2019-2020年高二数学:阶段质量检测(一)

合集下载

2019-2020年高中数学 第一章 单元检测卷(B)新人教A版必修1

2019-2020年高中数学 第一章 单元检测卷(B)新人教A版必修1

2019-2020年高中数学 第一章 单元检测卷(B )新人教A 版必修1一、选择题(本大题共12小题,每小题5分,共60分)1.下列各组对象中不能构成集合的是( )A .北京尼赏文化传播有限公司的全体员工B .xx 年全国经济百强县C .xx 年全国“五一”劳动奖章获得者D .美国NBA 的篮球明星2.能表示直线x +y =2与直线x -y =4的公共点的集合是( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}3.设全集U =R ,集合A ={x ||x |≤3},B ={x |x <-2或x >5},那么如图所示的阴影部分所表示的集合为( )A .[-3,5)B .[-2,3]C .[-3,-2)D .(-∞,3]∪[5,+∞)4.设全集U =R ,集合A ={x |0<x <2},B ={x |x >1},则集合A ∩∁U B 等于( )A .{x |1<x <2}B .{x |1≤x <2}C .{x |0<x <1}D .{x |0<x ≤1}5.若集合A 、B 、C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系是( )A .ACB .CAC .A ⊆CD .C ⊆A6.已知f (x )、g (x )为实数函数,且M ={x |f (x )=0},N ={x |g (x )=0},则方程[f (x )]2+[g (x )]2=0的解集是( )A .MB .NC .M ∩ND .M ∪N7.满足M ⊆{a 1,a 2,a 3,a 4}且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1个B .2个C .3个D .4个8.方程组⎩⎪⎨⎪⎧x -y =-32x +y =6的解集的正确表示方法为( ) A .{1,4} B .{4,1}C .{(1,4)}D .{x =1,y =4}9.已知集合A ={0,2,3},B ={x |x =a ·b ,a ,b ∈A },则集合B 的子集的个数是( )A .4个B .8个C .15个D .16个10.集合M 由正整数的平方组成,即M ={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.M 对下列运算封闭的是( )A .加法B .减法C .乘法D .除法11.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠∅,则k 的取值范围是( )A .(-∞,2]B .[-1,+∞)C .(-1,+∞)D .[-1,2]12.设P 、Q 为两个非空实数集合,定义集合运算:P *Q ={z |z =ab (a +b ),a ∈P ,b ∈Q },若P ={0,1},Q ={2,3},则P *Q 中元素之和是( )A .0B .6C.12二、填空题(13.设集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A⊇B,则实数k的取值范围为________.14.定义两个数集A,B之间的距离是|x-y|min(其中x∈A,y∈B).若A={y|y=x2-1,x ∈Z},B={y|y=5x,x∈Z},则数集A,B之间的距离为______________.15.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x组成的集合为____________.16.若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,则实数m的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁U A. 18.(12分)已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁U M)∩N,(∁U M)∪(∁U N).19.(12分)已知全集U={x∈P|-1≤x≤2},集合A={x|0≤x<2}、集合B={x|-0.1<x≤1}.(1)若P=R,求∁U A中最大元素m与∁U B中最小元素n的差m-n的值;(2)若P=Z,证明:(∁U B)∪A=U.20.(12分)已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.21.(12分)设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.(1)若m=4,求A∪B;(2)若B⊆A,求实数m的取值范围.22.(12分)已知集合A ={x |ax 2+2x +1=0,a ∈R ,x ∈R }.(1)若A 中只有一个元素,求a 的值,并求出这个元素;(2)若A 中至多只有一个元素,求a 的取值范围.第一章 集 合(B)1.D [根据集合中元素的确定性来判断是否构成集合.因为A 、B 、C 中所给对象都是确定的,从而可以构成集合;而D 中所给对象不确定,原因是没有具体的标准衡量一位美国NBA 球员是否是篮球明星,故不能构成集合.]2.D [选项A 不是集合的表示方法;选项B 代表点的坐标,也不是集合的表示;选项C 是表示了集合,但里面的元素是3和-1,而两条直线的公共点是一个坐标,表示由这样的点构成的集合应把点的坐标放在集合中.]3.B [化简集合A ,得A ={x |-3≤x ≤3},集合B ={x |x <-2或x >5},所以A ∩B ={x |-3≤x <-2},阴影部分为∁A (A ∩B ),即为{x |-2≤x ≤3}.]4.D [因为∁U B ={x |x ≤1},所以A ∩∁U B ={x |0<x ≤1}.]5.C [∵A ∩B =A ,∴A ⊆B ,∵B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选C.]6.C [若[f (x )]2+[g (x )]2=0,则f (x )=0且g (x )=0,故[f (x )]2+[g (x )]2=0的解集是M ∩N .]7.B 8.C9.A [B ={0,6},子集的个数为22=4个.]10.C [设a 、b 表示任意两个正整数,则a 2、b 2的和不一定属于M ,如12+22=5∉M ;a 2、b 2的差也不一定属于M ,如12-22=-3∉M ;a 2、b 2的商也不一定属于M ,如1222=14∉M ;因为a 、b 表示任意两个正整数,a 2·b 2=(ab )2,ab 为正整数,所以(ab )2属于M ,即a 2、b 2的积属于M .故选C.]11.B12.D [∵P ={0,1},Q ={2,3},a ∈P ,b ∈Q ,故对a ,b 的取值分类讨论.当a =0时,z =0;当a =1,b =2时,z =6;当a =1,b =3时,z =12.综上可知:P *Q ={0,6,12},元素之和为18.]13.[-1,12] 解析 由题意,∴实数k 的取值范围为[-1,12]. 14.0解析 集合A 表示函数y =x 2-1的值域,由于x ∈Z ,所以y 的值为-1,0,3,8,15,24,….集合B 表示函数y =5x 的值域,由于x ∈Z ,所以y 的值为0,5,10,15,….因此15∈A ∩B .所以|x -y |min =|15-15|=0.15.{-3,2}解析 ∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3和2符合集合中元素的互异性,故所求的集合为{-3,2}.16.[-1,+∞)解析 ∵B ⊆A ,当B =∅时,得2m -1>m +1,∴m >2,当B ≠∅时,解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.17.解 设方程x 2-5x +q =0的两根为x 1、x 2,∵x ∈U ,x 1+x 2=5,∴q =x 1x 2=1×4=4或q =x 1·x 2=2×3=6.当q =4时,A ={x |x 2-5x +4=0}={1,4},∴∁U A ={2,3,5};当q =6时,A ={x |x 2-5x +6=0}={2,3},∴∁U A ={1,4,5}.18.解 由题意得M ∪N ={x |x ≤3},∁U M ={x |x >3},∁U N ={x |x ≥1},则(∁U M )∩N ={x |x >3}∩{x |x <1}=∅,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}.19.(1)解 ∁U A ={x |-1≤x <0,或x =2},∴m =2,又∁U B ={x |-1≤x ≤0.1,或1<x ≤2},∴n =-1,∴m -n =2-(-1)=3;(2)证明 ∵P =Z ,∴U ={-1,0,1,2},A ={0,1},B ={0,1},∴∁U B ={-1,2},从而(∁U B )∪A =U .20.解 (1)∵∁U (∁U B )=B ={0,1},且B ⊆U ,∴|a -1|=0,且(a -2)(a -1)=1;或|a -1|=1,且(a -2)(a -1)=0;第一种情况显然不可能,在第二种情况中由|a -1|=1得a =0或a =2,而a =2适合(a -2)(a -1)=0,∴所求a 的值是2;(2)依题意知|a -1|=3,或(a -2)(a -1)=3,若|a -1|=3,则a =4或a =-2;若(a -2)(a -1)=3,则a =3±132, 经检验知a =4时,(4-2)(4-1)=6,与集合中元素的互异性相矛盾,∴所求的a 的值是-2,或3±132. 21.解 (1)当m =4时,A ={x ∈R|2x -8=0}={4},B ={x ∈R|x 2-10x +16=0}={2,8}, ∴A ∪B ={2,4,8}.(2)若B ⊆A ,则B =∅或B =A .当B =∅时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)<0,得m <-12; 当B =A 时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)=0,且--2m +12=4,解得m 不存在. 故实数m 的取值范围为(-∞,-12).22.解 A 中元素x 即为方程ax 2+2x +1=0(a ∈R ,x ∈R)的解.(1)∵A 中只有一个元素,∴ax 2+2x +1=0只有一解.当a =0时,方程为2x +1=0,解得x =-12符合题意; 当a ≠0且Δ=4-4a =0即a =1时,方程的解x 1=x 2=-1,此时A 中也只有一元素-1.综上可得:当a =0时,A 中的元素为-12;当a =1时,A 中的元素为-1. (2)若A 中只有一个元素,由(1)知a =0或a =1,若A 中没有元素,即方程ax 2+2x +1=0无解,解得a >1,综上可得:a >1或a =0或a =1..。

四川省绵阳市三台县2019-2020学年下学期高二(期中)半期教学质量调研测试题数学理科

四川省绵阳市三台县2019-2020学年下学期高二(期中)半期教学质量调研测试题数学理科

高二数学试题(理)第1页,共10页三台县2020年春高二半期教学质量调研测试数 学(理)本试卷分试题卷和答题卡两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷组成,共4页;答题卡共4页。

满分100分。

考试结束将答题卡交回。

第Ⅰ卷(共48分)注意事项:1.答第I 卷前,考生务必将姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能将答案答在试题卷上。

一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p :R x ∈∃0,02020≤+-x x ,则p ⌝为A .R x ∈∃0,02020>+-x xB .R x ∈∀,022≤+-x x C .R x ∈∀,022>+-x x D .R x ∈∃0,02020<+-x x 2.命题“若022=+y x ,则0==y x ”的逆否命题是A .若0==y x ,则022=+y xB .若022≠+y x ,则x ,y 不都为0 C .若x ,y 不都为0,则022≠+y x D .若x ,y 都不为0,则022≠+y x3.设,x y R ∈,则“0x y >>”是“1xy>”的高二数学试题(理)第2页,共10页A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 4.物体做直线运动,其运动规律是tt n 32+=(t 为时间,单位是s ,n 为路程,单位是m ),则它在3s 时的瞬时速度为 A .413 B .419 C .317D .105.若曲线2)(x x f =的一条切线l 与直线034=-+y x 垂直,则直线l 的方程为A .044=--y xB .044=-+y xC .034=+-y xD .034=++y x6.函数)(x f y =的导函数)('x f y =的图像如图所示,则函数)(x f y =的图像可能是7.已知命题p :R ∈∃α,使得2cos sin =+αα;命题q :),0(+∞∈∀x ,x x sin >,则下列命题为真命题的是高二数学试题(理)第3页,共10页A .q p ∧B .q p ∨C .)(q p ⌝∧D .)(q p ⌝∨8.已知空间四边形OABC 中,=,=,=,点M 在OA 上,且MA OM 2=,N 为BC 的中点,则=A .213221+- B .212132++- C .212121-+ D .213232-+ 9.函数2)()(c x x x f -=在2=x 处取得极小值,则c 是值为A .6或2B .6或2-C .6D .210.直三棱柱111C B A ABC -中,090=∠BAC ,1AA AC AB ==,则异面直线1BA 与1AC 所成的角为A .030 B .045 C .060 D .09011.已知奇函数)(x f 的导函数为)('x f ,当0>x 时,0)()('>-x f x xf ,若)21(2f a =,)(1e f eb --=,)1(f c =,则a ,b ,c 的大小关系是 A .c b a << B .a c b << C .b a c << D .b c a <<12.已知a ,R b ∈,且b x a e x+-≥)1(对R x ∈恒成立,则b a 2的最大值为A .521e B .531e C .321e D .331e第Ⅱ卷(共52分)高二数学试题(理)第4页,共10页注意事项:1.用钢笔将答案直接写在答题卷上。

高二数学第一学期期末质量检测试卷一

高二数学第一学期期末质量检测试卷一

高二数学第一学期期末质量检测试卷(文科必修2+选修1-1)一、 选择题:本大题共10小题,每题5分共50分1.抛物线28y x =的准线方程是( )A .2-=yB . 2=yC . 2x =D ..2x =-2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0垂直,则m 的值为( )A .0B .2C .-8D .10 3.命题“2x 2-5x -3<0”的一个必要不充分条件是( )A .-12<x <3B .-12<x <4C .-3<x <12D .1<x <24.设f (x )在点x =x 0处可导,且当Δx 趋近于0时,f (x 0+3Δx )-f (x 0)Δx趋近于1,则f ′(x 0)=( )A .1B .0C .3 D.135.若两条平行线L 1:x-y+1=0,与L 2:3x+ay-c=0 (c>0),则3a c-等于( )A. -2B. -6C. 2D.0 6.一个几何体的底面是正三角形,侧棱垂直于底面,它的三视图及其 尺寸如下(单位cm ),则该几何体的表面积为:2B.)3824(+ cm2C.314cm 2D. 318 cm7.函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( ) A.a<3 ; B.a>3 ; C.a ≤3; D.a ≥38.在空间中,a ,b 是不重合的直线,α,β是不重合的平面,则下列条件中可推出 a ∥b 的是( ).A .a ⊂α,b ⊂β,α∥βB .a ∥α,b ⊂βC .a ⊥α,b ⊥αD .a ⊥α,b ⊂α9.已知圆C :(x+3)2 +y 2=100和点B(3,0),P 是圆上一点,线段BP 的垂直平分线交CP 于M 点,则M 点的轨迹方程是正视图侧视图俯视图A 26y x =. B: .2212516xy+= C2212516xy-=D.2225x y +=10.曲线y=x 2+1上任意一点(x, y )处的切线方程斜率记为g(x),则函数y=g(x)cosx 的部分图象可以是二、填空题:本大题共4小题.11.已知原点O (0,0),则点O 到直线x+y+2=0的距离等于 .12.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45 ,腰和上底均为1. 如图,则平面图形的实际面积为13.过点(1,2),且在两坐标轴上截距相等的直线方程14.设集合{}22(,)4M x y x y =+≤,{}222(,)(1)(1)(0)N x y x y r r =-+->≤.当M N N = 时,则正数r 的取值范围.15. 已知a 、b 是不同直线,α、β、γ是不同平面,给出下列命题: ①若α∥β,a ⊂α,则a ∥β ②若a 、b 与α所成角相等,则a ∥b ③若α⊥β,β⊥γ,则α∥γ ④若a ⊥α, a ⊥β,则α∥β 其中正确的命题的序号是__________________ 三.解答题:本题共5个小题,共计75分16、(本题12分)命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。

