重分别为m 、n ,则m 、n 的大小关系为( )A .m <nB .m >nC .m =nD .无法确定【答案】A【分析】设A ,B 两人的体重分别为a ,b ,根据题意列出等式和不等式,即可得出答案.【详解】解:设A ,B 两人的体重分别为a ,b ,根据题意得:a +m =n +b ,a >b ,∴m <n ,故选:A .【点睛】本题考查了不等式的性质,根据题意列出等式和不等式是解题的关键.【即学即练】1.(2022·湖南汉寿·八年级期末)甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b + 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( )A .a b =B .a b >C .a b <D .与a b 、大小无关【答案】C【分析】分别求出买5只羊的总费用和卖掉5只羊的总收入,再利用不等式的性质比较大小即可【详解】解:由题意,甲买羊共付出(32a b +)元,卖羊的共收入5()2a b +元,∵甲赚了钱,∴32a b +<5()2a b +,解得:a b <,故选:C .【点睛】本题考查列代数式、不等式的基本性质,理解题意,正确列出代数式和不等式是解答的关键.【知识拓展5】根据不等式性质求参数例5.(2022·浙江缙云·八年级期末)若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ³D .3a £【答案】A【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.【即学即练】1.(2022·浙江西湖·八年级期末)已知x y >.(1)比较3x -与3y -的大小,并说明理由.(2)若33ax ay +>+,求a 的取值范围.【答案】(1)3−x <3−y (2)a >0【分析】(1)根据不等式的基本性质解答即可;(2)根据不等式的基本性质解答即可.【解析】(1)解:∵x>y,∴−x<−y,∴3−x<3−y;(2)∵x>y,3+ax>3+ay,∴a>0.【点睛】本题考查的是不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变,解题关键是掌握不等式的基本性质.知识点02 不等式的解集【知识点】1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:注意:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a 而言,x<a或x≤a向左画.【知识拓展1】不等式的解例1.(2022·河北·八年级专题练习)下列说法中,正确的是()A.x=3是不等式2x>1的解B.x=3是不等式2x>1的唯一解C.x=3不是不等式2x>1的解D.x=3是不等式2x>1的解集【答案】A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A、当x=3时,2×3>1,成立,故A符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.【即学即练1】1.(2022·遂宁市八年级期中)下列各数中,是不等式x >3的解的是( )A .﹣3B .0C .3D .5【答案】D【分析】根据不等式解的定义判断即可.【详解】5是不等式x >3的解.故选:D .【点睛】此题考查了不等式的解集,弄清不等式解的定义是解本题的关键.2.(2022·北京顺义·八年级期中)x =3是下列不等式( )的一个解.A .x +1<0B .x +1<4C .x +1<3D .x +1<5【答案】D【分析】直接将x=3代入各个不等式,不等式成立的即为所选.【详解】解:A 、3+1=4>0,故A 不成立;B 、3+1=4,故B 不成立;C 、3+1=4>3,故C 不成立;D 、3+1=4<5,故D 成立;故选:D.【点睛】本题主要考查不等式的的解(集),使不等式成立的的未知数的值,就是不等式的解,由所有不等式的解组成的集合就是不等式的解集.【知识拓展2】不等式的解集例2.(2022·山西忻州·八年级期末)下列说法错误的是( )A .不等式32x ->的解集是5x >B .不等式3x <的整数解有无数个C .不等式33x +<的整数解是0D .0x =是不等式23x <的一个解【答案】C【分析】解出不等式的解集,根据不等式的解的定义,是能使不等式成立的未知数的值,就可以作出判断.【详解】解:A 、不等式x −3>2的解集是x >5,正确,不符合题意;B 、由于整数包括负整数、0、正整数,所以不等式x <3的整数解有无数个,正确,不符合题意;C 、不等式x +3<3的解集为x <0,所以不等式x +3<3的整数解不能是0,错误,符合题意;D 、由于不等式2x <3的解集为x <1.5,所以x =0是不等式2x <3的一个解,正确,不符合题意.选:C .【点睛】本题考查了不等式的解集,解答此题关键是掌握解不等式的方法,及整数的分类.【即学即练】1.(2022·广东·八年级课时练习)下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式﹣2x <8的解集是x <﹣4C .不等式x >﹣5的负整数解是有限个D .﹣40是不等式2x <﹣8的一个解【答案】B【分析】先求解不等式,然后根据不等式解集的定义进行判断.【详解】A 、小于5的整数有无数个,正确;B 、不等式﹣2x <8的解集是x >﹣4,错误;C 、不等式x >﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1,正确;D 、不等式2x <﹣8的解集是x <﹣4,因而﹣40是不等式2x <﹣8的一个解,正确.故选B .【点睛】本题考查不等式的解集,求出不等式的解集是解题的关键.【知识拓展3】用数轴表示不等式的解集例1.(2022.山东八年级)将下列不等式的解集在数轴上表示出来.