2019最新全国各地中考数学考试真题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!

2019最新全国各地中考数学考试真题及答案

一、函数与几何综合的压轴题

1.(2018安徽芜湖)如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)

(1)求证:E点在y轴上;

(2)如果有一抛物线经过A,E,C三点,求此抛物线

方程.

(3)如果AB位置不变,再将DC水平向右移动k(k>0)

个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.

[解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO

DO EO BO AB DB CD DB

''''

==

又∵DO ′+BO ′=DB ∴1EO

EO AB DC

''

+= ∵AB =6,DC =3,∴EO ′=2 又∵DO

EO DB AB ''=

,∴2316

EO DO DB AB '

'=⨯=⨯= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2①

再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②

联立①②得0

2x y =⎧⎨=-⎩

∴E 点坐标(0,-2),即E 点在y 轴上

图①

(2)设抛物线的方程y =ax 2

+bx +c (a ≠0)过A (-2,-6),C (1,-3)

E (0,-2)三点,得方程组426

3

2a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩

解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2

-2

(3)(本小题给出三种方法,供参考)

由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

同(1)可得:1E F E F AB

DC

''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB

DB

'⇒=,∴13

DF DB =

S △AE ′C = S △ADC - S △E ′DC =11122

2

2

3

DC DB DC DF DC DB ∙-∙=∙

=13

DC DB ∙=DB=3+k

S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()113232

2

BD E F k k '=∙=+⨯=+

∴S =3+k 为所求函数解析式.

证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2

同理:S △DE ′C ∶S △DE ′B =1∶2,又

∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2

=1∶4 ∴()22139

92

AE C ABCD S S AB CD BD k '∆==⨯+∙=+梯形

∴S =3+k 为所求函数解析式.

2. (2018广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标;

(2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若

4

21h

S S =,抛物线 y =ax 2

+bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1,

在Rt △AOM 中,AO =

122=-OM AM ,

∴点A 的坐标为A (0,1)

(2)证:∵直线y =x +b 过点A (0,1)∴1=0+b

即b =1 ∴y =x +1 令y =0则x =-1 ∴B (—1,0), AB =

2112222=+=+AO BO

在△ABM 中,AB =2,AM =2,BM =2

222224)2()2(BM AM AB ==+=+

∴△ABM 是直角三角形,∠BAM =90° ∴直线AB 是⊙M 的切线

(3)解法一:由⑵得∠BAC =90°,AB =2,AC =22,

∴BC =

10)22()2(2222=+=+AC AB

∵∠BAC =90° ∴△ABC 的外接圆的直径为BC ,

∴π

ππ2

5

)210()2(221=∙=∙=BC S

而πππ

2)2

22(

)2

(2

22=∙=∙=AC S

421h S S = ,5,4

225

=∴=h h 即 ππ 设经过点B (—1,0)、M (1,0)的抛物线的解析式为: y =a (+1)(x -1),(a ≠0)即y =ax 2

-a ,∴-a =±5,∴a =±5

∴抛物线的解析式为y =5x 2

-5或y =-5x 2+5 解法二:(接上) 求得∴h =5

由已知所求抛物线经过点B (—1,

0)、M (1、0),则抛物线的对称轴是y 轴,由题意得抛物线的顶点坐标为(0,±5)

相关文档
最新文档