2019-2020学年浙江省台州一中高二(上)期中数学试卷

2019-2020学年浙江省台州一中高二(上)期中数学试卷

2019-2020学年浙江省台州一中高二(上)期中数学试卷一、选择题:每小题4分,共40分1.(4分)点(1,2)A 到直线:3410l x y --=的距离为( ) A .45B .65C .4D .62.(4分)设m ,n 是空间中不同的直线,α,β是空间中不同的平面,则下列说法正确的是( )A .//αβ,m α⊂,则//m βB .m α⊂,n β⊂,//αβ,则//m nC .//m n ,n α⊂,则//m αD .m α⊂,n β⊂,//m β,//n α,则//αβ 3.(4分)过两点(4,)A y ,(2,3)B -的直线的倾斜角为45︒,则(y = ) A .3-B .3 C .1- D .14.(4分)将半径为1,圆心角为23π的扇形围成一个圆锥,则该圆锥的体积为( ) A .22πB .22πC .22πD .22π5.(4分)下列说法中正确的是( )A .若一个命题的逆命题为真,则它的逆否命题一定为真B .若一个命题的否命题为真,则它的逆否命题一定为真C .“若220a b +=,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则220a b +≠”D .“若220a b +=,则a ,b 全为0”的逆否命题是“若a ,b 不全为0,则220a b +≠” 6.(4分)在一个倒置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是( )A .B .C .D .7.(4分)平面内称横坐标为整数的点为“次整点”.过函数29y x =-整点作直线,则倾斜角大于45︒的直线条数为.( ) A .10B .11C .12D .138.(4分)异面直线a 、b 和平面α、β满足a α⊂,b β⊂,l αβ=I ,则l 与a 、b 的位置关系一定是( ) A .l 与a 、b 都相交 B .l 与a 、b 中至少一条平行 C .l 与a 、b 中至多一条相交D .l 与a 、b 中至少一条相交9.(4分)已知四棱锥P ABCD -,记AP 与BC 所成的角为1θ,AP 与平面ABCD 所成的角为2θ,二面角P AB C --为3θ,则下面大小关系正确的是( ) A .12θθ„B .13θθ„C .23θθ„D .13θθ…10.(4分)如图,在长方体1111ABCD A B C D -中,2DC =,11DA DD ==,点M 、N 分别为1A D 和1CD 上的动点,若//MN 平面11AA C C ,则MN 的最小值为( )A 5B .23C 5D 5 二、填空题:11-14每空3分,15-17每空4分,共36分11.(6分)在空间直角坐标系中,已知点(1A ,0,2)与点(1B ,3-,1),则||AB = ,若在z 轴上有一点M 满足||||MA MB =,则点M 坐标为 .12.(6分)已知直线1:(1)620l m x y -++=,2:10l x my ++=,m 为常数,若12l l ⊥,则m 的值为 ,若12//l l ,则m 的值为 .13.(6分)如图,P 为ABC ∆所在平面外一点,1PA PB PC ===,60APB BPC ∠=∠=︒,90APC ∠=︒,若G 为ABC ∆的重心,则||PG 长为 ,异面直线PA 与BC 所成角的余弦值为 .14.(6分)若圆222:(0)O x y r r +=>与圆22:70(C x y ax by a +++-=,b ,r 为常数),关于直线20x y -+=对称,则a 的值为 ,r 的值为 .15.(4分)如图,正四棱锥P ABCD -的侧棱长为4,侧面的顶角均30︒,过点A 作一截面与PB 、PC 、PD 分别相交于E 、F 、G ,则四边形AEFG 周长的最小值为 .16.(4分)已知实数x 、y 满足22(2)(3)1x y -++=,则|344|x y +-的最小值为 . 17.(4分)如图,正四面体ABCD 中,//CD 平面α,点E 在AC 上,且2AE EC =,若四面体绕CD 旋转,则直线BE 在平面α内的投影与CD 所成角的余弦值的取值范围是 .三、解答题:5小题,共74分18.(14分)已知某几何体的正视图、侧视图、俯视图如图所示.(1)求该几何体的侧视图的面积; (2)求该几何体的体积.19.(15分)已知p :关于x ,y 的方程222:4630C x y x y m +-++-=表示圆;q :圆222(0)x y a a +=>与直线345100x y m +-+=有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围.20.(15分)如图,直角梯形ABCD 中,//AB CD ,90BAD ∠=︒,1AB AD ==,2CD =,若将BCD ∆沿着BD 折起至△BC D ',使得AD BC '⊥.(1)求证:平面C BD '⊥平面ABD ; (2)求C D '与平面ABC '所成角的正弦值;(3)M 为BD 中点,求二面角M AC B '--的余弦值.21.(15分)已知圆C 过点(2,6)A ,且与直线1:100l x y +-=相切于点(6,4)B . (1)求圆C 的方程;(2)过点(6,24)P 的直线2l 与圆C 交于M ,N 两点,若CMN ∆为直角三角形,求直线2l 的方程;(3)在直线3:2l y x =-上是否存在一点Q ,过Q 向圆C 引两条切线,切点为E ,F ,使QEF ∆为正三角形,若存在,求出点Q 坐标,若不存在,说明理由.22.(15分)如图,三棱柱ABC A B C '''-,2AC =,4BC =,120ACB ∠=︒,90ACC '∠=︒,且平面AB C '⊥平面ABC ,二面角A AC B ''--为30︒,E 、F 分别为A C '、B C ''的中点.(1)求证://EF 平面AB C '; (2)求B '到平面ABC 的距离; (3)求二面角A BB C ''--的余弦值.2019-2020学年浙江省台州一中高二(上)期中数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)点(1,2)A 到直线:3410l x y --=的距离为( ) A .45B .65C .4D .6【解答】解:点(1,2)A 到直线:3410l x y --=65=, 故选:B .2.(4分)设m ,n 是空间中不同的直线,α,β是空间中不同的平面,则下列说法正确的是( )A .//αβ,m α⊂,则//m βB .m α⊂,n β⊂,//αβ,则//m nC .//m n ,n α⊂,则//m αD .m α⊂,n β⊂,//m β,//n α,则//αβ 【解答】解:A .根据面面平行的性质得若//αβ,m α⊂,则//m β成立,故A 正确,B .两个平行平面内的两条直线位置关系不确定,即//m n 不一定正确,故B 错误,C .根线面平行的判定定理,必须要求m αà,故C 错误D .根面面平行的判定定理,则两条直线必须是相交直线,故D 错误,故选:A .3.(4分)过两点(4,)A y ,(2,3)B -的直线的倾斜角为45︒,则(y = )A .BC .1-D .1【解答】解:经过两点(4,)A y ,(2,3)B -的直线的斜率为32y k +=. 又直线的倾斜角为45︒,∴3tan 4512y +=︒=,即1y =-. 故选:C .4.(4分)将半径为1,圆心角为23π的扇形围成一个圆锥,则该圆锥的体积为( )A .B C D 【解答】解:设圆锥的底面半径为r ,则223r ππ=, 13r ∴=,。

2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案

2019-2020学年高中数学(人教版必修2)阶段质量检测(二) Word版含答案

阶段质量检测(二)(A卷学业水平达标)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.下列说法不正确的是( )A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内D.过一条直线有且只有一个平面与已知平面垂直答案:D2.(浙江高考)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C3.如图在四面体中,若直线EF和GH相交,则它们的交点一定( )A.在直线DB上B.在直线AB上C.在直线CB上D.都不对答案:A4.如图所示,在正方体ABCD­A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( )A.AC B.BDC.A1D D.A1D1答案:B5.给定下列四个命题:①若两个平面有无数个公共点,则这两个平面重合;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为正确的命题的是( )A.①和②B.②和③C.③和④D.②和④6.正方体AC1中,E,F分别是DD1,BD的中点,则直线AD1与EF所成角的余弦值是( )A.12B.32C.63D.62答案:C7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A­CD­B的余弦值为( )A.12B.13C.33D.23答案:C8.设α,β,γ为两两不重合的平面,l,m,n为两两不重合的直线,给出下列三个说法:①若α⊥γ,β⊥γ,则α∥β;②若α∥β,l⊂α,则l∥β;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中正确的说法个数是( )A.3 B.2C.1 D.0答案:B9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D10.已知平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC,BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度为( )A.13 B.151 C.12 3 D.15答案:A二、填空题(共4小题,每小题5分,共20分)11.如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为答案:BM⊥PC(其他合理即可)12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.答案:313.在空间四边形ABCD中,AD=BC=2,E,F分别是AB,CD的中点,EF=3,则异面直线AD与BC所成角的大小为________.答案:60°14.将正方形ABCD沿对角线BD折成直二面角A­BD­C,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.答案:①②三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE∥平面PAB.证明:(1)∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.又CD⊥PC,PA∩PC=P,∴CD⊥平面PAC.(2)∵AD∥BC,AB⊥BC,AB=BC=1,∴∠BAC=45°,∠CAD=45°,AC= 2.∵CD⊥平面PAC,∴CD⊥CA,∴AD=2.又∵E为AD的中点,∴AE=BC=1,∴AE綊BC,∴四边形ABCE是平行四边形,又∵AB⊂平面PAB,CE⊄平面PAB,∴CE∥平面PAB.16.(本小题满分12分)(山东高考)如图,几何体E­ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD,又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)法一:取AB的中点N,连接DM,DN,MN,因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形.所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.法二:延长AD,BC交于点F,连接EF. 因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因此∠AFB=30°,所以AB=12 AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.17.(本小题满分12分)如图,在三棱柱ABC­A1B1C1中,AB⊥平面BB1C1C,BB1=2BC,D,E,F分别是CC1,A1C1,B1C1的中点,G在BB1上,且BG=3GB1.求证:(1)B1D⊥平面ABD;(2)平面GEF∥平面ABD.证明:(1)取BB1的中点为M,连接MD,如图所示.因为BB1=2BC,且四边形BB1C1C为平行四边形,所以四边形CDMB和四边形DMB1C1均为菱形.故∠CDB=∠BDM,∠MDB1=∠B1DC1,所以∠BDM+∠MDB1=90°,即BD⊥B1D.又AB⊥平面BB1C1C,B1D⊂平面BB1C1C,所以AB⊥B1D.又AB∩BD=B,所以B1D⊥平面ABD.又F为B1C1的中点,所以GF∥MC1.又MB綊C1D,所以四边形BMC1D为平行四边形,所以MC1∥BD,故GF∥BD.又BD⊂平面ABD,所以GF∥平面ABD.又EF∥A1B1,A1B1∥AB,AB⊂平面ABD,所以EF∥平面ABD.又EF∩GF=F,故平面GEF∥平面ABD.18.(本小题满分12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE =EF=1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.证明:(1)设AC与BD交于点G.∵EF∥AG,且EF=1,AG=12AC=1,∴四边形AGEF为平行四边形.所以AF∥EG. ∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG.∵EF∥CG,EF=CG=1,且CE=1,∴四边形CEFG为菱形.∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又∵平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF.∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.(1)AO 与A ′C ′所成角的度数; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的度数. 解:(1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵OC ⊥OB ,AB ⊥平面BC ′,∴OC ⊥AB .又AB ∩BO =B ,∴OC ⊥平面ABO . 又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°. 即AO 与A ′C ′所成角的度数为30°. (2)如图所示,作OE ⊥BC 于E ,连接AE . ∵平面BC ′⊥平面ABCD ,∴OE ⊥平面ABCD ,∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝ ⎛⎭⎪⎫122=52, ∴tan ∠OAE =OE AE =55.(3)∵OC ⊥OA ,OC ⊥OB ,OA ∩OB =O , ∴OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成角的度数为90°.M ,N 分别是边AD ,CD 上的点,且2AM =MD ,2CN =ND ,如图①,将△ABD 沿对角线BD 折叠,使得平面ABD ⊥平面BCD ,并连接AC ,MN (如图②).(1)证明:MN ∥平面ABC ; (2)证明:AD ⊥BC ;(3)若BC =1,求三棱锥A ­BCD 的体积. 解:(1)证明:在△ACD 中, ∵2AM =MD,2CN =ND , ∴MN ∥AC ,又∵MN ⊄平面ABC ,AC ⊂平面ABC , ∴MN ∥平面ABC .(2)证明:在△ABD 中,AB =AD ,∠A =90°, ∴∠ABD =45°.∵在平面四边形ABCD 中,∠B =135°, ∴BC ⊥BD .又∵平面ABD ⊥平面BCD ,且BC ⊂平面BCD ,平面ABD ∩平面BCD =BD , ∴BC ⊥平面ABD ,又AD ⊂平面ABD , ∴AD ⊥BC . (3)在△BCD 中,∵BC =1,∠CBD =90°,∠BCD =60°, ∴BD = 3.在△ABD 中,∵∠A =90°,AB =AD , ∴AB =AD =62, ∴S △ABD =12AB ·AD =34,由(2)知BC ⊥平面ABD , ∴V A ­BCD =V C ­ABD =13×34×1=14.(B卷能力素养提升)(时间120分钟,满分150分)一、选择题(共10小题,每小题6分,共60分)1.空间两个角α,β的两边分别对应平行,且α=60°,则β为( )A.60°B.120°C.30°D.60°或120°解析:选D 由等角定理可知β=60°或120°.2.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( ) A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:选D 若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB 与CD平行;若不共面,则直线AB与CD是异面直线.3.如图,正方体ABCD­A1B1C1D1中,①DA1与BC1平行;②DD1与BC1垂直;③BC1与AC所成角为60°.以上三个结论中,正确结论的序号是( )A.①B.②C.③D.②③解析:选C ①错,应为DA1⊥BC1;②错,两直线所成角为45°;③正确,将BC1平移至AD1,由于三角形AD1C为等边三角形,故两异面直线所成角为60°,即正确命题序号为③,故选C.4.已知l是直线,α、β是两个不同的平面,下列命题中的真命题( )A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l∥α,α∥β,则l∥βD.若l⊥α,l∥β,则α⊥β解析:选D 对于A,若l∥α,l∥β,则α∥β或α与β相交,所以A错;对于B,若α⊥β,l∥α,则l∥β或l⊥β或l⊂β或l与β相交,所以B错;对于C,若l∥α,α∥β,则l∥β或l⊂β,所以C错;对于D,若l⊥α,l∥β,则α⊥β,由面面垂直的判定可知选项D正确.5.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为( )A.AC⊥BDB.AC∥截面PQMNC.AC=BD解析:选C ∵MN∥PQ,由线面平行的性质定理可得MN∥AC,从而AC∥截面PQMN,B正确;同理可得MQ∥BD,故AC⊥BD,A正确;又∠PMQ=45°,故D正确.6.α,β,γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是( )A.①或②B.②或③C.①或③D.只有②解析:选C 若填入①,则由a∥γ,b⊂β,b⊂γ,b=β∩γ,又a⊂β,则a∥b;若填入③,则由a⊂γ,a=α∩β,则a是三个平面α、β、γ的交线,又b∥β,b⊂γ,则b∥a;若填入②,不能推出a∥b,可以举出反例,例如使β∥γ,b⊂γ,画一草图可知,此时能有a∥γ,b∥β,但不一定a∥b,有可能异面.从而A、B、D都不正确,只有C正确.7.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是( )A.c与a,b都异面B.c与a,b都相交C.c至少与a,b中的一条相交D.c与a,b都平行解析:选D 如图,以三棱柱为模型.∵a∥b,a⊄γ,b⊂γ,∴a∥γ.又∵a⊂β,β∩γ=c,∴a∥c.∴a∥b∥c.8.如下图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是( )A.平行B.相交且垂直C.异面D.相交成60°解析:选D 还原几何体,如图.可知D点与B点重合,△ABC是正三角形,所以选D.成的角为( )A .30°B .45°C .60°D .90°解析:选A 如图,二面角α­l ­β为45°,AB ⊂β,且与棱l 成45°角,过A 作AO ⊥α于O ,作AH ⊥l 于H .连接OH 、OB ,则∠AHO 为二面角α­l ­β的平面角,∠ABO 为AB 与平面α所成角.不妨设AH =2,在Rt △AOH 中,易得AO =1;在Rt △ABH 中,易得AB =2.故在Rt △ABO 中,sin ∠ABO =AO AB =12, ∴∠ABO =30°,为所求线面角.10.如图(1)所示,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为H ,如图(2)所示,那么,在四面体A ­EFH 中必有( )A .AH ⊥△EFH 所在平面B .AG ⊥△EFH 所在平面C .HF ⊥△AEF 所在平面D .HG ⊥△EFH 所在平面解析:选A 折成的四面体中有AH ⊥EH ,AH ⊥FH ,∴AH ⊥平面HEF .故选A. 二、填空题(共4小题,每小题5分,共20分)11.如图,直四棱柱ABCD ­A 1B 1C 1D 1的底面是边长为1的正方形,侧棱长AA 1=2,则异面直线A 1B 1与BD 1的夹角大小等于________.解析:∵A 1B 1∥AB ,∴AB 与BD 1所成的角即是A 1B 1与BD 1所成的角.连接AD 1, 可知AB ⊥AD 1,在Rt △BAD 1中,AB =1,AD 1=3,∴tan ∠ABD 1=AD1AB=3, ∴∠ABD 1=60°,故A 1B 1与BD 1的夹角为60°. 答案:60°12.如图,在正三棱柱ABC ­A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC ,A 1C 1的中点E ,E 1,连接BE ,B 1E 1,EE 1,由题意知平面BEE 1B 1⊥平面AC 1,过D 作DF ⊥EE 1于F ,连接AF ,则DF ⊥平面AC 1.∴∠DAF 即为AD 与平面AC 1所成的角.可求得AD =2,DF =32,∴sin ∠DAF =DF AD =64. 答案:6413.设a ,b ,c 是空间中的三条直线,下面给出五个命题: ①若a ∥b ,b ∥c ,则a ∥c ; ②若a ⊥b ,b ⊥c ,则a ∥c ;③若a 与b 相交,b 与c 相交,则a 与c 相交;④若a ⊂平面α,b ⊂平面β,则a ,b 一定是异面直线; ⑤若a ,b 与c 成等角,则a ∥b .上述命题中正确的命题是________(只填序号). 解析:由公理4知①正确;当a ⊥b ,b ⊥c 时,a 与c 可以相交、平行,也可以异面,故②不正确;当a 与b 相交,b 与c 相交时,a 与c 可以相交、平行,也可以异面,故③不正确;a ⊂α,b ⊂β,并不能说明a 与b “不同在任何一个平面内”,故④不正确;当a ,b 与c 成等角时,a 与b 可以相交、平行,也可以异面,故⑤不正确. 答案:①14.给出下列命题:①若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么c 至多与a ,b 中一条相交;②若直线a 与b 异面,直线b 与c 异面,则直线a 与c 异面; ③一定存在平面α同时和异面直线a ,b 都平行. 其中正确的命题为________.(写出所有正确命题的序号)解析:①中,异面直线a ,b 可以都与c 相交,故不正确;②中,直线异面不具有传递性,故不正确;③中,过直线b 上一点P 作a ′∥a ,则a ′、b 确定一平面,则与该平面平行的任一平面(平面内不包含直线a 、b )都与异面直线a 、b 平行,故正确.答案:③三、解答题(共6小题,共70分,解答时应写出文字说明,证明过程或演算过程) 15.(本小题满分10分)如图所示,在正方体ABCD ­A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.解:在平面AA 1D 1D 内,延长D 1F ,∵D 1F 与DA 不平行,∴D 1F 与DA 必相交于一点,设为P ,则P ∈D 1F ,P ∈DA .又∵D 1F ⊂平面BED 1F ,AD ⊂平面ABCD ,∴P ∈平面BED 1F ,P ∈平面ABCD .又B 为平面ABCD 与平面BED 1F 的公共点,连接PB ,∴PB 即为平面BED 1F 与平面ABCD 的交线.如图所示.16.(本小题满分12分)在右图的几何体中,面ABC ∥面DEFG, ∠BAC =∠EDG=120°,四边形ABED 是矩形,四边形ADGC 是直角梯形,∠ADG =90°,四边形DEFG是梯形, EF ∥DG ,AB =AC =AD =EF =1,DG =2.(1)求证:FG ⊥面ADF ; (2)求四面体 CDFG 的体积.解:(1)连接DF 、AF ,作DG 的中点H , 连接FH ,EH ,∵EF ∥DH ,EF =DH =ED =1, ∴四边形DEFH 是菱形,∴EH ⊥DF , 又∵EF ∥HG, EF =HG , ∴四边形EFGH 是平行四边形, ∴FG ∥EH ,∴FG ⊥DF ,由已知条件可知AD ⊥DG ,AD ⊥ED , 所以AD ⊥面EDGF ,所以AD ⊥FG .又∵⎩⎪⎨⎪⎧FG⊥AD,FG⊥DF,AD ⊂面ADF ,DF ⊂面ADF ,AD∩DF=D ,∴FG ⊥面ADF .(2)因为DH ∥AC 且DH =AC , 所以四边形ADHC 为平行四边形, 所以CH ∥AD ,CH =AD =1,由(1)知AD ⊥面EDGF , 所以CH ⊥面DEFG .由已知,可知在三角形DEF 中,ED =EF =1,∠DEF =60°,所以,△DEF 为正三角形,DF =1,∠FDG =60°, S △DEG =12·DF ·DG ·sin∠FDG =32. 四面体CDFG =13·S △DFG ·CH=13×32×1=36. 17.(本小题满分12分)如图所示,在四棱锥P ­ABCD 中,PA ⊥平面ABCD ,AD ⊥AB ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,N 为线段PB 的中点,G在线段BM 上,且BGGM=2.(1)求证:AB ⊥PD ; (2)求证:GN ∥平面PCD . 证明:(1)因为PA ⊥平面ABCD , 所以PA ⊥AB .又因为AD ⊥AB ,AD ∩PA =A ,所以AB ⊥平面PAD .又PD ⊂平面PAD ,所以AB ⊥PD .(2)因为△ABC 是正三角形,且M 是AC 的中点,所以BM ⊥AC . 在直角三角形AMD 中,∠MAD =30°, 所以MD =12AD .在直角三角形ABD 中,∠ABD =30°, 所以AD =12BD ,所以MD =14BD .又因为BGGM=2,所以BG =GD .又N 为线段PB 的中点,所以GN ∥PD . 又GN ⊄平面PCD ,PD ⊂平面PCD , 所以GN ∥平面PCD .18.(本小题满分12分)(浙江高考)如图,在三棱柱ABC­A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.解:(1)证明:设E为BC的中点,连接AE,A1E,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.又因为A1E,BC⊂平面A1BC,A1E∩BC=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE.所以BC⊥A1F.又因为DE∩BC=E,所以A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4,DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin∠A1BF=78.19.(本小题满分12分)如图,在三棱柱ABC­A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E­ABC的体积.解:(1)证明:在三棱柱ABC­A1B1C1中,BB1⊥底面ABC,所以BB1⊥AB.又因为AB⊥BC,BB1∩BC=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)证明:取AB中点G,连接EG,FG.因为E,F,G分别是A1C1,BC,AB的中点,所以FG∥AC,且FG=12AC,EC1=12A1C1.因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG.又因为EG⊂平面ABE,C1F⊄平面ABE,所以C1F∥平面ABE.(3)因为AA1=AC=2,BC=1,AB⊥BC,所以AB=AC2-BC2= 3.所以三棱锥E­ABC的体积V=13S△ABC·AA1=13×12×3×1×2=33.20.(本小题满分12分)如图所示,在棱长为2的正方体ABCD­A1B1C1D1中,E,F分别为DD1、DB的中点.(1)求证:EF∥平面ABC1D1;(2)求三棱锥VB1­EFC的体积;(3)求二面角E­CF­B1的大小.解:(1)证明:连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,则EF为中位线,∴EF∥D1B,而D1B⊂面ABC1D1,EF⊄面ABC1D1,∴EF∥面ABC1D1.(2)等腰直角三角形BCD中,F为BD中点,∴CF⊥BD.①∵ABCD­A1B1C1D1是正方体,∴DD1⊥面ABCD,又CF⊂面ABCD,∴DD1⊥CF.②综合①②,且DD1∩BD=D,DD1,BD⊂面BDD1B1,∴CF ⊥平面EFB 1即CF 为高,CF =BF = 2. ∵EF =12BD 1=3,B 1F =BF2+BB21=2+22=6, B 1E =B1D21+D1E2=12+2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴S △B 1EF =12EF ·B 1F =322,∴VB 1­EFC =VC ­B 1EF =13·S △B 1EF ·CF=13×322×2=1. (3)∵CF ⊥平面BDD 1B 1,∴二面角E ­CF ­B 1的平面角为∠EFB 1. 由(2)知∠EFB 1=90°∴二面角E ­CF ­B 1的大小为90°.。