(1)1x >- (2)2x -≤ (3)0x ³ (4)1x <-【分析】(1)先将数轴画出来,然后找到-1这一点,然后大于向右画,在-1处为空心圆点;(2)先将数轴画出来,然后找到-2这一点,然后小于向左画,在-2处为实心圆点;(3)先将数轴画出来,然后找到0这一点,然后大于向右画,在0处为实心圆点;(4)先将数轴画出来,然后找到-1这一点,然后小于向左画,在-1处为空心圆点.解:如图所示.【点拨】本题主要考查用数轴表示不等式的解集,掌握数轴的知识及大于向右画,小于向左画,有等号画实心圆点,没有等号画空心圆点是解题的关键.【即学即练】1.请用不等式表示如图的解集.【答案】(1)x <﹣1;(2)x ≥1;(3)x ≤﹣1;(4)x >3.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,可得答案.解:(1)由数轴表示的不等式的解集,得1x <-;(2)由数轴表示的不等式的解集,得1³x ;(3)由数轴表示的不等式的解集,得1x £-;(4)由数轴表示的不等式的解集,得3x >.【知识拓展4】根据不等式的解集求参数例4.(2022·浙江龙湾·八年级期中)已知不等式(a ﹣1)x >a ﹣1的解集是x <1,则a 的取值范围为______.【答案】a <1【分析】根据不等式的性质3,可得答案.【详解】解:∵(a ﹣1)x >a ﹣1的解集是x <1,不等号方向发生了改变,∴a ﹣1<0,∴a <1.故答案为:a <1.【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变.【即学即练】1.(2022·浙江·温州八年级期中)若不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,则m 的取值范围为_____.【答案】3m <【分析】根据不等式的性质可知30m -<,求解即可.【详解】解:∵不等式(m ﹣3)x >m ﹣3,两边同除以(m ﹣3),得x <1,∴30m -<,解得:3m <,故答案为:3m <.【点睛】本题考查了不等式的基本性质,熟知不等式两边同时乘或除一个负数,不等式的符号要改变,是解本题的关键.2.对于x≥1的一切实数,不等式()1x-a 2≥a 都成立,试求a 的取值范围.【答案】13a £【分析】将x=1先带入不等式()1x-a 2≥a 中,解不等式即可得到答案.解:不等式可得x≥3a,由题意知3a≤1,即a≤13.【点拨】此题重点考查学生对不等式解法的理解,把握不等式的解法是解题的关键.题组A 基础过关练1.(2022·北京市昌平区八年级期中)在 ① 1x y +=;② x y >;③ 2x y +;④ 21x y -³;⑤ 0x < 中,属于不等式的有 ()A .1 个B .2 个C .3 个D .4 个【答案】C【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C【点睛】本题考查了不等式的概念,理解不等式的概念是关键.2.(2022·江苏高邮·七年级期末)小明花整数元网购了一本《趣数学》,让同学们猜书的价格.甲说:“至少15元”,乙说“至多13元”,丙说:“至多10元”.小明说:“你们都猜错了.”则这本书的价格为( )A .12元B .13元C .14元D .无法确定【答案】C【分析】根据题目中的说法,可以利用排除法,求得《趣数学》的价格,从而可以解答本题.【详解】解:由题意可得,甲、乙、丙的说法都是错误的,甲的说法错误,说明这本书的价格少于15元,乙、丙的说法错误,说明这本书的价格高于13元,又因为明花整数元网购了一本《趣数学》,所以这本书的价格是14元,故选:C .【点睛】本题考查推理与论证,解答本题的关键是明确题意,利用排除法得到书的价格.3.(2022·江苏·靖江外国语学校模拟预测)下列说法不正确的是( )A .若a b <,则22ax bx <B .若a b >,则44a b -<-C .若a b >,则11a b -<-D .若a b >,则a x b x+>+【答案】A【分析】利用不等式的性质逐项判断,得出答案即可.【详解】解:A 、若a b <,则22ax bx <,0x =时不成立,此选项错误,符合题意;B 、若a b >,则44a b -<-,此选项正确,不符合题意;C 、若a b >,则11a b -<-,此选项正确,不符合题意;D 、若a b >,则a x b x +>+,此选项正确,不符合题意.故选:A .【点睛】此题考查不等式的性质,解题关键是熟记不等式的性质:性质1、不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质2、不等式两边都乘(或除以)同一个正数,不等号的方向不变.性质3、不等式两边都乘(或除以)同一个负数,不等号方向改变.4.(2022·全国·八年级专题练习)对于不等式4x+7(x-2)>8不是它的解的是()A.5B.4C.3D.2【答案】D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键. 5.(2022·全国·八年级)如果a<b,c<0,那么下列不等式成立的是( )A.a+c<b B.a﹣c>b﹣c C.ac+1<bc+1 D.a(c﹣2)<b(c﹣2)【答案】A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,6.(2022·山东·聊城市八年级阶段练习)如果a>b,c<0,则ac3_____bc3(>或<或=).【答案】<【分析】根据不等式的基本性质(不等式的两边同时乘以或除以同一个负数不等号的方向改变)判断即可得到答案.【详解】解:∵c<0,∴c3<0,∵a>b,∴ac3<bc3.(不等式的两边同时乘以或除以同一个负数不等号的方向改变)故答案为:<.【点睛】本题主要考查了不等式的基本性质;(1)不等式的两边同时加上或者减去同一个数活等式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.