企业管理统计学--回归分析
统计学第9章 相关分析和回归分析
回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
统计学第七章 相关与回归分析
(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
管理统计学习题参考答案第十一章
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
统计学 第 七 章 相关与回归分析
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。
《统计学》-第七章-相关与回归分析
第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。
2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。
3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。
4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。
5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。
6、相关关系按方向不同,可分为 和 。
7、完全线性相关的相关系数r 值等于 。
8、计算回归方程要注意资料中因变量是 的,自变量是 的。
9、回归方程只能用于由 推算 。
(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。
统计学,回归分析
9) 回归分析的条件
• • • • 线性 独立 正态 等方差
• 10) 相关与回归的注意事项
1.相关与回归的关系
• 二者反映的是一个问题的两个角度 相关:关联程度 回归:数量关系
本实例回归方程的评价
• 回归模型的方差分析: F=67.923 P=0.000
• 回归系数的t检验: tb=8.2416 , P=0.000
• R2=0.8291
7) 直线回归图
• 若两变量间存在直线关系,在散点图上绘 上回归直线,形成直线回归图.
直线回归图的CHISS实现
1、进入数据模块 点击 数据→文件→打开数据库表 打开文件名为:b12-1.DBF →确认 2、进入图形模块 进行绘图 点击 图形→统计图→曲线拟合 →确认 横轴:X脂肪 纵轴:Y热量
回归直线与散点图的关系
•
b>0
b<0
b=0
•
b=0
b=0
b=0
4 ) 回归方程的检验
• 回归方程的抽样误差:
• 回归方程来自样本,存在抽样误差
回归方程的假设检验步骤:
• 1 建立假设:
H0:回归方程无统计学意义 H1:回归方程有统计学意义 α =0.05
2 变异的分解: 方差分析思想
yi- y = (yi - y^) + (y^ - y)
上机练习
• <<医学统计与CHISS应用>> • P145 例12-1---例12.4
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
统计学第7章 相关与回归分析 (2)
20 50 20 30 50 20 50 40 20 80 40 20 50 80 30 单位成本(元/小时) 16 16 18 16 15 18 15 14 16 14 15 16 14 15 15
完成量(小时)
整理后有
20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位成本(元/小时) 15 16 16 16 16 18 18 18 18 15 15 15 16 16 14
rXY
样本相关系数
通过X和Y的样本观测值去估计样本相关系 数变量X和Y的样本相关系数通常用 r 表示
r
rXY
( x x )( y y ) (x x) ( y y)
2
2
特点:样本相关系数是根据从总体中抽取的随机样 本的观测值计算出来的,是对总体相关系数 的估计,它是个随机变量。
例:为了研究分析某种劳务产品完成量与其单位 产品成本之间的关系,调查30个同类服务公司得到的 原始数据如表。 相关表:将自变量x的数值按照从小到大的顺序,并 配合因变量y的数值一一对应而平行排列的表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
根据相关关系的方向划分