吉林省榆树市第一高级中学2019-2020学年高二上学期期中考试试题 数学(理) 含答案

吉林省榆树市第一高级中学2019-2020学年高二上学期期中考试试题 数学(理) 含答案

吉林省榆树市第一高级中学2019-2020学年高二上学期期中考试试题数学(理)第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求)1、数列 ,......11,9,7,5,3的一个通项公式为 ( )A. 12-nB. n 2C. 12+nD. 32+n2、不等式0)2)(1(<++x x 的解集为 ( ) A. {}21><x x x 或 B. {}21<<x x C. {}-12-><x x x 或 D. {}-12<<-x x3、若R x ∈,设p :实数2>x .q :实数1>x 下列说法正确的是 ( )A.p 是q 的充分不必要条件 B. q p ∧ 是假命题 C. p 是q 的充要条件 D. p ⌝是真命题4、在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若1=a ,030.3==A b ,则角B 等于 ( )A.045B. 060C. 030D. 075 5、在《算法统宗》(改编)有这样一段表述:“远看巍巍塔三层,红光点点倍加增,共灯二十八”,其意大致为:有一栋3层宝塔,每层悬挂的红灯数为上一层的两倍,共有28盏灯,则该塔中间一层灯的盏数是( )A 2 B. 4 C 6 D. 86、设ABC ∆的角C B A ,,所对的边分别为c b a ,,,若060,4,2===B c a ,则等于 ( )A.28B. 72C.12D. 327、如图,设B A ,两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定的一点C ,测出AC 的距离为00105,45,250=∠=∠CAB ACB m ,就可以计算出B A ,两点的距离为 ( ) mA. 250B. 100C. 350D. 21008、设,满足约束条件,则目标函数的取值范围是 ( )A .BC .D . 9、在ABC ∆中, 045,1=∠=B b ,若这样的三角形有两个,则边a 的取值范围为 ( )A.),1(+∞B. )2,1(C. )2,1(D. )3,2(10、已知等差数列{}n a 的前n 项和为n S ,2(,2,30,2211≥===-m a S S m m ,且)N m ∈,则m 的值是( )A.7B.6C.5D.411、设为ABC ∆的三边有 4=bc ,且关于x 的方程012)(2222=++++x c b x bc a 有两个相等的实数根,则ABC ∆的面积是 ( )A.1B.2C. 3D. 212、已知 []8,4∈∀x ,不等式234124232--<-+-m m x x 恒成立,则实数m 的取值范围是 ( )A. ),4()1,(+∞⋃--∞B. )4,1(-C. ),4()0,(+∞⋃-∞D. )3,4(-第Ⅱ卷 (非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上)13、数列{}n a 满足,)2(,1≥+=-n n a a n n 则=3a ________14、命题p :存在][3,20∈x ,使060<-ax 成立, 若为真命题,则实数a 的取值范围为________15、已知在ABC ∆中,S 为ABC ∆的面积,若向量),1(),,4(222S q c b a p =-+=,且q p 与平行,则角=C _________16、记等比数列{}n a 的前n 项和为n S ,已知324132,1S S S a =+= ,设n m ,是正整数,若存在正整数 )1(,j i j i <<,使得j i na mn ma ,,,成等差数列,则mn 的最小值为_________三、解答题:(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17、已知关于x 的不等式042<+-a x x 的解集是{}31<<=x x A 。

【精品高二数学试卷】2019-2020天津高二(上)第一次月考+答案

【精品高二数学试卷】2019-2020天津高二(上)第一次月考+答案

2019-2020学年天津高二(上)第一次月考数学试卷一、选择:5×10=50分。

1.(5分)已知数列√2,√5,2√2,√11,⋯则2√5是这个数列的( ) A .第6 项B .第7项C .第19项D .第11项2.(5分)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 6+a 10=( ) A .12B .16C .20D .243.(5分)数列{a n }中,a 1=12,a n =1−1a n−1(n ≥2),则a 2019的值为( )A .﹣1B .−12C .12D .24.(5分)不等式x−1x>2的解集为( )A .(﹣1,+∞)B .(﹣∞,﹣1)C .(﹣1,0)D .(﹣∞,﹣1)∪(0,+∞)5.(5分)不等式ax 2+bx +2>0的解集是(−12,13),则a +b 的值是( ) A .10B .﹣10C .14D .﹣146.(5分)等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则数列{a n }的通项公式为( ) A .a n =24﹣nB .a n =2n ﹣4C .a n =2n ﹣3D .a n =23﹣n7.(5分)已知数列{a n }的递增的等比数列,a 1+a 4=9,a 2•a 3=8,则数列的前2019项和S 2019=( ) A .22019B .22018﹣1C .22019﹣1D .22020﹣18.(5分)设等比数列{a n }的前n 项和为S n ,且S 3=2,S 6=6,则a 13+a 14+a 15的值是( ) A .18B .28C .32D .1449.(5分)已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,S 17<0,则当S n 最大时n 的值为( ) A .8B .9C .10D .1610.(5分)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n ﹣4=130,则n =( ) A .12B .14C .16D .18二、填空题:(5×5=25分)11.(5分)等差数列{a n }中,前4项和S 4=22,a 2=4,则前10项和S 10= . 12.(5分)已知数列{a n }中,a 1=1,a n +1=a n +n +1,则数列{a n }的通项公式是 .13.(5分)在数列{x n }中,2x n=1x n−1+1x n+1(n ≥2),且x 2=23,x 4=25,则x 10= .14.(5分)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为 .15.(5分)已知数列{a n }的前n 项和S n =﹣n 2+20n ,则数列{na n }中数值最大的项是第 项.三、解答题(25分).16.(8分)已知数列{a n }中,a 1=1,a n +1=a na n +3(n ∈N *) (1)求证:{1a n+12}是等比数列;(2)求{a n }的通项公式a n .17.(17分)已知数列{a n }的前n 项和为S n ,且a n =2﹣2S n (n ∈N *),数列{b n }是等差数列,且b 5=14,b 7=20.(1)求数列{a n }和{b n }的通项公式. (2)求数列{1b n b n+1}的前n 项和T n .(3)设c n =a n ⋅b n2,求数列{c n }的前n 项和M n .2019-2020学年天津高二(上)第一次月考数学试卷参考答案与试题解析一、选择:5&#215;10=50分。

四川省金堂中学2019-2020(上)2021届11月质量检测考试数学(文)试题

四川省金堂中学2019-2020(上)2021届11月质量检测考试数学(文)试题

金堂中学2019-2020(上)2021届11月质量检测考试高二数学(文科)一、选择题:(共12个小题,每小题5分,每道题只有一个选项是正确的,请将正确选项填涂到答题卷相应的地方)1.抛物线22y x =的焦点到其准线的距离为 ( ▲ ).A 2.B 1.C 12.D 142.圆心为(11),且过原点的圆的方程是( ▲ ).A 22(+1)(+1)2x y +=.B 22(+1)(+1)1x y +=.C 22(1)(1)2x y -+-=.D 22(1)(1)1x y -+-=3.方程表示焦点在y 轴上的椭圆的充要条件为( ▲ ).A 4k >.B =4k .C 4k <.D 04k <<4.若双曲线2221(0)9y a x a -=>的渐近线方程为320x y ±=,则a 的值为( ▲ ) .A 4.B 3.C 2.D 15.直线:cos sin 1l x y αα-=与圆22:+1O x y =的位置关系是 ( ▲ ).A 相离.B 相交.C 相切.D 位置关系不确定6.若直线1:60l x ay ++=与2:(2)320l a x y a -++=平行,则实数a 的值为( ▲ ).A 3.B 1-.C 31-或.D 31-或 7.已知圆截直线所得弦的长度为4,则实数的值为( ▲ ).A 2-.B 4-.C 6-.D 8-8.已知椭圆22221(0)x y a b a b+=>>的右焦点为F,离心率为2,过点F 的直线l 交椭圆于A B 、两点,若线段AB 的中点坐标为(11),,则直线l 的斜率为( ▲ )2244x ky k +=02222=+-++a y x y x 02=++y x a.A 12-.B 2-.C 2.D 129.已知平面直角坐标系中两点()42A ,,()12B -,,若在x 轴上存在点C , 使得0CA CB ⋅=,则点C 的坐标是( ▲ ).A (30),.B (00),.C (50),.D (00)(50),或, 10.人造地球卫星的运行轨道是以地心为一个焦点的椭圆,设地球半径为R , 卫星近地点、远地点离地面的距离分别为1r 2r ,,则卫星轨道的离心率为( ▲ ).A 21122r r R r r -++.B 2112r r r r -+.C 2112r r R r r -++.D 21124r r R r r -++ 11.设、分别是双曲线22221(00)x y a b a b-=>>,的左、右焦点,若双曲线右支上存在一点P ,使(其中O 为原点),且,则双曲线的离心率为( ▲ ).A.B.C.D12.抛物线22(0)x py p =>的焦点为F,经过点F 且斜率为3的直线交抛物线于A B 、点,其中点A 位于第一象限,若AF FB λ=,则实数λ的值为( ▲ ).A 3.B .C 13.D 7- Ⅱ卷非选择题(共90分)二、填空题: (共4个题,每小题5分,每道题的答案请填写到答题卷相应的地方)13.圆2211O x y +=:和圆222650O x y y +-+=:的公切线条数为▲.14.已知抛物线24y x =的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足NF =,则NMF ∠=▲. 15.如果实数,x y 满足2212x y +=,则x y +的最大值是▲. 1F 2F 1||||OPOF =12|||PF PF =16. 已知椭圆的左,右焦点分别为12F F ,,过1F 作x 轴的垂线交椭圆E 于A B 、两点,点A 在x 轴上方.若2||3AB ABF =∆,的内切圆的面积为,则直线2AF 的方程是▲. 三、解答题: (共6个小题,共70分,其中第17题10分,其余各小题均为12分,解答题须写出必要的过程,各小题的解答过程写在答题卷相应的地方)17.求适合下列条件的标准方程:(Ⅰ)已知椭圆经过点(50)P -,,(03)Q ,,求它的标准方程;(Ⅱ)已知双曲线的离心率e =(53)M -,,求它的标准方程.18.已知a R ∈,命题[12]x ∀∈,,220x ax +->;命题关于x 的不等式22(1)(1)20a x a x -+-->的解集为空集.当p q ,中有且仅有一个为真命题时,求实数a 的取值范围.19.已知抛物线2:4M y x =,过点(2,0)E -且斜率为k 的直线与抛物线M 相交于不同的两点P Q 、.(Ⅰ)求k 的取值范围;(Ⅱ)若O 为坐标原点,求OP OQ ⋅的值.20.已知圆C 的圆心坐标为点2(0)C t t t O t ⎛⎫∈≠ ⎪⎝⎭R ,,,为坐标原点,x 轴、 y 轴被圆C 截得的弦分别为OA 、OB .(Ⅰ)证明:△OAB 的面积为定值;2222:1(0)x y E a b a b+=>>9π16(Ⅱ)设直线240x y +-=与圆C 交于M N ,两点,若||||OM ON =,求圆C 的方程.21.设A B 、分别为双曲线22221(00)x y a b a b-=>>,的左、右顶点,双曲线的实轴长为.(Ⅰ)求双曲线的方程;(Ⅱ)已知O 为坐标原点,直线23y x =-与双曲线的右支交于M N ,两点,且在双曲线的右支上存在点D ,使OM ON tOD +=,求t 的值及点D 的坐标.22.已知椭圆22:1(02)2x y C n n+=<<. (Ⅰ)若椭圆C 的离心率为21,求n 的值; (Ⅱ)若过点(20)N -,任作一条直线l 与椭圆C 交于不同的两点A B 、,在x 轴上是否存在点M ,使得180NMA NMB ∠∠=︒+?若存在,求出点M 的坐标;若不存在,请说明理由.。

内蒙古集宁一中(西校区)2019-2020学年高二上学期期中考试数学(理)试题 PDF版含答案

内蒙古集宁一中(西校区)2019-2020学年高二上学期期中考试数学(理)试题 PDF版含答案
的前 n 项和为 Sn ,且 b1 1, b2 b4 81.
(1)求数列an ,bn 的通项公式;
(2)若对任意的
n

N
*
,不等式
k


Sn

1 2


an
恒成立,求实数
k
的取值范围.
一.选择题:1-6:CCBBCA
参考答案
7-12: DACDDD
二.填空题:13.4
集宁一中西校区 2019—2020 学年第一学期期中考试
高二年级理科数学试题
第Ⅰ卷(选择题 共 60 分)
一.选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。) 1.等差数列{an} 的前 n 项和为 Sn ,若 a1 2 , S3 12 ,则 a6 等于
3n1 2(n 1) 4

2n 3n1
4

3n2 2n
6

n2 3(n 3)
1,
n

7 2
,又
n
N* ,即当
n

4 时, cn

cn1 ,
3n2
所以, c1 c2
0 c3
c4


,故 cn 的最大值为 c3

2 9
,故
k


2 9
,


1 4

1 1

1 2

n
1
1

n
1
2


1 4

1 1

1 2

2019-2020学年黑龙江省哈尔滨三中高二(下)第一次段考数学试卷(文科)(3月份)(含答案解析)

2019-2020学年黑龙江省哈尔滨三中高二(下)第一次段考数学试卷(文科)(3月份)(含答案解析)