(2022·北京市八年级期中)以下是两位同学在复习不等式过程中的对话:小明说:不等式a>2a永远都不会成立,因为如果在这个不等式两边同时除以a,就会出现1>2这样的错误结论!小丽说:如果a>b,c>d,那么一定会得出a﹣c>b﹣d.你认为小明的说法 (填“正确”、“不正确”);小丽的说法 (填“正确”、“不正确”),并选择其中一个人判断阐述你的理由(若认为正确,则进行证明;若认为不正确,则给出反例)【答案】不正确;不正确;理由见解析【分析】根据不等式的性质进行解答.【详解】解:小明和小丽的说法都不正确,理由如下:选择小明的说法:当a=0时,a=2a;当a<0时,由1<2得a>2a.选择小丽的说法:当a=c,b=d时,a﹣c>b﹣d不成立;故答案为:不正确;不正确.【点睛】本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.8.(2022·全国·八年级课前预习)利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x-7>26(2)3x<2x+1【答案】(1)x>33,见解析(2)x<1,见解析【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x-7+7>26+7,x>33.这个不等式的解集在数轴上的表示如图:(2)3x<2x+1;解:(2)根据不等式的性质1,不等式两边减2x,不等号的方向不变,所以:3x-2x<2x+1-2x,x<1.这个不等式的解集在数轴上的表示如图:9.(2022·全国·八年级课时练习)若x y <,试比较下列各式的大小并说明理由.(1)31x -与31y -;(2)263x -+与263y -+.【答案】(1)3131x y -<-.理由见解析;(2)226633x y -+>-+.理由见解析.【分析】(1)先在x <y 的基础上,利用不等式性质2,同乘以3,不等号方向不变,再在此基础上,利用不等式性质1,同减去1,不等号方向不变,故3x-1<3y-1;(2)先在x <y 的基础上,利用不等式形式3,同乘以-23-,不等号方向改变,再在此基础上,利用不等式性质1,同加上6,不等号方向不变,故226633x y -+>-+.【详解】解:(1)3131x y -<-.理由如下:x y <Q ,33x y \<(不等式的性质2),3131x y \-<-(不等式的性质1).(2)226633x y -+>-+.理由如下:x y <Q ,2233x y \->-(不等式的性质3),226633x y -+>-+(不等式的性质1).【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.题组B 能力提升练1.(2022·全国·八年级专题练习)下列说法正确的是( )A .x =﹣3是不等式x >﹣2的一个解B .x =﹣1是不等式x >﹣2的一个解C .不等式x >﹣2的解是x =﹣3D .不等式x >﹣2的解是x =﹣1【答案】B【分析】根据不等式解集和解的概念求解可得.【详解】解:A 、∵32-<- ,∴x =﹣3不是不等式x >﹣2的一个解,此选项不符合题意;B .∵12->- ,∴x =﹣1是不等式x >﹣2的一个解,此选项符合题意;C .不等式x >﹣2的解有无数个,此选项不符合题意;D .不等式x >﹣2的解有无数个,此选项不符合题意;故选B .【点睛】本题主要考查不等式的解集,不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示,不等式的每一个解都在它的解集的范围内.2.(2022·湖南·永州市八年级阶段练习)关于x 的不等式(m -1)x >m -1可变成形为x <1,则( )A .m <-1B .m >-1C .m >1D .m <1【答案】D【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x 的不等式(m -1)x >m -1的解集为x <1,∴m -1<0,则m <1,故选:D .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.3.(2022·全国·八年级)已知8x +1<-2x ,则下列各式中正确的是( )A .10x +1>0B .10x +1<0C .8x -1>2xD .10x >-1【答案】B【分析】根据不等式的性质解答即可.【详解】解:由不等式性质得,在不等式8x +1<-2x 的两边同加上2x ,不等号的方向不变,即10x +1<0.故选:B .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解答的关键,注意符号的变化.4.(2022·江西·景德镇八年级期中)以下说法正确的是:_______.①由ab bc >,得a c >;②由22ab cb >,得a c >;③由b a b c -<-,得a c >;④由20212021a c >,得a c >;⑤n a -和()n a -互为相反数;⑥3x >是不等式21x +>的解【答案】②③④【分析】根据不等式的基本性质得出结论即可.【详解】解:①由ab bc >,当0b <时,得a c <,故结论①错误;②由22ab cb >,得a c >,故结论②正确;③由b a b c -<-,得a c >;故结论③正确;④由20212021a c >,得a c >;故结论④正确;⑤n a -和()n a -互为相反数,当n 为奇数时,()n n a a -=-,故结论⑤错误;⑥1x >-是不等式21x +>的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.5.(2022·广东·八年级期中)(1)若a <0,则a 2a ;(用“>”“<”“=”填空)。