1、正相关。指两个因素(或变量)之间的变化方向 一致,都是呈增长或下降的趋势。即自变量x的值 增加(或减少),因变量y的值也相应地增加(或 减少),这样的关系就是正相关。例如,工业总 产值增加,企业税利总额也随之增加;家庭消费 支出随收入增加而增加等。 2、负相关。指两个因素或变量之间变化方向相反, 即自变量的数值增大(或减小),因变量随之减 小(或增大)。 如劳动生产率提高,产品成本降 低;产品成本降低,企业利润增加等。
管理统计学习题参考答案第十一章
一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
薪酬数据回归分析
薪酬数据回归分析回归分析是一种统计学方法,用于研究两个或者多个变量之间的关系。
在薪酬管理领域,回归分析可用于研究薪酬和其他因素之间的关系,从而匡助企业制定合理的薪酬策略和决策。
本文将详细介绍薪酬数据回归分析的标准格式及其应用。
一、引言薪酬是企业管理中的重要组成部份,直接关系到员工的工作动力和绩效。
回归分析可以匡助企业了解薪酬与其他因素之间的关系,从而提供决策支持和指导。
二、研究目的本次研究的目的是分析薪酬与员工绩效、工作经验、教育背景等因素之间的关系,以了解这些因素对薪酬的影响程度,从而为企业制定合理的薪酬策略提供参考。
三、研究方法1. 数据采集通过企业内部的薪酬管理系统,采集包括薪酬、员工绩效、工作经验、教育背景等变量的数据。
确保数据的准确性和完整性。
2. 数据预处理对采集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等。
确保数据的可靠性和一致性。
3. 变量选择根据研究目的和相关理论,选择与薪酬相关的变量作为自变量,如员工绩效、工作经验、教育背景等。
将薪酬作为因变量。
4. 回归模型建立基于采集到的数据,建立回归模型。
常用的回归模型包括线性回归、多元回归等。
选择适当的回归模型,进行模型拟合。
5. 模型评估通过评估回归模型的拟合优度、参数估计的显著性等指标,评估模型的准确性和可靠性。
6. 结果解释根据回归模型的系数和显著性水平,解释各个自变量对薪酬的影响程度。
提出合理的解释和建议。
四、结果分析根据回归分析的结果,得出以下结论:1. 员工绩效对薪酬的影响显著。
高绩效的员工往往能够获得更高的薪酬,这与激励理论相一致。
2. 工作经验对薪酬的影响也显著。
具有较长工作经验的员工通常能够获得更高的薪酬,这与经验工资理论相一致。
3. 教育背景对薪酬的影响程度较小。
虽然教育背景可能对薪酬有一定影响,但在本次研究中,其影响程度不如绩效和工作经验显著。
五、结论与建议基于薪酬数据回归分析的结果,提出以下结论和建议:1. 企业应重视员工绩效的评估和激励,建立合理的绩效考核体系,将高绩效与高薪酬相挂钩,以激发员工的工作动力。
企业管理统计学--回归分析
路漫漫其悠远
•2020/4/4
•管理统计学讲义 游士兵
(4)相关系数的应用举例
某企业资料如下:
月份 产量 生产费用 X2
Y2
(千吨)x (万元)y
1 1.2
62
1.44 3844
路漫漫其悠远
•2020/4/4
•管理统计学讲义 游士兵
xy
74.4 172.0 575.0 248.0 418.0 1280.0 805.2 972.0 4544.6
路漫漫其悠远
•2020/4/4
•管理统计学讲义 游士兵
二、回归模型及应用
(一)一元线性回归模型的性质 一元线性回归模型是用于分析一个自
变量(X)与一个因变量(Y)之间线性 关系的数学方程。其一般形式为:
Yc=a+bx 式中:X是自变量, Yc是因变量Y的估计 值,又称理论值。
路漫漫其悠远
•2020/4/4
•管理统计学讲义 游士兵
几点说明:
• a和b通常称为回归模型的参数。 a是回归直线 的截距,即X=0时Yc的起始值; b是回归直线的 斜率,又称回归系数,表示自变量每增加或减 少一个单位时, Yc的平均增减量。
• 回归直线表明的是两个变量之间的平均变动关 系。
• 回归分析的主要目的是建立回归模型,借以给 定X值来估计Y值。模型是否合适?估计的误差 怎样?怎样进行判断和检验?都从回归模型的 特点出发。
路漫漫其悠远
•2020/4/4
•管理统计学讲• 确定一元回归模型的关键是计算参数a和 b
1 1.2
统计学案例——相关回归分析
《统计学》案例——相关回归分析案例一质量控制中的简单线性回归分析1、问题的提出某石油炼厂的催化装置通过高温及催化剂对原料的作用进行反应,生成各种产品,其中液化气用途广泛、易于储存运输,所以,提高液化气收率,降低不凝气体产量,成为提高经济效益的关键问题。
通过因果分析图和排列图的观察,发现回流温度是影响液化气收率的主要原因,因此,只有确定二者之间的相关关系,寻找适当的回流温度,才能达到提高液化气收率的目的。