2019-2020 学年黑龙江省哈尔滨三中高二(下)第一次段考数学试卷(文科) (3 月份)题号 得分一二三总分一、选择题(本大题共 10 小题,共 50.0 分)1. 若函数 f(x)=x2+x,则函数 f(x)从 x=-1 到 x=2 的平均变化率为( )A. 0B. 2C. 3D. 62. 已知函数 f(x)=13-8x+ ,且 f′(x0)=4,则 x0 的值为( )A. 0B. 3C.D.3. 已知一个物体的运动方程为 s=2(t+1)2-1,其中位移 s 的单位是 m,时间 t 的单位是 s,则物体的初速度 v0 为( )A. 0m/sB. 1m/sC. 2m/sD. 4m/s4. 函数 f(x)=sinx-x,的最大值是( )A.B. πC. -πD.5. 已知点 P 在曲线 y=x3-x+5 上移动,设曲线在点 P 处的切线斜率为 k,则 k 的取值范围是( )A. (-∞,-1]B. [-1,+∞)C. (-∞,-1)D. (-1,+∞)6. 若函数 f(x)=x2-alnx 在(1,+∞)上单调递增,则实数 a 的取值范围为( )A. (-∞,1)B. (-∞,1]C. (-∞,2)D. (-∞,2]7. 若函数 f(x)=2x2-lnx 在其定义域的一个子区间(k-1,k+1)上不是单调函数,则实数 k 的取值范围( )A. [1, )B. (-∞,- )C. ( ,+∞)D. ( , )8. 如果函数 f(x)=x2-2x+mlnx 有两个极值点,则实数 m 的取值范围是( )A.B. (0, )C.D.9. 若存在,使得不等式 2xlnx+x2-mx+3≥0 成立,则实数 m 的最大值为( )A.B.C. 4D. e2-110. 已知函数 f(x)=ax+x2-xlna,对任意的 x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2 恒成立,则实数a 的取值范围是( )A. [e2,+∞)B. [e,+∞)C. [2,e]D. [e,e2]二、填空题(本大题共 4 小题,共 20.0 分)11. 函数 f(x)=2x3-6x2+1 的单调递增区间为______.12. 函数 f(x)=x2ex 的极大值为______.13. 函数 f(x)=x2-6x+4lnx 的图象与直线 y=m 有三个交点,则实数 m 的取值范围为______.第 1 页,共 11 页14. 已知偶函数 f(x)的导函数为 f'(x),且满足 f(2)=0,当 x>0 时,xf'(x)>2f(x),则使 得 f(x)>0 的 x 的取值范围为______.三、解答题(本大题共 4 小题,共 50.0 分) 15. 已知曲线 f(x)=x3-2x2+x.(Ⅰ)求曲线 y=f(x)在 x=2 处的切线方程; (Ⅱ)求曲线 y=f(x)过原点 O 的切线方程.16. 已知函数 f(x)=ax2+blnx 在 x=1 处有极值 .(1)求 a,b 的值和函数 f(x)的单调区间;(2)求函数 f(x)在区间上的最值17. 已知函数(a≠0),讨论函数 f(x)的单调区间.18. 已知函数 f(x)=2lnx+x2-2ax(a>0). (Ⅰ)讨论函数 f(x)的单调性;(Ⅱ)若函数 f(x)有两个极值点 x1,x2(x1<x2),且 f(x1)-f(x2)≥ -2ln2 恒成立,求 a 的取值范围.第 2 页,共 11 页第 3 页,共 11 页1.答案:B-------- 答案与解析 --------解析:解:根据题意,函数 f(x)=x2+x,f(-1)=0,f(2)=6,则函数 f(x)从 x=-1 到 x=2 的平均变化率 == =2;故选:B. 根据题意,由函数的解析式计算 f(2)与 f(-1)的值,由变化率计算公式计算可得答案. 本题考查函数的变化率,关键是掌握函数变化率的计算公式,属于基础题.2.答案:C解析:解:∵,∴,解得.故选:C. 利用导数的运算法则即可得出. 熟练掌握导数的运算法则是解题的关键.3.答案:D解析:【分析】 本题考查函数的变化率以及导数的物理意义,理解物体运动的瞬时速度是位移 s 与时间 t 的函数的导 数为解题的关键. 根据题意,求出物体的运动方程的导数,结合导数的物理意义分析,求出 s′|x=0 的值,即可得答案. 【解答】 解:根据题意,一个物体的运动方程为 s=2(t+1)2-1,即 s=2t2+4t+1, 其导数 s′=4t+4, 当 t=0 时,s′|x=0=4, 即物体的初速度 v0 为 4; 故选:D.4.答案:A解析:解:函数 f(x)=sinx-x, 所以:f′(x)=cosx-1≤0,则函数为减函数,故:函数的最大值为 f( )=-1+ ,故选:A. 直接利用函数的导数求出函数的单调性,进一步利用单调性的应用求出结果. 本题考查的知识要点:函数的导数的应用,三角函数的值域的应用,主要考察学生的运算能力和转 换能力,属于基础题型.第 4 页,共 11 页5.答案:B解析:解:y=x3-x+5 的导数为 y′=3x2-1, 设 P 的坐标为(x,y),可得 k=3x2-1≥-1, 即 k 的范围是[-1,+∞). 故选:B. 求得函数 y 的导数,可得切线的斜率,由二次函数的值域可得 k 的范围. 本题考查导数的运用:求切线的斜率,二次函数的值域,考查运算能力,属于基础题.6.答案:D解析:【分析】 本题考查了利用导数研究函数的单调性,属于较易题. 由 f(x)在(1,+∞)上单调递增知 f′(x)≥0 在(1,+∞)上恒成立,从而转化为求最值问题. 【解答】 解:∵f(x)在(1,+∞)上单调递增,∴≥0 在(1,+∞)上恒成立,∴a≤2x2,即 a≤2. 故选:D.7.答案:A解析:【分析】 本题主要考查函数的单调性的应用,求函数的导数和极值是解决本题的关键. 求出函数的定义域和导数,判断函数的单调性和极值,通过分类讨论即可得到结论. 【解答】 解:函数的定义域为(0,+∞),∴函数的 f′(x)=4x- = ,由 f′(x)>0 解得 x> ,此时函数单调递增,由 f′(x)<0 解得 0<x< ,此时函数单调递减,故 x= 时,函数取得极小值.①当 k=1 时,(k-1,k+1)为(0,2),函数在(0, )上单调减,在( ,2)上单调增,此时满足题意; ②当 k>1 时,∵函数 f(x)=2x2-lnx 在其定义域的一个子区间(k-1,k+1)内不是单调函数, ∴x= 在(k-1,k+1)内,即,即,即 <k< ,此时 1<k< ,第 5 页,共 11 页综上 1≤k< ,故选:A.8.答案:B解析:【分析】 本题主要考查利用导数研究函数的极值,属于简单题. 函数 f(x)=x2-2x+mlnx 有两个极值点,即 f'(x)=0 在 的取值范围. 【解答】 解:函数 f(x)=x2-2x+mlnx 有两个极值点,所以 f'(x)=2x-2+ =0 在上有两个不相等的正根,上有两个不相等的正根,即可求得 m即,则和函数图象有两个交点,所以 0,所以 0,故选 B.9.答案:A解析:解:由存在,使得不等式 2xlnx+x2-mx+3≥0 成立,得:m≤2lnx+x+ ,x∈[ ,e]有解,令 y=2lnx+x+ ,则 y′=,故 x∈( ,1)时,y′<0,函数是减函数, x∈(1,e)时,y′>0,函数是增函数, 故 x= 时,y=3e+ -2,x=e 时,y=2+e+ ,又(3e+ -2)-(2+e+ )=2e-4- >0,故函数 y=2lnx+x+ 的最大值是 3e+ -2,m≤3e+ -2, 故选:A. 求出 m≤2lnx+x+ ,x∈[ ,e]有解,令 y=2lnx+x+ ,根据函数的单调性求出 m 的最大值即可. 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.第 6 页,共 11 页10.答案:A解析:【分析】 本题考查利用导数求闭区间上函数的最值,考查恒成立问题,考查转化思想,考查学生解决问题的 能力,属于中档题. 对∀x1,x2∈[0,1]不等式|f(x1)-f(x2)|≤a-1 恒成立等价于|f(x1)-f(x2)|max≤a-2,而|f(x1)-f(x2) |max=f(x)max-f(x)min,利用导数可判断函数的单调性,由单调性可求得函数的最值,解不等式即 可. 【解答】 解:函数 f(x)=ax+x2-xlna,x∈[0,1], 则 f′(x)=axlna+2x-lna=(ax-1)lna+2x. 当 0<a<1 时,显然|f(x1)-f(x2)|≤a-2 不可能成立; 当 a>1 时,x∈[0,1]时,ax≥1,lna>0,2x≥0, 此时 f′(x)≥0, 所以 f(x)在[0,1]上单调递增, 所以 f(x)min=f(0)=1,f(x)max=f(1)=a+1-lna, 所以|f(x1)-f(x2)|≤f(x)max-f(x)min=a-lna, 由题意得,a-lna≤a-2,解得 a≥e2, 故答案为[e2,+∞). 故选 A.11.答案:(-∞,0),(2,+∞)解析:解:因为 f(x)=2x3-6x2+1, 所以 f′(x)=6x2-12x, 令 f′(x)>0,解得 x<0 或 x>2, 故函数的增区间为(-∞,0),(2,+∞), 故答案为:(-∞,0),(2,+∞). 利用导数研究函数的单调性,只需求解 f′(x)>0 的解集即可得解. 本题考查了利用导数研究函数的单调性,属中档题.12.答案:4e-2解析:解:∵f(x)的定义域为(-∞,+∞), 且 f'(x)=x(x+2)ex, x 变化时,f(x)与 f'(x)的情况如下:x(-∞,-2) -2(-2,0)0f'(x)+0-0f(x)↑极大↓极小故当 x=-2 时,f(x)取得极大值为 f(-2)=4e-2. 故答案为:4e-2. 先求出函数的导数,得到单调区间,求出极值点,从而求出函数的极值.本题考察了利用导数研究函数的单调性,函数的极值问题,是一道基础题.13.答案:(4ln2-8,-5)(0,+∞) + ↑第 7 页,共 11 页解析:【分析】 本题考查函数零点的判定,考查利用导数求函数的极值,是中档题. 求出原函数的导函数,得到函数的单调性,求得极值,则答案可求. 【解答】解:由 f(x)=x2-6x+4lnx,得 f′(x)=2x-6+ =(x>0). 由 f′(x)=0,得 x=1 或 x=2. 则当 x∈(0,1)∪(2,+∞)时,f′(x)>0,当 x∈(1, 2)时,f′(x)<0. ∴f(x)在(0,1),(2,+∞)上为增函数,在∈(1, 2)上为减函数. 又 f(1)=-5,f(2)=4ln2-8. ∴函数 f(x)=x2-6x+4lnx 的图象与直线 y=m 有三个交点,则实数 m 的取值范围为(4ln2-8,-5). 故答案为:(4ln2-8,-5).14.答案:(-∞,-2)∪(2,+∞)解析:【分析】 本题考查了抽象函数的奇偶性与单调性,考查了构造函数及利用导数研究函数的单调性,属于中档 题.构造函数 g(x)= ,利用导数得到,g(x)在(0,+∞)上单调递增,再根据 f(x)为偶函数,根据 f(1)=0,得 g(2)=,且 g(x)为偶函数,即可求解 f(x)>0 的解集.【解答】解:令 g(x)= ,则,已知当 x>0 时,xf′(x)>2f(x),则当 x>0 时,g′(x)>0, 所以函数 g(x)在(0,+∞)上单调递增, 又 f(2)=0,f(x)是偶函数,所以 g(2)=,且 g(x)为偶函数,要求 f(x)>0,即求 g(x)>0, 即 g(x)>g(2), 则有|x|>2,可得 x∈(-∞,-2)∪(2,+∞); 故答案为(-∞,-2)∪(2,+∞).15.答案:解:(Ⅰ)f(x)=x3-2x2+x 的导数为 f′(x)=3x2-4x+1,可得曲线 y=f(x)在 x=2 处的切线斜率为 12-8+1=5, 切点为(2,2),可得切线方程为 y-2=5(x-2), 即为 5x-y-8=0; (Ⅱ)设切点为(m,m3-2m2+m), 可得切线的斜率为 3m2-4m+1, 即有切线方程为 y-(m3-2m2+m)=(3m2-4m+1)(x-m), 代入(0,0),可得-(m3-2m2+m)=(3m2-4m+1)(-m),第 8 页,共 11 页解得 m=0 或 m=1, 当 m=0 时,可得切线方程为 y=x; 当 m=1 时,可得切线方程为 y=0. 综上可得所求切线方程为 y=x 或 y=0.解析:(Ⅰ)求得 f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线方程; (Ⅱ)设切点为(m,m3-2m2+m),可得切线的斜率和方程,代入原点,可得 m 的值,即可得到所 求切线方程. 本题考查导数的运用:求切线方程,注意切点的确定,考查方程思想和运算能力,属于基础题.16.答案:解:(1)由题意;所以:,定义域为(0,+∞)令⇒x2-x>0⇒x>1,∴单增区间为(1,+∞);令⇒x2-x<0⇒0<x<1,∴单减区间为(0,1)(2)由(1)知在区间函数 f(x)单调递减,在区间[1,e]函数 f(x)单调递增,所以,而,,所以.解析:(1)函数 f(x)=ax2+blnx 在 x=1 处有极值 ,得到 f(1)= ,f′(1)=0 得到 a、b 即可;找到函数的定义域,求出导函数,能求出函数 f(x)的单调区间. (2)根据函数的单调性即可求出函数的最值 本题考查函数解析式的求法,考查函数的单调区间和最值的求法,考查推理能力,考查运算能力, 解题时要注意等价转化思想的合理运用.17.答案:解:函数的定义域为(0,+∞),f(x)= - +lnx= x-2- x-1+lnx函数的导数 f′(x)=- + + =,设 h(x)=ax2+2x-2,(a≠0), 则判别式△=4+8a, 若△=4+8a≤0,①则时,h(x)≤0,则 f′(x)≥0,即此时函数 f(x)在(0,+∞)上单调递增;第 9 页,共 11 页②当时,△>0,对称轴 x=- =- >0.h(x)=0 的两个根==,即<,由 f′(x)>0 得 递增, 由 f′(x)<0 得 即此时 f(x)在>0,即 ax2+2x-2<0,即 0<x<或 x>,此时函数单调<0,即 ax2+2x-2>0,即<x<,此时函数单调递减,上单调递增,在上单调递减;③a>0 时,此时△>0,对称轴 x=- =- <0,h(x)=0 的两个根==,即>,由由 f′(x)>0 得 函数单调递增, 由 f′(x)<0 得>0,即 ax2+2x-2>0,即 x>或 x<>(舍),此时<0,即 ax2+2x-2<0,即<x<,∵x>0,∴此时 0<x<,此时函数单调递减,即此时 f(x)在上单调递减,在上单调递增.解析:求函数的定义域和导数,结合函数单调性和导数之间的关系, 本题主要考查函数单调性的判断,结合函数单调性和导数的关系以及一元二次方程根与判别式△的 关系讨论不等式的解集是解决本题的关键.注意要进行分类讨论.18.答案:解:(Ⅰ)函数 f(x)的定义域是(0,+∞),f′(x)=,令 x2-ax+1=0,则 =a2-4,①0<a≤2 时, ≤0,f′(x)≥0 恒成立, 函数 f(x)在(0,+∞)递增; ②a>2 时, >0,方程 x2-ax+1=0 有两根:x1=,x2=,且 0<x1<x2,函数 f(x)在(0,x1)上 f′(x)>0, 在(x1,x2)上,f′(x)<0,在(x2,+∞)上,f′(x)>0,故函数 f(x)在(0,)递增,在(,)递减,在(,+∞)递增;(Ⅱ)由(Ⅰ)得 f(x)在(x1,x2)上递减,x1+x2=a,x1•x2=1, 则 f(x1)-f(x2)=2ln +(x1-x2)(x1+x2-2a)第 10 页,共 11 页=2ln + - ,令 t= ,则 0<t<1,f(x1)-f(x2)=2lnt+ -t,令 g(t)=2lnt+ -t,0<t<1,则 g′(t)=- <0,故 g(t)在(0,1)递减且 g( )= -2ln2,故 g(t)=f(x1)-f(x2)≥ -2ln2=g( ),即 0<t≤ ,而 a2== + +2=t+ +2,其中 0<t≤ ,∵(t+ +2)′=1- ≤0 在 t∈(0, ]恒成立,故 a2=t+ +2 在(0, ]递减,从而 a 的范围是 a2≥ ,故 a≥ .解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论数思想,是一道综合题. (Ⅰ)求出函数的导数,通过讨论 a 的范围求出函数的单调区间即可; (Ⅱ)得到 x1+x2=a,x1•x2=1,则 f(x1)-f(x2)=2ln +(x1-x2)(x1+x2-2a)=2ln + - ,令 t= ,则 0<t<1,f(x1)-f(x2)=2lnt+ -t,令 g(t)=2lnt+ -t,根据函数的单调性求出 a 的范围即可.第 11 页,共 11 页。