不等关系和不等式的基本性质

不等关系和不等式的基本性质

不等关系和不等式的基本性质【知识要点】①一般地,用符号“<”或者“≤”、“>”或者“≥”连接的式子叫做不等式。

②正确理解“非负数”、“不小于”、“不大于”、“至少”等数学术语。

③不等式的两边都加上(或减少)同一个整数,不等式号的方向不变。

④不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

⑤不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

【典型例题】例1 用不等式表示(1)5与x 的3倍的差为正数。

(2)a 与b 两数和的平方不能大于3。

(3)x 2是非负数。

(4)x 的一半比-5大,比3小。

(5)3x 的绝对值不小于5。

(6)a 的6倍与3的差不大于1。

例2 判断下列结果对不对,为什么? ①若323,2x x >>则 ②若36,2x x -<<-则③若12,12a a>->-则 ④若a>b ,则a>3b例3 根椐不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式。

①47x +> ②514x x <+ ③415x ->- ④2542x x +<-例4 设a<b ,用“<”或“>”填空。

(1)a+6 b+6 (2)4a 4b (3)8a -8b -例5 判断下列说法是否正确。

(1)若a>b ,则22ac bc > (2)若22,ac bc a b >>则 (3)若,c ab c a b>>则 (4)若,0a b a b ->>则 (5)若0,0,0ab a b >>>则例6 有一个两位数,个位上的数是m ,十位上的数是n ,如果把这个两位数的个位数与十位数对调,得到的两位数大于原来的两位数,那么m 与n 哪个大?【练习】1.用不等式表示下列数量关系。

①a 与b 的和大于a 的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 X 2
3, 解:根据不等式的基本性质___ 除以-2 ,得 两边都______
挑战 1 :下列各式中的不等式有( 5 个。 (1)8<9; (2)a+b=0;

(3)a2+1>0; (4)3x-1≤x; (5)x-y≠1; (7)4-2x; (6)3-x=0; (8)x2+y2>0.
随堂练习
1、用适当的符号表示下列关系: (1)a是非负数; (2)直角三角形斜边c比它的两直角边 a,b都长; (3)x与17的和比它的5倍小。
不等式的基本性质2:
不等式两边都加(或减去) 同一个数,不等式仍成立.
如果a<b,那么a+c < 如果a>b,那么a+c
不等号方 向不改变!
b+c, a-c < b-c;
> b+c, a-c > b-c.
大胆猜想
不等式两边都加(或减去)同一个数,不等号方向不改变 不等式两边都加(或减去)同一个数,不等号方向不改变
基本性质2
不等式的基本性质有什么用呢? 例:将下列不等式化成 X > a或 x < a 的形式 (1) x-5 >-1
(2) -2x > 3 (3) 7x <6x -6
(1) x-5 > -1
解: 根据不等式的基本性质__, 5,得 两边都加上 _____ x>-1+5 即 x>4
1
(2) -2x > 3
易错易混点点拨
常用的表示不等关系的关键词语及对应的不等号
第一类:明确表明数量的不等关系 第二类:明确表明数量的范围特征
①大 于 ②比…大 ③超 过 ①小 于 ②比…小 ③低 于 ①不大于 ②不超过 ③至 多 ①不小于 ②不低于 ③至 少
关 键 词 语
正数
负数
非负数
非正数
不 等 号



ห้องสมุดไป่ตู้

>0 <0 ≥0 ≤0
(2)不等式两边都乘(或除以)同一个 正数,所得不等式仍成立; (3)不等式两边都乘(或除以)同一个 负数,不等号改变方向后所得不等式成 立.
练习:设a>b,用“<”或“>”填空 并口答是根据哪一条不等式基本性质。
> 基本性质1 (1) a - 3____b - 3; > ÷3 基本性质2 (2)a÷3____b 基本性质2 (3) 0.1a____0.1b; > 基本性质3 (4) -4a____-4b < (5) 2a+3____2b+3; > 基本性质2、1 > (m2+1)b (m为常数) (6) (m2+1) a ____
不等关系不等式的基本性质
二合一
生活与数学 情景一
2008年北京奥运会金牌榜 中国 美国 英国 51 36 19
英国金牌数比美国少,
美国金牌数比中国少, 英国金牌数比中国 少.
19 < 36
36 < 51
19 < 51
一般地,用符号“<”(或 “≤”)、“>”(或“≥”)、“≠” 连接的式子叫做不等式。
不等式两边都乘(或除以)同一个数(不为零),
不等号方向呢?
探索与发现 已知4<6,则
Ⅰ组:
4×2 < 6×2;
Ⅱ组:
4×(-2) > 6×(-2);
4÷2 < 6÷2;
4÷(-2) > 6÷(-2).
不等式两边都乘(或除以)一个不为零的数, 不等号方向改不改变和什么有关?
不等式的基本性质2和3:
若a<b,b<c,则a<c
(1)若a>b,则b < a;
< 传递 性 2a-1.
(2)若a<b,b<2a-1,则a
情景再探
王老师比 张老师年龄小.
①10年后谁的年龄大?
②20年之后呢? ③5年之前呢?
假设王,张两位老师的 年龄分别为a,b
a < b
则a+10 < b+10
a+20 < b+20 a-5 < b-5
a

0
c>a且c>b
x+17<5x
(4)两数的平方和不小于这两数积的2倍。
x2+y2 ≥ 2xy
情景初探 情景二
王老师年龄 比张老师小, 张老师年龄 比李老师小,
假设王老师,张老师,李 老师三位老师的年龄分别 为a,b,c
a < b b < c 则a < c
∴王老师年龄 比李老师小
不等式的传递性:
相关文档
最新文档