经认真分析仔细研究,确定了在保持原有轻油收率的前提下,液化气收率比去年同期增长1个百分点的目标,即达到12.24%的液化气收率。
2、数据的收集序号回流温度(℃)液化气收率(%)序号回流温度(℃)液化气收率(%)1 2 3 4 5 6 7 8 9 10 11 12 13 14 1536 39 43 43 39 38 43 44 37 40 34 39 40 41 4413.1 12.8 11.3 11.4 12.3 12.5 11.1 10.8 13.1 11.9 13.6 12.2 12.2 11.8 11.116 17 18 19 20 21 22 23 24 25 26 27 28 29 3042 43 46 44 42 41 45 40 46 47 45 38 39 44 4512.3 11.9 10.9 10.4 11.5 12.5 11.1 11.1 11.1 10.8 10.5 12.1 12.5 11.5 10.9目标值确定之后,我们收集了某年某季度的回流温度和液化气收率的30组数据(如上表),进行简单直线回归分析。
3.方法的确立设线性回归模型为εββ++=x y 10,估计回归方程为x b b y10ˆ+= 将数据输入计算机,输出散点图可见,液化气收率y 具有随着回流温度x 的提高而降低的趋势。
因此,建立描述y 和x 之间关系的模型时,首选直线型是合理的。
从线性回归的计算结果,可以知道回归系数的最小二乘估计值b 0=21.263和b 1=-0.229,于是最小二乘直线为x y229.0263.21ˆ-= 这就表明,回流温度每增加1℃,估计液化气收率将减少0.229%。
统计学回归分析公式整理
统计学回归分析公式整理回归分析是一种常用的统计学方法,用于探究变量之间的关系和预测未来的结果。
在回归分析中,我们通常会使用一些公式来计算相关的统计量和参数估计。
本文将对统计学回归分析常用的公式进行整理和介绍。
一、简单线性回归简单线性回归是最基本的回归分析方法,用于研究两个变量之间的线性关系。
其回归方程可以表示为:Y = β0 + β1X + ε其中,Y代表因变量,X代表自变量,β0和β1分别是回归方程的截距和斜率,ε表示随机误差。
常用的统计学公式如下:1.1 残差的计算公式残差是观测值与回归直线之间的差异,可以通过以下公式计算:残差 = Y - (β0 + β1X)1.2 回归系数的估计公式回归系数可以通过最小二乘法估计得到,具体的公式如下:β1 = Σ((Xi - X均值)(Yi - Y均值)) / Σ((Xi - X均值)^2)β0 = Y均值 - β1 * X均值其中,Σ表示求和运算,Xi和Yi分别表示第i个观测值的自变量和因变量,X均值和Y均值表示自变量和因变量的平均数。
1.3 相关系数的计算公式相关系数用于衡量两个变量之间的线性关系的强度和方向,可以通过以下公式计算:相关系数= Σ((Xi - X均值)(Yi - Y均值)) / (n * σX * σY)其中,n表示样本量,σX和σY分别表示自变量和因变量的标准差。
二、多元线性回归多元线性回归是扩展了简单线性回归的一种方法,可以用于研究多个自变量和一个因变量之间的关系。
2.1 多元线性回归模型多元线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y代表因变量,X1 ~ Xk代表自变量,β0 ~ βk分别是回归方程的截距和各个自变量的系数,ε表示随机误差。
2.2 多元回归系数的估计公式多元回归系数可以通过最小二乘法估计得到,具体的公式如下:β = (X'X)^(-1)X'Y其中,β表示回归系数向量,X表示自变量的设计矩阵,Y表示因变量的观测向量,^(-1)表示矩阵的逆运算。
统计学基础-第八章-相关与回归分析
统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。
明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。
相关关系、相关分析和回归分析的概念2。
相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。
回归系数的计算4。
估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。
这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。
有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。