23厦门市第一学期高二年级质量检测数学试卷

23厦门市第一学期高二年级质量检测数学试卷

厦门市2022—2023学年度第一学期高二年级质量检测数学试题(考试时间:120分钟 满分:150分)考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线1:210l x ay −−=与直线2:210l x y ++=垂直,则a =A .1−B .1C .2D .42.等差数列{}n a 的前n 项和为n S ,且满足22a =,520S =,则4a =A .3B .4C .5D .63.已知直线l 过点()2,0P ,方向向量为()1,1n =−,则原点O 到l 的距离为A.1B C D .24.已知圆2221:290C x y mx m +−+−=与圆222:20C x y y +−=,若1C 与2C 有且仅有一条公切线,则实数m的值为A .1±B .C .3±D .2±5.在三棱锥A BCD −中,点M 是BC 中点,若DM xAB yAC zAD =++,则x y z ++= A .0B .12C. 1D. 26.已知点P 在双曲线222:1(0)y C x b b−=>的右支上,直线OP 交C 于点Q (异于P ),点F 为C 的左焦点,若4PF =,PFQ ∠为锐角,则b 的取值范围为A .()0,2B .)3C .(2,D .()2,+∞7. 在平行六面体1111ABCD A BC D −中,1AB AD AA ==,1160BAA AA DAB D ∠=∠=∠=︒, 11(01)AQ A B λλ<=<,则直线1AC 与直线DQ 所成角的余弦值为A .0B .12C D .18.椭圆()2222:10x y E a b a b+=>>的左焦点为F ,右顶点为A ,以F 为圆心,FO 为半径的圆与E 交于点P ,且PA PF ⊥,则E 的离心率为A B .23C D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆221259x y +=与椭圆221259x y k k+=−−,则 A .9k < B .短轴长相等 C .焦距相等 D .离心率相等10.如图,四边形ABCD 为正方形,EA BF ∥,EA ⊥平面ABCD ,22AB AE BF ===,点M 在棱EC上,且EM EC λ=,则A .当14λ=时,DM ∥平面BFC B .当12λ=时,MF ⊥平面EACC .当12λ=时,点M 到平面BCF 的距离为1D .当14λ=时,平面MBD 与平面ABCD 的夹角为π411.2022年11月29日23时08分,我国自主研发的神舟十五号载人飞船成功对接于空间站“天和”核心舱前向端口,并实现首次太空会师.我国航天员在实验舱观测到一颗彗星划过美丽的地球,彗星沿一抛物线轨道运行,地球恰好位于这条抛物线的焦点.当此彗星离地球4千万公里时,经过地球和彗星的直线与抛物线的轴的夹角为60︒,则彗星与地球的最短距离可能为(单位:千万公里)A .31 B .21 C .1 D .312.大自然的美丽,总是按照美的密码进行,而数学是美丽的镜子.斐波那契数列,就用量化展示了一些自然界的奥妙.譬如松果、凤梨的排列、向日葵花瓣数、蜂巢、黄金矩形、黄金分割等都与斐波那契数列有关.在数学上,斐波那契数列{}n a 可以用递推的方法来定义:11a =,21a =,*21()n n n a a a n N ++=+∈,则A .135********a a a a a ++++=B .12320202022a a a a a ++++=C .2222320212120212022a a a a a a ++++=D.132420192021202020221220212022111111aa a a a a a a a a a a ++++=−三、填空题:本题共4小题,每小题5分,共20分. 13.写出双曲线22:14y C x −=的一条渐近线方程 ▲ . 14.在正方体1111ABCD A B C D −中,E 为线段1BB 的中点,则直线1C E 与平面11A D B 所成角的正弦值是 ▲ .15.在平面上给定相异两点A 、B ,设点P 与A 、Bλ=,当0λ>且1λ≠时,点P 的轨迹是个圆,这个圆我们称作阿波罗尼斯圆.在PAD △中,PA PD =,()3,0A −,边PD 中点为()3,0B , 则PAB ∠的最大值为 ▲ . 16.平面上一系列点()111,A x y ,()222,A x y ,,(),n n n A x y ,,其中()11,2A ,10n n y y +>>,已知nA 在曲线24y x =上,圆()()222:n n n n A x x y y r −+−=与y 轴相切,且圆n A 与圆1n A +外切,则3A 的坐标为▲ ;记1n n n b y y +=,则数列{}n b 的前6项和为 ▲ .(本题第一空2分,第二空3分) 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)如图,在平面直角坐标系xOy 中,四边形OABC 为菱形,π3COA ∠=,(C ,点D 为AB 的中点,记OAC △的外接圆为圆M . (1)求圆M 的方程;(2)求直线CD 被圆M 所截得的弦长.18.(12分)已知等比数列{}n a 的各项均为正数,且124a a +=,23269a a a =.(1)求数列{}n a 的通项公式;(2)设3log n n n b a a =+,求数列{}n b 的前n 项和.19.(12分)已知点()0,1F ,点B 为直线1y =−上的动点,过B 作直线1y =−的垂线l ,且线段FB 的中垂线与l 交于点P .(1)求点P 的轨迹Γ的方程;(2)设FB 与x 轴交于点M ,直线PF 与Γ交于点G (异于P ),求四边形OMFG 面积的最小值.1A20.(12分)现实世界上有许多由旋转或对称构成的物体,呈现出各种美,譬如纸飞机、蝴蝶的翅膀等.已知ABC △中,2AB BC ==,120ABC =∠︒,将ABC △绕着BC 旋转到DBC △的位置,如图所示. (1)求证:BC AD ⊥;(2)当三棱锥D ABC −的体积最大时,求平面ABD 和平面BDC 的夹角的余弦值.21.(12分)甲、乙两大超市同时开业,第一年的全年销售额均为1千万元,由于管理经营方式不同,甲超市前nn 年的销售额比前一年销售额多123n −⎛⎫ ⎪⎝⎭千万元.(1)分别求甲、乙超市第n 年销售额的表达式;(2)若其中一家超市的年销售额不足另一家超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,至少会出现在第几年?22.(12分)已知椭圆()2222:10x y E a b a b+=>>过点). (1)求E 的方程;(2)过()1,0T 作斜率之积为1的两条直线1l 与2l ,设1l 交E 于A ,B 两点, 2l 交E 于C ,D 两点, AB ,CD 的中点分别为,M N .探究:OMN △与TMN △面积之比是否为定值?若是,请求出定值; 若不是,请说明理由.。

2019—2020年新课标北师大版高中数学选修1-1全册质量试题试题及答案答案解析.docx

2019—2020年新课标北师大版高中数学选修1-1全册质量试题试题及答案答案解析.docx

(新课标)2017-2018学年北师大版高中数学选修1-1高二数学选修1-1质量检测试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至6页。

考试结束后. 只将第Ⅱ卷和答题卡一并交回。

第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是A.24y x=- B.24x y=C.24y x=-或24x y= D.24y x=或24x y=-2. 椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为A.22110084x y+= B.221259x y+=C.22110084x y+=或22184100x y+= D.221259x y+=或221259y x+=3.如果方程22143x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是 A.34m << B. 72m >C. 732m <<D.742m << 4.“5,12k k Z αππ=+∈”是“1sin 22α=”的 A.充分不必要条件 B. 必要不充分条件C.充要条件D. 既不充分又不必要条件5. 已知函数2sin y x x =,则y '=A. 2sin x xB.2cos x x C. 22sin cos x x x x + D. 22cos sin x x x x +6. 已知(2)2f =-,(2)(2)1f g '==,(2)2g '=,则函数()()g x f x 在2x =处的导数值为A. 54-B.54C.5-D. 5 7. 已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为 A.221916x y -= B.221169x y -= C.2212536x y -= D. 2212536y x -= 8.设P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的两个焦点,则12PF PF +的值为A. 10B. 8C. 6D. 49.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是A. a 与b 的和是偶数,则a, b 都是偶数B. a 与b 的和不是偶数,则a, b 都不是偶数C. a, b 不都是偶数,则a 与b 的和不是偶数D. a 与b 的和不是偶数,则a, b 不都是偶数10 .若曲线()y f x =在点00(,())x f x 处的 切线方程为210x y +-=,则A. 00()f x '>B. 00()f x '<C. 00()f x '=D. 0()f x '不存在11.以下有四种说法,其中正确说法的个数为:(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2)“a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个12. 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A .6B .5C .3D .2二、填空题:本大题共6小题,每小题5分,共30分。

精品解析:福建省三明市2019-2020学年高二上学期期末数学试题(解析版)

精品解析:福建省三明市2019-2020学年高二上学期期末数学试题(解析版)
【详解】 ,则 ,
故函数在 上单调递减,在 上单调递增, 错误;
,根据单调性知 , 正确;
, ,故方程 有实数解, 正确;
,易知当 时成立,当 时, ,设 ,
则 ,故函数在 上单调递增,在 上单调递减,
在 上单调递增,且 .
画出函数图象,如图所示:当 时有ห้องสมุดไป่ตู้个交点.
综上所述:存在实数 ,使得方程 有 个实数解, 正确;
16.设过原点的直线与双曲线 : 交于 两个不同点, 为 的一个焦点,若 , ,则双曲线 的离心率为__________.
【答案】
【解析】
【分析】
如图所示:连接 ,根据对称性知 为平行四边形,计算得到
,利用余弦定理计算得到答案.
【详解】如图所示:连接 ,根据对称性知 为平行四边形.
,则 , ,
, ,故 .
【详解】 , ,取 得到 .
故函数在 上单调递减,在 上单调递减,在 上单调递增.
对比图象知: 满足条件.
故选: .
【点睛】本题考查了根据导数求单调区间,函数图像的识别,意在考查学生对于函数知识的综合应用.
7.若 ,且 ,则下列不等式一定成立的是
A. B. C. D.
【答案】D
【解析】
【分析】
设函数 ,函数为偶函数,求导得到函数的单调区间,变换得到 ,得到答案.
C.当 , 时,方程不成立,错误;
D.方程表示的曲线不含有一次项,故不可能为抛物线,正确;
故选: .
【点睛】本题考查了椭圆,双曲线,抛物线的定义,意在考查学生对于圆锥曲线的理解.
10.(多选题)如图,在长方体 中, , , ,以直线 , , 分别为 轴、 轴、 轴,建立空间直角坐标系,则()

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

2019-2020学年高中数学人教A版必修一阶段质量检测:第二章 基本初等函数(Ⅰ) 含解析

阶段质量检测(二)基本初等函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(lg 9-1)2等于()A.lg 9-1 B.1-lg 9C.8 D.2 2解析:因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.答案:B解析:方法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 增较快,排除C;当0<a<1时,y=x a为增函数,y=log a x为减函数,排除由于y=x a递增较慢,所以选D.=x a的图象不过(0,1)点,故A的图象知0<a<1,而此时幂函数f(x)=xB错,D对;C项中由对数函数x)=x a的图象应是增长越来越快的变化趋势,2⎝⎭4a =±3,又a >0,∴a = 3.答案:A12.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫a -14x ,x ≥1,a x ,x <1,在R 上为减函数,则实数的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝ ⎛⎭⎪⎫14,1∴f(x)的减区间为(-∞,1].答案:(-∞,1]16.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=log a(x-m)(其中a>0≠1)的图象过定点A的坐标为________.解析:若函数f(x)=(m-1)xα是幂函数,则m=2,则函数g(x)=log a(x-m)=log a(x-2)(其中a>0,a≠1),令x-2=1,则x=3,g(x)=0,其图象过定点A的坐标为(3,0).答案:(3,0)三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)43所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2323,所以⎝ ⎛⎭⎪⎫3423>⎝ ⎛⎭⎪⎫2334.19.(12分)已知f (x )=log 2(1+x )+log 2(1-x ). (1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明;(3)求f ⎝ ⎛⎭⎪⎫22的值.解析:(1)由⎩⎪⎨⎪⎧ 1+x >0,1-x >0,得⎩⎪⎨⎪⎧x >-1x <1,即-1<x <1.⎩⎪g (x ),f (x )>g (x ),解析:(1)设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以(2)2,解得α=2,即f (x )=x 2.设g (x )=x β,因为点⎝ ⎛⎭⎪⎫2,12在幂函数g (x )的图象上,所以2β=12,解得=-1,即g (x )=x -1.(2)在同一平面直角坐标系中画出函数f (x )=x 2和g (x )=x -1的图象,可得函数h (x )的图象如图所示.的解析式及图象可知,函数h (。

2019-2020学年人教A版河南省天一大联考高二第一学期(上)段考数学试卷试题及答案(文科) 含解析

2019-2020学年人教A版河南省天一大联考高二第一学期(上)段考数学试卷试题及答案(文科)  含解析

2019-2020学年高二第一学期(上)段考数学试卷(文科)一、选择题1.已知集合,则A∩(∁R B)=()A.{x|0<x<1} B.{x|1≤x<3} C.{x|1<x<3} D.{x|0≤x<3} 2.下列说法正确的是()A.命题“若x>y+1,则x>y”的逆否命题为“若x≤y,则x>y+1”B.若x2≥1,则x≤﹣1或x≥1C.若x2﹣2019x=0则x=2019D.若a>b,则3.已知,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a4.函数f(x)=x﹣cos x在处的切线方程为()A.2x﹣4y﹣π=0 B.2x﹣πy=0 C.4x﹣πy﹣1=0 D.4x﹣2y﹣π=0 5.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问有如下表述:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,则前3天共分发大米()A.234 升B.468 升C.639 升D.903 升6.函数f(x)=﹣10x3ln|x|的图象大致为()A.B.C.D.7.已知,则=()A.B.C.D.8.已知函数g(x)是R上的奇函数,且当x<0时g(x)=﹣ln(1﹣x),设函数f(x)=,若f(2﹣x2)>f(x),则实数x的取值范围是()A.(﹣∞,1)∪(2,+∞)B.(﹣∞,﹣2)∪(1,+∞)C.(1,2)D.(﹣2,1)9.已知x,y满足约束条件则目标函数z=2x﹣2y的最大值为.()A.128 B.64 C.D.10.要想得到函数的图象,只需将函数y=(cos x﹣sin x)•(cos x+sin x)的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度11.已知菱形ABCD的边长为4,∠ABC=60°,E是BC的中点,则=()A.24 B.﹣7 C.﹣10 D.﹣1212.已知函数,若方程f(x)﹣2m=0恰有三个不同的实数根,则实数m的取值范围是()A.(2,+∞)B.(4,+∞)C.(2,4)D.(3,4)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(),向量,的夹角是,且=﹣1,则||=.14.△ABC的内角A,B,C的对边分别为a,b,c,已知a=5,c=6,,则sin A =.15.已知8a+2b=1(a>0,b>0),则ab的最大值为.16.记数列{a n}的前n项和为S n,已知a1=4,2a n=﹣a n﹣1+9(n≥2).若对任意的n∈N*,λ(S n﹣3n)≥4恒成立,则实数λ的最小值为.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知p:指数函数f(x)=(2a﹣1)x在R上单调递减,q:关于x的方程x2﹣3ax+2a2+1=0的两个实根均大于0.若“p或q”为真命题,“p且q为假命题,求实数a的取值范围.18.△ABC的内角A,B,C的对边分别为a,b,c,已知tan A=cos B tan A+sin B.(Ⅰ)若a+c=8,△ABC的面积为6,求sin B;(Ⅱ)若b2=3a2,求B.19.已知正项等比数列{a n},a4=9a2,a3﹣a2=6(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=na n,求数列{b n}的前n项和T n.20.记数列{a n}的前n项和为S n,已知a1=﹣3,2S n S n﹣1+3S n﹣1=3S n﹣1(n≥2)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使成立的n的最大值.21.已知函数f(x)=cos4x﹣sin2x+3(Ⅰ)设正实数T满足f(T)=f(0),求T的最小值;(Ⅱ)当时,求f(x)的值域22.已知函数f(x)=lnx+.(Ⅰ)求f(x)的极值;(Ⅱ)已知函数g(x)=f(x)+,其中a为常数且a≠0,若函数g(x)在区间[1,2]上为单调函数,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则A∩(∁R B)=()A.{x|0<x<1} B.{x|1≤x<3} C.{x|1<x<3} D.{x|0≤x<3} 解:∵A={x|0<x<3},B={y|y≥1},∴∁R B={y|y<1},A∩(∁R B)={x|0<x<1}.故选:A.2.下列说法正确的是()A.命题“若x>y+1,则x>y”的逆否命题为“若x≤y,则x>y+1”B.若x2≥1,则x≤﹣1或x≥1C.若x2﹣2019x=0则x=2019D.若a>b,则解:命题“若x>y+1,则x>y”的逆否命题为“若x≤y,则x≤y+1”,所以A不正确;若x2≥1,则x≤﹣1或x≥1,所以B正确;若x2﹣2019x=0则x=2019或x=0,所以C不正确;若a>b,则,反例a>0,b<0,满足条件,但是推不出结果,所以D不正确;故选:B.3.已知,则()A.a>b>c B.c>a>b C.a>c>b D.c>b>a解:∵1=20<20.1<2,0.50.5<1,,∴c>a>b.故选:B.4.函数f(x)=x﹣cos x在处的切线方程为()A.2x﹣4y﹣π=0 B.2x﹣πy=0 C.4x﹣πy﹣1=0 D.4x﹣2y﹣π=0 解:由题意知,f'(x)=1+sin x,则切线的斜率k=f'()=2,切点坐标(,)∴切线的方程为y﹣=2(x﹣),即 4x﹣2y﹣π=0,故选:D.5.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问有如下表述:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,则前3天共分发大米()A.234 升B.468 升C.639 升D.903 升解:根据题意,第一天派出64人,需要分发大米64×3=192升,从第二天开始每天派出的人数比前一天多7人,则第二天派出64+7=71人,需要分发大米71×3=213升,第三天派出71+7=78人,需要分发大米78×3=234升,则前3天共分发大米192+213+234=639升;故选:C.6.函数f(x)=﹣10x3ln|x|的图象大致为()A.B.C.D.解:因为f(﹣x)=10x3ln|x|=﹣f(x),所以函数为奇函数,故排除A、D;当x→+0时,f(x)→0,故排除B,故选:C.7.已知,则=()A.B.C.D.解:∵,∴sin()﹣=0,∴﹣,∴sin x=cos x,∴tan x=,∴===.故选:B.8.已知函数g(x)是R上的奇函数,且当x<0时g(x)=﹣ln(1﹣x),设函数f(x)=,若f(2﹣x2)>f(x),则实数x的取值范围是()A.(﹣∞,1)∪(2,+∞)B.(﹣∞,﹣2)∪(1,+∞)C.(1,2)D.(﹣2,1)解:∵函数g(x)是R上的奇函数,且当x<0时,g(x)=﹣ln(1﹣x),∴当x>0时,g(x)=﹣g(﹣x)=﹣[﹣ln(1+x)]=ln(1+x).∵函数f(x)=,∴当x≤0时,f(x)=x3为单调递增函数,值域(﹣∞,0].当x>0时,f(x)=lnx为单调递增函数,值域(0,+∞).∴函数f(x)在区间(﹣∞,+∞)上单调递增.∵f(2﹣x2)>f(x),∴2﹣x2>x,即x2+x﹣2<0,∴(x+2)(x﹣1)<0,∴﹣2<x<1.∴x∈(﹣2,1).故选:D.9.已知x,y满足约束条件则目标函数z=2x﹣2y的最大值为.()A.128 B.64 C.D.解:由x,y满足约束条件作出可行域如图,联立,解得B(4,﹣1).化目标函数z=2x﹣2y可知x﹣2y取得最大值时,z取得最大值,由图可知,当直线x﹣2y=u过点B时,直线在y轴上的截距最小,即u最大.∴z max=24﹣2×(﹣1)=64.故选:B.10.要想得到函数的图象,只需将函数y=(cos x﹣sin x)•(cos x+sin x)的图象()A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度解:y=(cos x﹣sin x)•(cos x+sin x)=cos2x﹣sin2x=cos2x,=cos(﹣2x﹣)=cos(﹣2x)=cos(2x﹣)=cos2(x﹣),故只需将函数y=(cos x﹣sin x)•(cos x+sin x)的图象向右平移个单位长度,即可得到函数的图象,故选:A.11.已知菱形ABCD的边长为4,∠ABC=60°,E是BC的中点,则=()A.24 B.﹣7 C.﹣10 D.﹣12解:建立如图所示的坐标系,A(0,0),B(4,0),C(2,2),E(3,),D(﹣2,2),F(,),则=(3,)•(﹣,)=﹣14+2=﹣12.故选:D.12.已知函数,若方程f(x)﹣2m=0恰有三个不同的实数根,则实数m的取值范围是()A.(2,+∞)B.(4,+∞)C.(2,4)D.(3,4)解:画出f(x)的图象,如图所示,当x>0,f(x)=x+≥4,设g(x)=2m,则f(x)﹣2m=0恰有三个不同的实数根,即f(x)和g(x)=2m图象有三个交点,由图可知2m>4,即m>2.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(),向量,的夹角是,且=﹣1,则||=.解:∵,∴,∴.故答案为:.14.△ABC的内角A,B,C的对边分别为a,b,c,已知a=5,c=6,,则sin A=.解:∵a=5,c=6,,∴由余弦定理可得b===,∴sin B==,∴由正弦定理,可得sin A===.故答案为:.15.已知8a+2b=1(a>0,b>0),则ab的最大值为.解:因为8a+2b=1,a>0,b>0,则ab=×=.当且仅当8a=2b即a=,b=时取等号,此时ab取最大值.故答案为:.16.记数列{a n}的前n项和为S n,已知a1=4,2a n=﹣a n﹣1+9(n≥2).若对任意的n∈N*,λ(S n﹣3n)≥4恒成立,则实数λ的最小值为8 .解:数列{a n}的前n项和为S n,已知a1=4,2a n=﹣a n﹣1+9(n≥2).则:,所以数列{a n﹣3}是以a1﹣3=1为首项,﹣为公比的等比数列.所以,整理得,所以,所以>0,故对于任意的正偶数n,,恒成立.等价于,对于任意的正偶数n恒成立.由于,所以,所以,只需满足λ≥8.故答案为:8.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.已知p:指数函数f(x)=(2a﹣1)x在R上单调递减,q:关于x的方程x2﹣3ax+2a2+1=0的两个实根均大于0.若“p或q”为真命题,“p且q为假命题,求实数a的取值范围.解:∵p:指数函数f(x)=(2a﹣1)x在R上单调递减,∴<a<1,∵q:关于x的方程x2﹣3ax+2a2+1=0的两个实根均大于0.∴,解得a>2,∵“p或q”为真命题,“p且q为假命题,∴p真q假,或p假q真,当p真q假时,,解得<a<1,当p假q真时,,解得a>2.∴实数a的取值范围是(,1)∪(2,+∞).18.△ABC的内角A,B,C的对边分别为a,b,c,已知tan A=cos B tan A+sin B.(Ⅰ)若a+c=8,△ABC的面积为6,求sin B;(Ⅱ)若b2=3a2,求B.解:(Ⅰ)∵tan A=cos B tan A+sin B,∴sin A=sin A cos B+sin B cos A=sin(A+B)=sin C,∴由正弦定理可得a=c,又∵a+c=8,∴a=c=4,∵△ABC的面积为6=ac sin B=4×4×sin B,∴解得:sin B=.(Ⅱ)∵由(Ⅰ)可得a=c,又b2=3a2,∴由余弦定理可得cos B===﹣,∵B∈(0,π),∴B=.19.已知正项等比数列{a n},a4=9a2,a3﹣a2=6(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=na n,求数列{b n}的前n项和T n.解:(I)设正项等比数列{a n}的公比为q>0,∵a4=9a2,a3﹣a2=6.∴q2=9,a1(q2﹣q)=6,解得q=3,a1=1,∴a n=3n﹣1.(II)b n=na n=n•3n﹣1.∴数列{b n}的前n项和T n=1+2×3+3×32+4×33+……+n•3n﹣1.∴3T n=3+2×32+3×33+……+(n﹣1)•3n﹣1+n•3n.∴﹣2T n=1+3+32+33……+3n﹣1﹣n•3n=﹣n•3n=,化为:T n=.20.记数列{a n}的前n项和为S n,已知a1=﹣3,2S n S n﹣1+3S n﹣1=3S n﹣1(n≥2)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使成立的n的最大值.解:(Ⅰ)数列{a n}的前n项和为S n,因为a1=﹣3,2S n S n﹣1+3S n﹣1=3S n﹣1(n≥2),所以两边同除以S n S n﹣1,整理得:所以:,所以数列{}是以为首项,﹣为公差的等差数列.所以.则:a n=S n﹣S n﹣1=(首项不符合通项),所以.(Ⅱ)由于,所以易知n≥2时,,整理得4n2﹣8n+3≤48,解得2,故最大值为4.21.已知函数f(x)=cos4x﹣sin2x+3(Ⅰ)设正实数T满足f(T)=f(0),求T的最小值;(Ⅱ)当时,求f(x)的值域解:(Ⅰ)f(0)=1﹣0+3=4,则f(T)=cos4T﹣sin2T+3=2cos22T+cos2T+=4,即有(cos2T﹣1)(4cos2T+5)=0,因为﹣1≤cos2T≤1,所以cos2T=1,则2T=2kπ,所以T=kπ(k∈Z),又因为T为正实数,所以T最小值为π;(Ⅱ)f(x)=2cos22x+cos2x+=2(cos2x+)2+,因为,所以2x∈(﹣,),则cos2x∈(﹣,1],则f(x)最小值在cos2x=﹣处取到,则最小值为,最大值在cos2x=1处取到,则最大值为4,所以f(x)的值域为[,4].22.已知函数f(x)=lnx+.(Ⅰ)求f(x)的极值;(Ⅱ)已知函数g(x)=f(x)+,其中a为常数且a≠0,若函数g(x)在区间[1,2]上为单调函数,求实数a的取值范围.解:(I),∵=,x>0,当f′(x)<0可得,x∈(0,2),此时f(x)单调递减,当f′(x)>0可得,x∈(2,+∞),此时f(x)单调递增,故函数的极小值f(2)=1+ln2,没有极大值,(II)∵g(x)=f(x)+=lnx+在区间[1,2]上为单调函数,∴g′(x)=≥0或g′(x)=≤0在区间[1,2]上恒成立,即≥或即≤在区间[1,2]上恒成立,∴≥()max或≤()min,令h(x)=,x∈[1,2],则h(x)在[1,2]上单调递增,故h(x)max=h(2)=,h(x)min=h(1)=3,∴或,解可得a<0或或a≥1.故a的范围为{a|a<0或或a≥1}.。

考点02 异面直线的夹角(人教A版2019)(含答案解析)

考点02 异面直线的夹角(人教A版2019)(含答案解析)

考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 B.5C.5D .162.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为 A .720 B.20 CD5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6π B .4π C .3πD .2π6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14C .4-D .47.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 B .6CD8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A . BC .6-D9.已知正四棱柱1111ABCD A B C D -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒10.已知直三棱柱111ABC A B C -中,12,2,13ABC AB BC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为A B .15CD .5-11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A .6 B .23CD .1212.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13C .12D 13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为A .12BC .10D .1014.直三棱柱111ABC A B C -中,1AB AC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34C .14D .1315.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .217.在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,设AC 交BD 于点O ,则异面直线1A O 与1BD 所成角的余弦值为A . BC .D 18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .3021.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A BCD23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为 A .13 B .22C .324D .1224.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,2AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是A 3B 6C 6D .2225.在棱长为2的正方体1111—ABCD A B C D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A .427 B 15 C 3D 6二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''B .过三点A 、M 、D 的正方体ABCD -A BCD '''' C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°4.如图,在三棱柱111ABC A B C -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC 所成角的余弦值为14C .异面直线1AD 与1AC D .//CD 平面11AB C5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.4.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.6.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.8.在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,3PA =,AB =2BC =,若E ,F 是PC 的三等分点,则异面直线AE 与BF 所成角的余弦值________.9.在正方体1111ABCD A B C D -中,点E 为棱11A B 的中点,则异面直线AE 与BD 所成角的余弦值为________.10.四棱锥P -ABCD 的底面是一个正方形,P A ⊥平面ABCD ,4PA AB ==,E 是棱P A 的中点,则异面直线BE 与AC 所成角的余弦值是________.11.如图,在三棱锥V ABC -中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x ,y ,z 轴上,D 是线段AB 的中点,且2AC BC ==,当60VDC ∠=︒时,异面直线AC 与VD 所成角的余弦值为________.12.如图,已知正三棱柱111ABC A B C -的侧棱长为底面边长的2倍,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角的余弦值为________.13.已知(0,1,2)AM =,(1,0,2)CN =,则直线AM 和CN 所成角的余弦值是__________.14.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将△ACD 翻折成△ACD',直线AC 与BD'所成角的余弦的最大值是________.15.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO ≥,则PQ 和OB 所成角的余弦的取值范围是________.四、双空题1.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则该棱柱的体积为________;异面直线1AB 与1BC 所成角的余弦值为________.2.在正四面体ABCD 中,M ,N 分别为棱BC 、AB 的中点,设AB a =,AC b =,AD c =,用a ,b ,c 表示向量DM =________,异面直线DM 与CN 所成角的余弦值为________. 3.在直四棱柱1111ABCD A B C D -中,侧棱长为6,底面是边长为8的菱形,且120ABC ∠=,点E 在边BC 上,且满足3BE EC =,动点M 在该四棱柱的表面上运动,并且总保持1ME BD ⊥,则动点M 的轨迹围成的图形的面积为________;当MC 与平面ABCD 所成角最大时,异面直线1MC 与AC 所成角的余弦值为________.4.如图,P 为△ABC 所在平面外一点,P A =PB =PC =1,∠APB =∠BPC =60°,∠APC =90°,若G 为△ABC 的重心,则|PG |长为________,异面直线P A 与BC 所成角的余弦值为________.5.如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC ==,则此三棱锥四个面中直角三角形的个数为________,异面直线PB 与AC 所成角的正切值等于________.五、解答题1.如图,在三棱锥D -ABC 中,DA ⊥平面ABC ,AB BC ⊥且2BC =,3AB =,4=AD .(1)证明:BCD △为直角三角形;(2)以A 为圆心,在平面DAB 中作四分之一个圆,如图所示,E 为圆弧上一点,且2AE =,45EAD ∠=︒,求异面直线AE 与CD 所成角的余弦值.2.如图在三棱锥P ABC -中,棱AB 、AC 、AP 两两垂直,3AB AC AP ===,点M 在AP 上,且1AM =.(1)求异面直线BM 和PC 所成的角的大小; (2)求三棱锥P BMC -的体积.考点02 异面直线的夹角一、单选题1.已知斜三棱柱111ABC A B C -中,底面ABC 是等腰直角三角形,2AB AC ==,12CC =,1AA 与AB 、AC 都成60角,则异面直线1AB 与1BC 所成角的余弦值为A .14 BCD .16【试题来源】A 佳教育湖湘名校2019-2020学年高二下学期3月线上自主联合检测【答案】D【解析】设AB a =,AC b =,1AA c =,则0a b ⋅=,2a c ⋅=,2b c ⋅=,从而1AB a c =+, 1BC b c a =+-,22112AB BC a b b c c a ⋅=⋅+⋅+-=,22124AB a c a c =++⋅=+=22212224BC a b c b c a b a c =+++⋅-⋅-⋅=+=所以1111111cos ,6||||AB BC AB BC AB BC ⋅==.故选D .2.在三棱柱111ABC A B C -中,若ABC ∆是等边三角形,1AA ⊥底面ABC ,且1AB =,则1AB 与1C B 所成角的大小为 A .60︒ B .90︒ C .105︒D .75︒【试题来源】四川省自贡市2019-2020学年高二年级上学期期末(理) 【答案】B【解析】如图,根据条件,1AB =,令AB =,11B B =;又1111()AB B A B B =-+,1111C B B C B B =-+;2211111111111111211102AB C B B A B C B A B B B B B C B B ∴=-+-=⨯-=-=;∴11AB C B ⊥;1AB ∴和1C B 所成的角的大小为90︒.故选B .3.设动点P 在棱长为1的正方体1111ABCD A B C D -的对角线1BD 上,11D PD Bλ=,当APC ∠为锐角时,λ的取值范围是A .10,3⎡⎫⎪⎢⎣⎭B .10,2⎡⎫⎪⎢⎣⎭C .1,13⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【试题来源】湖北省鄂东南省级示范高中2020-2021学年高二上学期期中联考 【答案】A【解析】如图建立空间直角坐标系:则()1,0,0A ,()1,1,0B ,()0,1,0C ,()10,0,1D ,()11,1,1D B =-,()()111,1,1,,D P D B λλλλλ==-=-, ()11,01D A =-,()10,1,1D C =-,所以()()()111,01,,1,,1PA D A D P λλλλλλ=-=---=---,()()()110,1,1,,,1,1PC DC D P λλλλλλ=-=---=---, 由APC ∠为锐角得cos 0PA PC APC PA PC⋅∠=>,即0PA PC ⋅>,所以()()22110λλλ--+->,即()()1310λλ-->,解得103λ<<, 当0λ=时,点P 位于点1D 处,此时1APC AD C ∠=∠显然是锐角,符合题意, 所以103λ≤<,故选A. 4.已知正三棱柱ABC A B C '''-的所有棱长均相等,D 、E 在BB '上,且BD DE EB '==,则异面直线AD 与EC '所成角的正弦值为A .720B .20C.20D.20【试题来源】第八单元 立体几何 (A 卷 基础过关检测)-2021年高考数学(理)一轮复习单元滚动双测卷 【答案】C【解析】如下图所示,设3AD =,取BC 的中点O ,B C ''的中点M ,连接OA 、OM ,在正三棱柱ABC A B C '''-中,//BB CC ''且BB CC ''=, 则四边形BB C C ''为平行四边形,//BC B C ''∴且BC B C ''=, 由于O 、M 分别为BC 、B C ''的中点,则//OB MB '且OB MB '=, 所以,四边形OBB M '为平行四边形,则//OM BB '且OM BB '=,BB '⊥平面ABC ,则OM ⊥平面ABC ,ABC 为等边三角形,且O 为BC 的中点,则OA BC ⊥,以点O 为坐标原点,OA 、OB 、OM 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则2A ⎛⎫ ⎪ ⎪⎝⎭、30,,12D ⎛⎫ ⎪⎝⎭、30,,22E ⎛⎫ ⎪⎝⎭、30,,32C ⎛⎫'- ⎪⎝⎭,3,12AD ⎛⎫= ⎪ ⎪⎝⎭,()0,3,1EC '=-,77cos ,2010AD EC AD EC AD EC -'⋅'<>===-'⋅,2sin ,1cos ,120AD EC ADEC ''<>=-<>==, 因此,异面直线AD 与EC '所成角的正弦值为20.故选C .5.《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为A .6πB .4π C .3πD .2π【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】解法一:如图,在平面ABFE 中,过F 作//FG AE 交AB 于G ,连接CG ,则CFG ∠或其补角为异面直线AE 与CF 所成的角.设1EF =,则3AB =,2AD =.因为//EF AB ,//AE FG ,所以四边形AEFG 为平行四边形,所以2FG AE AD ===,1AG =,2BG =,又AB BC ⊥,所以GC =,又2CF BC ==,所以222CG GF CF =+,所以2CFG π∠=.解法二:如图,以矩形ABCD 的中心O 为原点,CB 的方向为x 轴正方向建立空间直角坐标系,因为四边形ABCD 为矩形,//EF AB ,ADE 和BCF △都是正三角形,所以EF ⊂平面yOz ,且Oz 是线段EF 的垂直平分线.设3AB =,则1EF =,2AD =,31,,02A ⎛⎫-⎪⎝⎭,10,2E ⎛- ⎝,31,,02C ⎛⎫- ⎪⎝⎭,10,2F ⎛ ⎝,所以(AE =-,(1,CF =-,所以111(1)AE CF ⋅=-⨯+⨯-0=,所以AE CF ⊥,所以异面直线AE 与CF所成的角为2π.故选D .6.已知在直三棱柱111ABC A B C -中,底面是边长为2的正三角形,1AA AB =,则异面直线1A B 与1AC 所成角的余弦值为 A .14-B .14 C.4-D.4【试题来源】山东省德州市夏津第一中学2020-2021学年高二上学期9月月考数试题 【答案】B【解析】以A 为原点,在平面ABC 内,过点A 作AC 的垂线为x 轴,以AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,由题得(0A ,0,0),1(0,0,2)A,B ,1(0C ,2,2),1(3,1,2)A B =-,1(0,2,2)AC =,设异面直线1A B 与1AC 所成角为θ,则1111111cos |cos ,|||||4||||88A B AC A B AC A B AC θ=<>===. ∴异面直线1A B 与1AC 所成角的余弦值为14.故选B .7.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA =,底面ABCD 为边长为2的正方形,E 为BC 的中点,则异面直线BD 与PE 所成的角的余弦值为A .6 BC .3D .3【试题来源】河北省深州市中学2020-2021学年高二上学期期中【答案】A【解析】因为PA ⊥底面ABCD ,所以,PA AB PA AD ⊥⊥,又AB AD ⊥, 所以以A 为原点,,,AB AD AP 分别为,,x y z 轴建立如图所示的空间直角坐标系:则(0,0,2)P ,(2,0,0)B ,(2,1,0)E ,(0,2,0)D ,(2,1,2)PE =-,(2,2,0)BD =-, 设异面直线BD 与PE 所成的角为θ,(0,]2πθ∈,则||cos||||PE BD PE BD θ⋅==6=.所以异面直线BD 与PE 所成的角的余弦值为6.故选A . 8.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是A .18-BC .6-D 【试题来源】河南省新乡市新乡县第一中学2019-2020学年高二下学期期末考试(理) 【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC , 则异面直线BE 与PC 所成角的余弦值为6⋅=BE PC BE PCB . 9.已知正四棱柱1111ABCD A BCD -中,1AB =,12CC =,点E 为1CC 的中点,则异面直线1AC 与BE 所成的角等于 A .30 B .45︒ C .60︒D .90︒【试题来源】人教A 版(2019)选择性必修第一册 第一章 空间向量与立体几何 单元测试 【答案】A【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,然后利用向量求出答案即可.【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则(1,0,0)A ,1 (0,1,2)C ,(1,1,0)B ,(0,1,1)E ,1(1,1,2)AC =-,(1,0,1)BE =-, 设1AC 与BE 所成角为θ,则11cos 6||AC BE AC BE θ⋅===⋅,所以30θ=︒. 所以异面直线1AC 与BE 所成的角为30.故选A . 10.已知直三棱柱111ABC A B C -中,12,2,13ABC ABBC CC π∠====,则异面直线1AB 与1BC 所成角的余弦值为 A.5B.15 CD . 【试题来源】黑龙江省哈尔滨师范大学附属中学2020-2021学年高二10月月考(理) 【答案】A【解析】如图:以垂直于BC 的方向为x 轴,BC 为y 轴,1BB 为z 轴建立空间直角坐标系,则()0,00B ,()10,1,1C ,()10,1,1BC =, 因为120ABC ∠=,则cos1201A y AB ==-,sin1203A xAB == 即)1,0A-,()1AB =-,设异面直线1AB 与1BC 所成角为θ,1111cos 5AB BC AB BC θ⋅===A .11.直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,1BC BB =,则直线1AB 与1BC 所成角的余弦值为A.6B .23C .2D .12【试题来源】福建省南安市侨光中学2020-2021学年高二上学期第一次阶段考试【答案】A【解析】因为直三棱柱111ABC A B C -底面是等腰直角三角形,AB AC ⊥,故以AB 为x 轴,AC 为y 轴,1AA 为z 轴建立空间直角坐标系,如图, 设1AB =,则1BB =(1,0,0)B ,(0,1,0)C,1(1,0,2)B ,1(0,1,C ,1(1AB =,1(1,1BC =-,111111cos ,63AB BC AB BC AB BC ⋅<>===. 所以直线1AB 与1BC 所成角的余弦值为6.故选A .12.正方体1111ABCD A B C D -中,E 、F 分别是1AA 与1CC 的中点,则直线ED 与1D F 所成角的余弦值是 A .15B .13 C .12D 【试题来源】河北省沧州市第三中学2019-2020学年高一下学期期末【答案】A【解析】如图,以A 为原点建立空间直角坐标系,设正方体的边长为2,则()0,0,1E ,()2,2,1F ,()0,2,0D,()10,2,0D ,∴ ()0,2,1ED =-,()12,0,1D F =,∴直线ED 与1D F 所成角θ的余弦值为111c 5os 0ED D ED D F Fθ⋅===⋅.故选A .13.已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是A 1D 1,A 1C 1的中点,则异面直线AE 和CF 所成的角的余弦值为 A .12B .2 CD .10【试题来源】山西省阳泉市盂县第三中学2021届高三上学期第一次月考(文) 【答案】C【解析】如图所示,建立空间直角坐标系.不妨设棱长AB =2.A (0,0,0),C (2,2,0).因为E 、F 分别是A 1D 1,A 1C 1的中点,所以E (0,1,2),F (1,1,2),所以()()0,1,2,1,1,2AE CF ==--,所以cos ,1AE CF AE CF AE CF⋅===. 所以异面直线AE 与CF .故选C . 14.直三棱柱111ABC A B C -中,1ABAC AA ==,60BAC ∠=︒,则异面直线1BA 和1AC 所成角的余弦值为A B .34 C .14D .13【试题来源】福建省莆田第一中学2020-2021学年高二上学期期中考试【答案】C【解析】因为AB AC =,60BAC ∠=︒,所以三角形ABC 是等边三角形,取AC 的中点D ,以点D 为原点,建立空间直角坐标系如图:设2AB =,则B ,(0,1,0)A -,1(0,1,2)A -,1(0,1,2)C , 所以1(1,2)BA =--,1(0,2,2)AC ,122BA =,122AC =112BA AC ⋅=,所以异面直线1BA 和1AC所成角的余弦值为11111cos 42BA AC BA AC θ⋅===⋅,故选C .15.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,则PA 与BD 所成角的度数为A .30B .45︒C .60︒D .90︒【试题来源】浙江省衢州五校2020-2021学年高二上学期期中联考 【答案】C【解析】如图,以D 为坐标原点,DA 所在直线为x 轴,DC 所在线为y 轴,DP 所在线为z 轴,建立空间坐标系,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD AD =,令1PD AD ==,(1A ∴,0,0),(0P ,0,1),(1B ,1,0),(0D ,0,0)∴(1PA =,0,1)-,(1BD =-,1-,0),·1cos 22PA BD PA BDθ∴===-⨯,故两向量夹角的余弦值为12,即两直线PA 与BD 所成角的度数为60︒.故选C .16.在长方体1111ABCD A B C D -中,AB BC a ==,1AA =,则异面直线1AC 与1CD 所成角的余弦值为A .15BCD .2【试题来源】广东省广州市海珠区2019-2020学年高二上学期期末联考 【答案】C【解析】以D 为原点建立空间直角坐标系,如图所示,依题意()()()()11,0,0,0,,0,0,,A a C a C a D , 所以()()11,,3,0,AC a a a CD a =-=-,设异面直线1AC 与1CD 所成角为θ,则1111cos AC CD a AC CD θ⋅-===⋅.故选C. 17.在长方体1111ABCD A B C D -中,1ABAD ==,12AA =,设AC 交BD 于点O,则异面直线1A O 与1BD 所成角的余弦值为 A. BC .D 【试题来源】2021年高考数学(理)一轮复习单元滚动双测卷 【答案】D【解析】以D 为原点,DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,因为1AB AD ==,12AA =,所以()11,0,2A ,()1,1,0B ,11,,022O ⎛⎫ ⎪⎝⎭,()10,0,2D , 111,,222A O ⎛⎫=-- ⎪⎝⎭,()11,1,2BD =--,则11cos ,9A O BD ==.故选D .18.已知两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),则这两条异面直线所成的角θ满足 A .9sin 14θ=B .1sin 4θ= C .9cos 14θ=D .1cos 4θ=【试题来源】天津市第五十五中学2020-2021学年高二(上)第一次月考 【答案】C 【解析】两条异面直线的方向向量分别是(3u =,1,2)-,(3v =,2,1),∴·3312(2)19u v =⨯+⨯+-⨯=,231u =+=,232v =+=,又两条异面直线所成的角为(0,]2πθ∈,∴·9cos cos ,14·14u v v u vθ====⋅,sin 14θ=.故选C .19.如图所示,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,1AB BC AA ==,90ABC ∠=,点E 、F 分别是棱AB 、1BB 的中点,则直线EF 和1BC 所成的角为A .120°B .150°C .30°D .60°【试题来源】河北省承德第一中学2020-2021学年高二上学期第二次月考【答案】D【解析】以B 为原点.1,,BC BA BB 分别为..x y z 轴建立空间直角坐标系: 令12AB BC AA ===,则(0,0,0)B ,(0,1,0)E ,(0,0,1)F ,1(2,0,2)C , 所以(0,1,1)EF =-,1(2,0,2)BC =, 所以111cos ,||||EF BC EF BC EF BC ⋅<>=12==,所以直线EF 和1BC 所成的角为60.故选D .20.在正四棱锥P ABCD -中,2PA =,直线PA 与平面ABCD 所成的角为60,E 为PC 的中点,则异面直线PA 与BE 所成角为 A .90 B .60 C .45D .30【试题来源】山东省青岛市第十七中学2019-2020学年高一下学期期中考试 【答案】C【解析】连接AC BD ,交于点O ,连接OE OP ,.因为E 为PC 中点,所以OE PA ,所以OEB ∠即为异面直线PA 与BE 所成的角.因为四棱锥CD P -AB 为正四棱锥,所以PO ABCD ⊥平面,所以AO 为PA 在面ABCD 内的射影,所以PAO ∠即为PA 与面ABCD 所成的角,即60PAO ∠=︒,因为2PA =,所以11OA OB OE ===,.所以在直角三角形EOB 中45OEB ∠=︒,即面直线PA 与BE 所成的角为45,故选C .21.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为A .16+8πB .32+16πC .32+8πD .16+16π【试题来源】辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考 【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.22.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为A .3 BCD【试题来源】辽宁省辽河油田第二高级中学2020-2021学年高二10月月考【答案】C【解析】四面体A BCD -是由正方体的四个顶点构成的,如下图所示 建立如下图所示的空间直角坐标系,设正方体的棱长为2,(0,0,0),(2,0,0),(2,2,0),(1,1,1)B C D M ,(1,1,1),(0,2,0)BM CD ==,cos ,3||BM CD BM CD BM CD⋅〈〉===⋅0,2π⎛⎤ ⎥⎝⎦,所以异面直线BM 与CD C .23.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C 的中点,则异面直线MB 与1AA 所成角的余弦值为A .13 B.3 CD .12【试题来源】天津市第二十中2020-2021学年高二(上)期中 【答案】B【解析】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11A C ,∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,设11111222AA A B B C ===,则11,1,22M ⎛⎫⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=,设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅,∴异面直线MB 与1AA ,故选B .24.如图,四棱锥中,底面ABCD 是矩形,PA ⊥ 平面ABCD ,1AD =,AB =,PAB △是等腰三角形,点E 是棱PB 的中点,则异面直线EC与PD 所成角的余弦值是ABCD【试题来源】安徽省宿州市泗县第一中学2020-2021学年高二上学期第二次月考(理) 【答案】B【解析】因为底面ABCD 是矩形,且PA ⊥ 平面ABCD ,所以,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 分别为x ,y ,z 轴建立空间直角坐标系,因为1AD =,AB =,PAB △是等腰三角形, 所以()))()(0,0,0,,,0,1,0,A BCD P ,因为点E 是棱PB的中点,22E ⎛⎫⎪⎪⎝⎭ ,所以(22,1,,0,1,EC PD⎛⎫=-= ⎪⎝⎭, 所以11cos ,31PD EC PD ECPD EC⋅===⋅,所以异面直线EC 与PD .故选B. 25.在棱长为2的正方体1111—ABCD A BC D 中,O 是底面ABCD 的中点,E ,F 分别是1CC ,AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于A.7 BCD【试题来源】天津市静海区大邱庄中学2020-2021学年高二上学期第一次月考【答案】B【解析】建立空间直角坐标系如图所示:所以()()11,1,1,1,0,2F OE D =-=-,所以111cos ,53FD OE OE OE FDFD ⋅<>===,所以异面直线OE 和1FD ,故选B . 二、多选题1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是棱BC 的中点,点Q 是底面A 1B 1C 1D 1上的动点,且AP ⊥D 1Q ,则下列说法正确的有 A .DP 与D 1Q 所成角的最大值为4π B .四面体ABPQ 的体积不变C .△AA 1QD .平面D 1PQ 截正方体所得截面面积不变【试题来源】江苏省泰州市2020-2021学年高三上学期期中 【答案】BCD【解析】对于选项A ,由题意以A 1为坐标原点,A 1B 1、A 1A 、A 1D 1为x 、y 、z 轴建立空间直角坐标系,如图所示:则A 1(0,0,0),D (0,2,2),D 1(0,2,0),A (0,0,2),B (2,0,2),C (2,2,2),则P (2,1,2),设Q (x 0,y 0,0),则AP =(2,1,0),1D Q =(x 0,y 0-2,0),由AP ⊥1D Q ,可得10AP DQ ⋅=,即2x 0+y 0-2=0,对于选项A ,由DP =(2,-1,0),可得1cos DP DQ =,,45===,为定值,所以选项A 错误;对于选项B ,四面体ABPQ 的体积111122123323A BPQ Q ABP ABP V V S AA --∆==⨯⨯=⨯⨯⨯⨯=,为定值,即体积不变 ,所以选项B 正确;对于选项C ,因为AA 1⊥A 1Q ,且A 1Q=11111222AA QS AA AQ ∆=⨯⨯=⨯===,因为[]002x ∈,,所以15AA Q S ∆≥=,所以选项C 正确;对于选项D ,如图,因为点Q 满足2x 0+y 0-2=0,即点Q 在直线2x 0+y 0-2=0上运动,取A 1B 1的中点为E ,即点Q 在D 1E 上,因为点P 到D 1E 的距离为2,E (1,0,0),1D E =(1,-2,0),11D E =+=,11122PD EE SD ∴⨯⨯== 则平面D 1PQ 截正方体所得截面为1FED G ,其中12CG GD =,112BF FB =, 所以,1EFGD 且1EF GD =,又由P 为中点,,BF CG PB PC ==,90B C ∠=∠=︒,所以,PEF 和1PGD 全等,所以,PF PG =,由平行四边形的面积的性质,所以,截面面积为四边形1FED G ,该四边形的面积为2△D 1PE ,则截面面积为 2△D 1PE =115122222PD ESD E ⨯⨯⨯==,则截面面积为定值,所以选项D正确.故选BCD .2.如图,在边长为1的正方体ABCD -A B C D ''''中,M 为BC 边的中点,下列结论正确的有A .AM 与DB ''所成角的余弦值为10B .过三点A 、M 、D 的正方体ABCD -A BCD ''''的截面面积为4C .四面体A C ''BD 的内切球的表面积为3π D .正方体ABCD -A B C D ''''中,点P 在底面A B C D ''''(所在的平面)上运动并且使∠MA C '=∠P A C ',那么点P 的轨迹是椭圆【试题来源】湖北省武汉外国语学校2020-2021学年高二上学期期中 【答案】AC【解析】以A '为坐标原点,以A D '',A B '',A A '为坐标轴建立空间直角坐标系A xyz '-,则(0A ,0,1),1(2M ,1,1),(1D ',0,0),(0B ',1,0),∴1(2AM =,1,0),(1D B ''=-,1,0),cos AM ∴<,·10AM D B D B AM D B ''''>=='',AM ∴与D B ''所成角的余弦值为10,故A 正确; 取CC '的中点N ,则////MN BC AD '',故梯形MND A '为过A 、M 、D '的正方体的截面,2MN =,AD '=,AM D N ='=,∴梯形MND A '的高为=,∴梯形MND A '的面积为19)228⨯=,故B 错误; 四面体A C BD ''的体积为111414111323D A C D V V -'''-=-⨯⨯⨯⨯⨯=正方体,又四面体A C BD ''的所有棱长均为,∴四面体A C BD ''的表面积为244⨯⨯=A C BD ''的内切球半径为r ,则123⨯13r =,解得r =,∴四面体A C BD ''的内切球的表面积为243r ππ=,故C 正确;MAC PAC ∠'=∠',P ∴点在以AC '为轴,以AM 为母线的圆锥的侧面上, (1AC '=,1,1)-,1(2AM =,1,0),故·15cos AM AC MAC AM AC '∠'=='设AC '与平面A B C D ''''的夹角为α,则2cos cos 353A C AC A AC α''=∠''===>', MAC α∴<∠',P ∴点在平面A B C D ''''上的轨迹是双曲线,故D 错误.故选AC .3.如图,已知在棱长为1的正方体1111—ABCD A B C D 中,点E ,F ,H 分别是AB ,1DD ,1BC 的中点,下列结论中正确的是A .11//C D 平面CHDB .1AC ⊥平面1BDAC .三棱锥11—D BAC 的体积为56D .直线EF 与1BC 所成的角为30°【试题来源】2021年新高考数学一轮复习学与练 【答案】ABD【解析】如图1所示,由题意,11//C D CD ,11C D ⊂/平面CHD ,CD ⊂平面CHD ,所以11//D C 平面CHD ,所以A 正确;建立空间直角坐标系,如图2所示;由1AB =,则1(1AC =-,1,1),(1BD =-,1-,0),1(1DA =,0,1); 所以11100AC BD =-+=,111010AC DA =-++=,所以1AC BD ⊥,11AC DA ⊥,所以1AC ⊥平面1BDA ,所以B 正确;三棱锥11D BA C -的体积为1111114D BA C ABCD A B C D V V --=-三棱锥正方体11114111323=-⨯⨯⨯⨯⨯=, 所以C 错误;(1E ,12,0),(0F ,0,1)2,所以(1EF =-,12-,1)2,1(1BC =-,0,1),所以cos EF <,111110||||3EF BC BC EF BC ++>===⨯ 所以EF 与1BC 所成的角是30,所以D 正确.故选ABD .4.如图,在三棱柱111ABCA BC -中,底面ABC 是等边三角形,侧棱1AA ⊥底面ABC ,D 为AB 的中点,若2AB =,1AA =,则A .1CD A D ⊥B .异面直线1A D 与1AC所成角的余弦值为14C .异面直线1AD 与1ACD .//CD 平面11AB C【试题来源】2021年新高考数学一轮复习讲练测 【答案】AC【解析】A :因为侧棱1AA ⊥底面ABC ,所以1AA CD ⊥,因为ABC 是等边三角形,AD BD =,所以CD AB ⊥,因为1AB AA A =,所以CD ⊥平面1AA D ,则1CD A D ⊥,A 正确;以D为原点,如图建立空间直角坐标系,则(1A -,()1,0,0A -,(1C,(1B,所以(11,0,A D =,(11,AC=,所以111111cos ,7A D ACA D AC A D AC ⋅===,所以异面直线1A D 与1AC所成角的余弦值为14,B 不正确,C 正确; 因为(1AB =,(11,AC=,设平面11AB C 法向量为(),,n x y z =,则1120n AB xn AC x ⎧⋅=+=⎪⎨⋅=++=⎪⎩,即2x z y z ⎧=⎪⎪⎨⎪=-⎪⎩,取2z =,则()6,2n =-,因为()0,CD =,且60CD n ⋅=≠,所以若//CD 平面11AB C 不成立,D 不正确;故选AC .5.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【试题来源】山东省新泰市第一中学(新泰中学)2020-2021学年高二上学期第一次月考 【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.三、填空题1.已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,则异面直线1BC 与DC 所成角的余弦值为________.【试题来源】河北省尚义县第一中学2020-2021学年高二上学期期中【解析】因为四棱柱1111ABCD A B C D -使直四棱柱,A ∠为直角,//AB CD ,所以可以以D 为坐标原点,以DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()2,4,0B ,()0,1,0C ,()10,1,2C ,故()0,1,0DC =,()12,3,2BC =--,因为1DC =,212BC ==,所以1113cos ,17DC BC DC BC D BC C ⋅-===⋅故异面直线DC 与1BC 所成的角的余弦值为17,故答案为17. 2.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为________.【试题来源】天津市滨海新区塘沽一中2020-2021学年高二上学期期中【解析】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B 、()0,2,2E 、()1,1,0F ,()12,2,2A E =--,()11,1,4B F =---,111111cos ,2A E BF A E B F A E B F⋅<>===⋅,因此,直线1A E 与直线1B F . 3.如图所示的三棱锥P ABC -中,PA ⊥平面ABC ,D 是棱PB 的中点,若2PA BC ==,4AB =, CB AB ⊥,则PC 与AD 所成角的余弦值为________.【试题来源】2021年高考一轮数学单元复习一遍过(新高考地区专用) 【解析】因为PA ⊥平面ABC ,所以PA AB ⊥、PA BC⊥, 过点A 作//AE CB ,又CB AB ⊥,则AP 、AB 、AE 两两垂直,如图,以A 为坐标原点,直线AB 、AE 、AP 为x 轴、y 轴、z 轴建立空间直角坐标系,则()000A ,,、()002P ,,、(400)B ,,、(420)C -,,, 又D 为PB 中点,则(201)D ,,,故(422)PC =--,,,(201)AD =,,,所以cos 102PC AD PC AD PC AD⋅===⋅,,故答案为104.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1B B 与1C C 的中点,设DM 与1A N 所成的角为θ,则sin θ=________.【试题来源】北京市平谷区第五中学2020-2021学年高二上学期期中考试 【答案】19【分析】建立空间直角坐标系,利用公式11sin DM A N DM A Nθ⋅=⋅,进行求解即可【解析】如图,设正方体的边长为a ,以CD 为x 轴,CB 为y 轴,1CC 为z 轴,建立坐标系得,(,0,0)D a ,(0,,)2a M a ,1(,,)A a a a ,(0,0,)2a N ,所以,(,,)2a DM a a =-,1(,,)2a A N a a =--,所以,11sin 9a DM A N DM A N θ⋅==⋅19=,故答案为19. 5.已知点P 在正方体1111ABCD A B C D -的对角线1BD 上,H 在11B D 上,,,D P H 共线,60HDA ∠=︒,则DP 与1CC 所成角的大小为________.【试题来源】2021年新高考数学一轮复习考点扫描 【答案】45【分析】以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系,得出(,,1)DH m m =,()1001CC =,,,进而根据向量的乘积公式求解【解析】如图,以D 点为原点,以DA ,DC ,1DD 分别为x ,y ,z 轴建立空间直角坐标系:()()()1000100001D DA CC ==,,,,,,,,,连接11BD B D ,,在平面11BB D D 中,延长DP 交11B D 于点H ,设(,,1)DH m m =,(0)m >,DP 与1CC 所成角为θ 由已知60HDA ∠=︒,根据cos DA DH DA DH HDA ⋅=∠,可得221m m =+,解得21m DH⎛⎫== ⎪ ⎪⎝⎭,所以,1112cos 2C DH D C co C H DH s CC C θ⋅===⋅,, ∴45θ=︒,故答案为456.已知三棱柱111ABC A B C -的所有棱长均为2,侧棱1AA ⊥底面ABC ,若,E F 分别是线段1BB ,11A C 的中点,则异面直线AE 与CF 所成角的余弦值是________.【试题来源】【新东方】【2020】【高三上】【期中】【HD -LP359】【数学】 【答案】15【解析】建立如图所示空间直角坐标系:则())()()0,0,0,,0,2,0,0,1,2A EC F ,所以()()3,1,1,0,1,2AE CF ==-,所以1cos ,55AE CF AE CFAE CF⋅===⋅,故答案为15.7.在直三棱柱111ABC A B C -中,13,3,2AC BC AB AA ====,则异面直线1A C 与1BC 所成角的余弦值为________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阶段质量检测(一) 解三角形(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.在△ABC 中,已知BC =6,A =30°,B =120°,则△ABC 的面积等于( ) A .9 B .18 C .93 D .18 3解析:选C 在△ABC 中,由正弦定理,得AC sin B =BC sin A ,∴AC =BC ·sin B sin A =6×sin 120°sin 30°=6 3.又∵C =180°-120°-30°=30°, ∴S △ABC =12×63×6×12=9 3.2.在△ABC 中,B =45°,C =60°,c =1,则最短边长为( ) A.62 B.63 C.12 D.32解析:选B A =180°-(60°+45°)=75°, 故最短边为b ,由正弦定理可得b sin B =csin C, 即b =c sin B sin C =1×sin 45°sin 60°=63,故选B.3.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B = 3(1-cos B ),则sin A 的值为( ) A.24 B.34 C.64 D.32解析:选C 由sin B =3(1-cos B ),得sin ⎝⎛⎭⎫B +π3=32.又0<B <π,得B =π3,由2sin A =2sinπ3⇒sin A =64. 4.在△ABC 中,∠B =120°,AB =2,角A 的平分线AD =3,则AC = ( ) A .1 B .2 C. 6 D .22解析:选C 如图,在△ABD 中,由正弦定理,得AD sin ∠B =AB sin ∠ADB ,∴sin ∠ADB =22.由题意知0°<∠ADB <60°,∴∠ADB =45°,∴∠BAD =180°-45°-120°=15°. ∴∠BAC =30°,∠C =30°,BC =AB = 2.在△ABC 中,由正弦定理,得AC sin ∠B =BCsin ∠BAC ,∴AC =6,故选C.5.在△ABC 中,A >B ,则以下不等式正确的个数为( ) ①sin A >sin B ;②cos A <cos B ;③sin 2A >sin 2B ; ④cos 2A <cos 2B .A .0个B .1个C .2个D .3个解析:选D 由题意知,sin A >sin B ,cos A <cos B 均正确,由sin A >sin B >0可知sin 2A >sin 2B ,∴cos 2A <cos 2B .故正确个数为3个,∴选D.6.在△ABC 中,b =2,B =45°,若这样的三角形有两个,则边a 的取值范围为( ) A .a >2 B .2<a <3 C .2<a <2 3 D .2<a <2 2解析:选D 由题意得⎩⎪⎨⎪⎧b <a ,sin A =a sin Bb <1,⇒⎩⎪⎨⎪⎧a >2,22a 2<1,⇒2<a <22,故选D.7.在△ABC 中,已知sin 2A =sin 2B +sin 2C ,且sin A =2sin B cos C ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形解析:选D 由sin 2A =sin 2B +sin 2C 及正弦定理可知a 2=b 2+c 2⇒A 为直角; 而由sin A =2sin B cos C , 可得sin(B +C )=2sin B cos C , 整理得sin B cos C =cos B sin C , 即sin(B -C )=0,故B =C .综合上述,B =C =π4,A =π2.即△ABC 为等腰直角三角形.8.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=( ) A .4 B .1 C.12 D.13解析:选B 由正弦定理得sin A sin C =ac ,由余弦定理得cos A =b 2+c 2-a 22bc,∵a =4,b =5,c =6,∴sin 2A sin C =2sin A cos A sin C =2·sin A sin C ·cos A =2×a c ×b 2+c 2-a 22bc =2×46×52+62-422×5×6=1,故选B.9.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10 000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标C 的距离为( )A .5 000米B .5 000 2 米C .4 000米D .4 000 2 米解析:选B 如图,在△ABC 中,AB =10 000米,A =30°,C =75°-30°=45°.根据正弦定理,BC =AB ·sin Asin C =10 000×1222=5 0002(米).10.在△ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足b cos C =(3a -c )cos B .若b =42,则ac 的值为( )A .9B .10C .11D .12解析:选D 由正弦定理及已知b cos C =(3a -c )cos B ,得sin B cos C =(3sin A -sin C )cos B ,化简得sin B ·cos C +sin C cos B =3sin A cos B , 即sin(B +C )=3sin A ·cos B ,即sin A =3sin A cos B ,得cos B =13.由11.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知c =1,C =π3.若sin C +sin(A -B )=3sin 2B ,则△ABC 的面积为( )A.1534B.154C.2134或36D.3328或36解析:选D 由题意,得sin(A +B )+sin(A -B )=2sin A ·cos B =6sin B cos B ,∴cos B =0或sin A =3sin B ,∴B =π2或a =3b .若B =π2,则A =π6,S =12c ·c tan A =36;若a =3b ,由余弦定理,得a 2+b 2-ab =1,得b 2=17,∴S =12ab sin C =3328.12.在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足a cos B =b (1+cos A ),S △ABC =2,则(c +a -b )(c +b -a )的取值范围是( )A .(0,8)B .(0,82)C .(8,82+8)D .(82-8,8)解析:选D 根据正弦定理,a cos B =b (1+cos A )可化为sin A cos B =sin B (1+cos A ),即sin(A -B )=sin B .由于△ABC 为锐角三角形,故A -B =B ,即A =2B ,所以A +B =3B ∈⎝⎛⎭⎫π2,3π4,C ∈⎝⎛⎭⎫π4,π2,所以tan C =2tanC21-tan2C 2>1,解得-1+2<tan C2<1.由S △ABC = 12ab sin C =2,得ab sin C =4.由余弦定理,得(c +a -b )·(c +b -a )=(c +a -b )[c -(a -b )]=c 2-(a -b )2=c 2-a 2-b 2+2ab =2ab -2ab cos C =2ab (1-cos C )=8sin C(1-cos C )= 8tan C2∈(82-8,8).二、填空题(本大题共4小题,每小题5分,共20分)13.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .A =60°,c ∶b =8∶5,△ABC 的面积为403,则△ABC 外接圆的半径为________.解析:∵S △ABC =12bc ·sin A =403,∴bc =160.∵c ∶b =8∶5,∴c =16,b =10.由余弦定理,得a 2=b 2+c 2-2bc ·cos A =196,∴a =14.设△ABC 外接圆的半径为R ,由正弦定理,得2R =a sin A =1432,∴R =1433.答案:143314.已知△ABC 的面积S =3,A =π3,则AB ―→·AC ―→ =________.解析:S △ABC =12·|AB |·|AC |·sin A ,即3=12·|AB |·|AC |·32,所以|AB |·|AC |=4,=4×12=2.答案:215.在△ABC 中,a =14,A =60°,b ∶c =8∶5,则该三角形的面积为________. 解析:设这两边长分别为8x 和5x , 则cos 60°=64x 2+25x 2-14280x 2,解得x =2, 则b =16,c =10,∴S △ABC =12bc sin A =12×16×10sin 60°=40 3.答案:40 316.等腰三角形的底边长为a ,腰长为2a ,则腰上的中线长等于________. 解析:如图,AB =AC =2a ,BC =a ,设BC 中点为D ,连接AD ,则AD ⊥BC . 在Rt △ABD 中,cos B =BD BA =12a 2a =14.设AB 中点为点E ,连接CE , 则在△BEC 中,BE =BC =a ,由余弦定理CE 2=CB 2+BE 2-2CB ·BE ·cos B =a 2+a 2-2a 2·14=2a 2-12a 2=32a 2,∴CE =62a . 答案:62a 三、解答题(共70分)17.(本小题10分)在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-23x +2=0的两个根,且2cos(A +B )=1.求:(1)角C 的大小; (2)AB 的长度.解:(1)在△ABC 中,cos C =cos[π-(A +B )] =-cos(A +B )=-12,又0°<C <180°,∴C =120°. (2)由题设,得⎩⎪⎨⎪⎧a +b =23,ab =2,∴由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C =a 2+b 2-2ab cos 120°=a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10.18.(本小题12分)如图,在平行四边形ABCD 中,AB =x ,BC =1,对角线AC 与BD 的夹角∠BOC =45°,记直线AB 与CD 的距离为h (x ).请求出h (x )的表达式,并写出x 的取值范围.解:在△BOC 中,由余弦定理,得 BC 2=OB 2+OC 2-2OB ·OC cos ∠BOC ,所以OB 2+OC 2-2OB ·OC =1.①在△ABO 中,由余弦定理,得BA 2=OB 2+OA 2-2OB ·OA cos ∠BOA ,所以OB 2+OA 2+2OB ·OA =x 2.②又OC =OA ,从而由②-①,得OB ·OA =x 2-122,所以S △OBA =12OB ·OA sin 135°=24OB ·OA =x 2-18.又S △OBA =12AB ×12h (x ),所以h (x )=x 2-12x .易知0<h (x )≤1,所以可解得1<x ≤2+1.综上所述,所求h (x )=x 2-12x,x 的取值范围为(1,2+1].19.(本小题12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a bc +c ab -bac =1a cos C +c cos A.(1)求角B ;(2)若△ABC 的面积为332,其外接圆半径为3,且c >a ,求c .解:(1)在△ABC 中,由余弦定理,得a 2+c 2-b 2ac=2cos B ,∴a bc +c ab -b ac =a 2abc +c 2abc -b 2abc =a 2+c 2-b 2abc =2cos B b. ∴2cos B b =1a cos C +c cos A.由正弦定理,得2cos B sin B =1sin A cos C +sin C cos A =1sin (A +C ).又∵A +C =π-B ,∴2cos B sin B =sin B . 又∵sin B ≠0,∴cos B =12.∵B ∈(0,π),∴B =π3.(2)由题意,得b sin B =23,∴b =3.由△ABC 的面积为332,得12ac sin B =34ac =332,∴ac =6.由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2+c 2-6=9,∴a 2+c 2=15.解⎩⎪⎨⎪⎧ a 2+c 2=15,ac =6,得⎩⎪⎨⎪⎧ a =23,c =3或⎩⎪⎨⎪⎧a =3,c =2 3.又∵c >a ,∴a =3,c =2 3. 20.(本小题12分)在△ABC 中,已知(1)求证:tan B =3tan A; (2)若cos C =55,求A 的值. 解:(1)证明:∵∴AB ·AC ·cos A =3BA ·BC ·cos B , 即AC cos A =3BC cos B . 由正弦定理,得AC sin B =BC sin A ,∴sin B cos A =3sin A cos B .又∵0<A +B <π,∴cos A >0,cos B >0, ∴sin B cos B =3×sin A cos A , 即tan B =3tan A . (2)∵cos C =55,0<C <π, ∴sin C =1-⎝⎛⎭⎫552=255, ∴tan C =2.即tan []π-(A +B )=2, 即tan(A +B )=-2, ∴tan A +tan B1-tan A tan B =-2.由(1)得4tan A1-3tan 2A=-2,解得tan A =1或tan A =-13,∵tan A >0, ∴tan A =1, ∴A =π4.21.(本小题12分)某工程队在某海域进行填海造地工程,欲在边长为1千米的正三角形岛礁ABC 的外围选择一点D (D 在平面ABC 内),建设一条军用飞机跑道AD .在点D 测得B ,C 两点的视角∠BDC =60°,如图所示,记∠CBD =θ,如何设计θ,使得飞机跑道AD 最长?解:在△BCD 中,BC =1,∠BDC =60°,∠CBD =θ. 由正弦定理得BC sin 60°=BDsin (120°-θ),∴BD =sin (120°-θ)sin 60°=cos θ+33sin θ.在△ABD 中,AB =1,∠ABD =60°+θ.由余弦定理,得AD 2=AB 2+BD 2-2AB ·BD ·cos(60°+θ)=12+⎝⎛⎭⎫cos θ+33sin θ2-2×1×cos θ+33sin θ×⎝⎛⎭⎫12cos θ-32sin θ=1+43sin 2 θ+433sin θcos θ=53+43sin(2θ-30°).∴当2θ-30°=90°,θ=60°时,跑道AD 最长.22.(本小题12分)如图,角A 为钝角,且sin A =35,点P 、Q 分别是在角A 的两边上不同于点A 的动点.(1)若AP =5,PQ =35,求AQ 的长;(2)设∠APQ =α,∠AQP =β,且cos α=1213,求sin(2α+β)的值.解:(1)∵A 是钝角,sin A =35,∴cos A =-45.在△APQ 中,由余弦定理得PQ 2=AP 2+AQ 2-2AP ·AQ cos A ,即AQ 2+8AQ -20=0,解得AQ =2或-10(舍去),∴AQ =2. (2)由cos α=1213,得sin α=513.在△APQ 中,α+β+A =π,又sin(α+β)=sin(π-A )=sin A =35,cos (α+β)=-cos A =45,∴sin(2α+β)=sin[a +(α+β)]=sin αcos(α+β)+cos αsin(α+β)=513×45+1213×35=5665.。

相关文档
最新文档