这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。
当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。
一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。
在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点1。
现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。
例如,把身高作为自变量,则体重就是因变量.2。
现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。
统计学第7章相关与回归分析PPT课件
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。
统计学中的回归分析
回归分析是统计学中一种重要的方法,用于研究自变量与因变量之间的关系。
通过回归分析,可以对自变量的变化如何影响因变量进行量化和预测。
本文将介绍回归分析的概念、应用领域以及常见的回归模型。
回归分析是在观察数据基础上进行的一种统计推断方法,它关注变量之间的因果关系。
通过回归分析,可以确定自变量对因变量的影响程度和方向。
回归分析最常见的形式是简单线性回归,即只有一个自变量和一个因变量的情况。
例如,我们想研究体育成绩与学习时间之间的关系,可以将学习时间作为自变量,成绩作为因变量,通过建立线性模型来预测学习时间对成绩的影响。
回归分析在各个领域都有广泛的应用。
在经济学中,回归分析可以用来研究价格和需求、收入和消费之间的关系。
在社会学中,可以用回归分析来研究教育水平与收入的关系、人口数量与犯罪率之间的关系等。
在医学研究中,回归分析可以用来探讨生活习惯和患病风险的关系。
无论是对个体还是对群体进行研究,回归分析都可以提供有力的工具和方法。
常见的回归模型包括线性回归、多元回归和逻辑回归等。
线性回归适用于自变量与因变量之间呈线性关系的情况。
多元回归则用于处理多个自变量和一个因变量之间的关系。
逻辑回归是一种分类方法,用于预测离散变量的取值。
这些回归模型都有各自的假设和拟合方法,研究人员需要根据具体情况选择适合的模型。
在进行回归分析时,还需要注意一些问题。
首先,要注意解释回归系数的意义。
回归系数表示因变量单位变化时自变量的变化量,可以用来解释自变量对因变量的影响方向和程度。
其次,要注意模型拟合度的评估。
常见的评估指标包括决定系数(R^2)、调整决定系数和均方根误差(RMSE)等。
这些指标可以评估模型对实际数据的拟合程度。
最后,要注意回归分析的前提条件。
回归分析假设自变量与因变量之间存在线性关系,并且误差项服从正态分布,因此需要验证这些前提条件是否成立。
综上所述,回归分析是统计学中一种常用的分析方法,可以用来研究自变量对因变量的影响关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.44
6 8.0 160
64.00
7 6.1 132
37.21
8 7.2 135
51.84
合计 36.4 880 207.54
Y2
3844 7396 13225 6400 12100 25600 17424 18225 104214
xy
74.4 172.0 575.0 248.0 418.0 1280.0 805.2 972.0 4544.6
Yc= a+b1x1+b2x2+-----+bnxn 对于有两个自变量的二元线性回归模型 ,有:Yc= a+b1x1+b2x2 ❖ 数,式其中均:有a为一截定距的,统b计1和含b义2称为偏回归系
❖ 多元回归模型的确定仍然按照最小平方 法的原理得到求a和b1、 b2的标准方程组 :
∑Y=na+b1∑X1+b2∑X2 ∑X1Y=a∑X1+b1∑X12+b2∑X1X2 ∑X2Y=a∑X2+b1∑X1X2+b2∑X22 ❖ 计算说明
C、相关分析的目的是研究变量之间的 相关方向、程度以及相关的表现形式是什么;而回归 分析的目的是拟合变量之间的表现形式,(回归方程 ),并据此进行回归预测。
联系:
A、相关分析是回归分析的基础和前提; (通过相关分析的结论,才能引入
回归分析)
B、回归分析是相关分析的深入和继续。 (通过回归分析的继续,最终达到
二、回归模型及应用
(一)一元线性回归模型的性质 一元线性回归模型是用于分析一个
自变量(X)与一个因变量(Y)之间线 性关系的数学方程。其一般形式为:
Yc=a+bx 式中:X是自变量, Yc是因变量Y的 估计值,又称理论值。
几点说明:
❖ a和b通常称为回归模型的参数。 a是回归直线 的截距,即X=0时Yc的起始值; b是回归直线 的斜率,又称回归系数,表示自变量每增加或 减少一个单位时, Yc的平均增减量。
14.44 12100
6 8.0 160
64.00 25600
7 6.1 132
37.21 17424
8 7.2 135
51.84 18225
合计 36.4 880 207.54 104214
xy
74.4 172.0 575.0 248.0 418.0 1280.0 805.2 972.0 4544.6
企业管理统计学--回归分析
第六章 回归分析
一、基本问题
1、相关分析 (1)什么是相关关系? 相关关系是指现象之间客观存
在的非确定性的数量对应关系。
(2)相关关系的种类
❖ 按相关关系涉及变量的多少,分: 单相关(又称一元相关) 复相关(又称多元相关)
❖ 按相关的表现形式,分: 线性相关 曲线相关
❖ 按相关的方向,分: 正相关 负相关
相关关系的方向和程度的统计分析指标 。
种类:简单相关系数 偏相关系数 复相关系数
本章着重介绍简单相关系数,如果 不作说明,相关系数往往指简单相关系 数。
2、相关系数的主要内容
(1)相关系数公式来源介绍
(2)相关系数的简捷计算公式:
(3)相关系数的应用说明
❖ 相关系数是一个相对数,是一个抽象化的统计指标;
❖ 回归直线表明的是两个变量之间的平均变动关 系。
❖ 回归分析的主要目的是建立回归模型,借以给 定X值来估计Y值。模型是否合适?估计的误差 怎样?怎样进行判断和检验?都从回归模型的 特点出发。
(二)一元回归模型的确定
❖ 确定一元回归模型的关键是计算参数a和 b
❖ 而求参数a和b的最佳方法是最小平方法 ❖ 最小平方法的基本思想
∑(Y-Yc )=0 ∑(Y-Yc)2=最小 ❖ 最小平方法的标准方程式
∑Y=na+b ∑x ∑xy=a∑x+b∑x2
应用举例:
❖ 某企业资料如下:
月份 产量 生产费用 X2
(千吨)x (万元)y
1 1.2
62
1.44
2 2.0
86
4.00
3 5.0 115
25.00
4 3.1
80
关系数为正,表示X与Y为正线性相关;相关系数为 负,表示X与Y为负相关;
❖ 相关系数的取值范围为:-1到1之间。
❖ 相关系数的绝对值的大小反映线性相关程度的高低,
越接近1,表示线性相关程度越高,越接近0,表示线 性相关程度越低。
一般来说:r的绝对值在0.3以下,为零相关
为低度相关
在0.3到0.6,
❖ 按相关的程度,分: 零相关 低度相关 中度相关 显著相关 高度相关 完全相关
2、回归分析
(1)“回归”的词源
(2)相关分析与回归分析的区别和联系
区别:A、相关关系所研究的变量是对等关系,而回 归分析所研究的变量不是对等关系,分为自变量和因 变量;
B、相关分析对资料的要求是两个变量都必须 是随机变量,而回归分析中自变量是可以控制的变量 (给定的变量),因变量是随机变量。
(四)可化为线性回归的曲线回归模型
❖ 在实际问题中,有时因变量和自变量之 间的关系并非是线性形式,而是某种曲 线,这时,就需要拟合适当类型的曲线 模型,统计学上称为曲线回归模型。
❖ 统计学上通常采用变量代换法将曲线形 式转换成线性形式来处理,使线性回归 分析的方法也能适用于非线性回归问题 的研究。
对相关变量之间有关预测,并为管理决 策服务)
2、本章主要内容
(1)相关系数 (2)回归模型
一元线性回归模型 多元线性回归模型 可化为线性回归的曲线回归模型介绍 (3)回归模型的检验 回归系数的显著性检验 回归方程的显著性检验 (4)回归模型的应用
二、相关系数
1、相关系数的概念和种类 概念:相关系数是反映客观现象之间
为显著相关
在0.6到0.9,
为高度相关
在0.9以上,
(4)相关系数的应用举例
某企业资料如下:
月份 产量 生产费用 X2
Y2
(千吨)x (万元)y
1 1.2
62
1.44 3844
2 2.0
86
4.00 7396
3 5.0 115
25.00 13225
4 3.1
80
9.61 6400
5 3.8 110
解:根据上述标准方程有:
880=8a+b36.4
4544.6=a36.4+b207.54
解方程组,得到:
a=51.323
b=12.896
则,产量和生产费用的回归直线方程 为:
Yc =51.323+12.896X
(三)多元线性回归模型
❖ 多元线性回归模型是用于分析两个以上 自变量与一个因变量之间线性关系的数 学方程。其一般形式为: