第二章 连杆机构

合集下载

第二章曲柄连杆机构09

第二章曲柄连杆机构09

0
不同形式的载荷,为了保证工作
可行减少磨损,在结构上要采取
相应的措施。
第二节 机体组(气缸体曲轴箱组)
机体组:包括机体、气缸盖、缸垫、气缸盖罩、主轴承盖、 以及油底壳。
机体组是发动机的 支架,是曲柄连杆 机构、配气机构和 发动机各系统主要 零部件的装配基体。 气缸盖用来封闭气 缸顶部,并与活塞 顶和气缸壁一起形 成燃烧室。 另外,气缸盖和机 体内的水套和油道 以及油底壳又分别 是冷却系和润滑系 的组成部分。
往复惯性力与离心力作用的后果:加剧发动机的振动(上下振动,水平振动), 增加发动机曲柄连杆机构的各部件及所有轴颈、轴承的磨损。
3、摩擦力:存在于作相对运动而又相互接触的零件表面之间。如气缸壁与
活塞间等。
*上述各力作用于曲柄连杆机构
及机体的各有关零件上,使它们 受到压缩、拉伸、弯曲、扭转等
加0

减 vmax
3、多缸发动机的气缸排列形式: 直列式:发动机的各气缸成一字型排列。 双列式:V型 Φ<180° ; P型 Φ=180°。
结构简单、加工容 易,但发动机长度 和高度较大。
缩短了机体的长度 和高度,增加了宽 度,减轻了发动机 的重量;形状复杂, 加工困难。
高度小,总体 布置方便。多 用于赛车。
对置气缸式发动机
状 5)篷形燃烧室,是近年来在高性能多气门轿车发动机上广
泛应用的燃烧室。
柴油机的分隔式燃烧室有两种类型: 1)涡流室燃烧室,其主、副燃烧室之间的连接通道与副燃烧室切向
连接,在压缩行程中,空气从主燃烧室经连接通道进入副燃烧室, 在其中形成强烈的有组织的压缩涡流,因此称副燃烧室为涡流室。
2)预燃室燃烧室,其主、副燃烧室之间的连接通道不与副燃烧室切向 连接,且截面积较小。在压缩行程中,空气在副燃烧室内形成强 烈的无组织的紊流。燃油迎着气流方向喷射,并在副燃烧室顶部 预先发火燃烧,故称副燃烧室为预燃室。

机械原理第二章连杆机构(杨家军版)

机械原理第二章连杆机构(杨家军版)

3、平面连杆机构的应用
机械手
汽车中那些部位用到连杆机构
起重装置
§3-2 平面四杆机构的基本类型及应用
一、平面四杆机构的基本形式 1. 构件及运动副名称 构件名称:
连架杆——与机架连接的构件 曲柄——作整周回转的连架杆 摇杆——作来回摆动的连架杆 连杆——未与机架连接的构件 机架——固定不动的构件
α1 180° +θ t1 V2 ω = α = = = 180° -θ V1 2 t2 ω
连杆机构输出件具有急回特性的条件: 1)原动件等角速整周转动; 2)输出件具有正、反行程的往复运动; 3)极位夹角θ >0。
分析: 180° +θ K= 180° -θ
K≥1,K=1时无急回特性
设计具有急回特性的机构时,一般先根据使用要求给 定K值,则有 (K-1) θ=180° (K+1) θ= 0 θ≠0 θ↑,K↑,急回运动越明显,一般取K<2
●导杆机构(曲柄为主动件) ●导杆机构(摇杆为主动件)
α B2 ≡0°
3 2 1 3 A B VB2 D 4 FB2 1 2 FB3 B D VB2 FB2 FB1
机构压力角:在不计摩擦力、惯性力和重力的条件下, 机构中驱使输出件运动的力的方向线与输出件上受 力点的速度方向间所夹的锐角,称为机构压力角, 通常用α 表示。P50
传动角:压力角的余角。 通常用γ 表示.
F2 C
B
A
δ
D
γ F α
F1
vc
机构的传动角和压力角作出如下规定: γ min≥[γ ];[γ ]= 3060°; α max≤[α ]。 [γ ]、[α ]分别为许用传动角和许用压力角。
C
(2) 推广到导杆机构 结论:有急回特性,且极位夹角等于摆杆摆角,即

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

《汽车构造》第二章曲柄连杆机构

《汽车构造》第二章曲柄连杆机构

3)按排列形式分
直列式(<6缸),V型>8缸),水平对置式 优缺点: 优缺点: 直列式:结构简单、长度、 高度较大(垂直、倾斜、 水平)。 V型:刚度大、缩短发动 机的长度、高度、质量。 水平对置式:高度最小、 使轿车和大客车总布置更 方便。
(c)水平对置式 水平对置式
(a)直列式 直列式
(b)V型 型
2.活塞的变形与防治措施 2.活塞的变形与防治措施
活 塞 受 力 情 况
采用的措施: 采用的措施:
(1)冷态下,将活塞裙部加工成断面为长轴垂直于活塞销的 椭圆。
采用的措施: 采用的措施:
(2)上小下大的阶梯形、近似圆锥形、阶梯型或 桶形(任何情况下都能得到良好润滑,但加工困难)。
采用的措施: 采用的措施:
扭曲环
锥面环
梯形环
桶面环
气环的泵油作用
活塞 汽 汽 活塞


2.油环 2.油环 种类 普通油环
上刮片
组合油环
示 意 图
刮片
油环的刮油作用
2.2.3 活塞销
作用: 作用:连接活塞和连杆小头,并把活塞承受 的气体压力传递给连杆。 材料与工艺: 材料与工艺:优质低碳钢,表面淬火、精磨。
1.活塞销的形状 1.活塞销的形状
1.连杆的结构 1.连杆的结构
连杆主要由连杆 小头、连杆杆身、连 杆螺栓、连杆大头、 连杆轴瓦和连杆盖等 组成
2.1 机体组
机体是构成发动机的骨架,是 发动机各机构和各系统的安装基础, 其内、外安装着发动机的所有主要 零件和附件,承受各种载荷。因此, 机体必须要有足够的强度和刚度。 机体组由汽缸体、曲轴箱、 汽缸盖、汽缸垫和油底壳等固定机 件组成。
图2-1 机体组的组成部件 1—汽缸盖; 2—汽缸体; 3—汽缸垫; 4—汽缸体—曲轴箱; 5—油底壳

第2章平面连杆机构

第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)

机械设计基础(专科)第2章平面连杆机构

机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3

2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

第二章 平面连杆机构及其设计

第二章  平面连杆机构及其设计

搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。

第二章 连杆机构(第二版)

第二章 连杆机构(第二版)

2.2 平面连杆机构的基本结构与分类
一、平面四杆机构的基本结构
由N个构件组成的平面连杆机构称为平面N杆机构。
例如,平面四杆机构、平面六杆机构等等。 平面多杆机构:四杆以上的平面连杆机构。
基本术语:
连架杆:用低副与机架相联接的构件。 曲柄:相对机架作整周回转的连架杆。
连杆
摇杆:相对于机架不能作整周回转的连架杆。
在生产实际中,驱动机械的原动机(电动机、内燃机)一般都是作整 周转动的,要求机构的主动件也能作整周转动,即主动件为曲柄,需要 研究曲柄存在的条件。
影响平面铰链四杆机构中曲柄的因素: 1)构成四杆运动链的各构件长度; 2)运动链中选取的机架与其它构件的相对位置。
铰链四杆机构具有整转副存在的条件
铰链四杆机构具有整转副条件:
3)连杆机构的构件可以做得较长,故可实现较大空间范围的运 动,容易实现力和运动的远距离传递。
4)连杆曲线形状丰富,可以满足多种轨迹要求。
例如:转动、摆动、移动等复杂轨迹运动以及间歇运动等。 搅拌机, 起重机,送进机构
连杆机构缺点:
1)惯性力不易平衡,动载荷大,不适合于高速工作的场合。 2)一般只能近似实现给定运动规律
最长杆 b c C 最短杆
AD70mm
C
整转副 b B a
A
B
a d 曲柄摇杆机构 整转副
c
D
d
D
A
当10AD30和70AD110时,由于不满足杆长条件,机 构无整转副,为双摇杆机构。
三、平面四杆机构的演化
在工程实际中,还常常采用多种不同外形、构造和特性 的四杆机构。这些四杆机构都可以看作是由铰链四杆机构通 过各种方法演化而来,掌握这些演化方法,有利于连杆机构 创新设计。 改变构件形状和运动尺寸的演化方法 变换构件形态方法 改变运动副尺寸的演化方法 选用不同构件为机架的演化方法 低副运动可逆性:以低副相连接的两构件之间的相对运动 关系,不会因取其中哪一个构件为机架而改变的性质。

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)

第2章平面连杆机构教案(精选5篇)第一篇:第2章平面连杆机构教案第2章平面连杆机构平面连杆机构——由若干个构件通过平面低副(转动副和移动副)联接而构成的平面机构,也叫平面低副机构平面连杆机构具有承载能力大、结构简单、制造方便等优点,用它可以实现多种运动规律和运动轨迹,但只能近似地实现所要求的运动。

最简单的平面连杆机构由四个构件组成,简称平面四杆机构。

是组成多杆机构的基础只介绍四杆机构§2-1 平面四杆机构的基本类型及其应用一,铰链四杆机构铰链四杆机构——全部由回转副组成的平面四杆机构,它是平面四杆机构最基本的形态。

如图2-1a所示,铰链四杆机构由机架4、连架杆(与机架相连的 1、3两杆)和连杆(与机架不相联的中间杆2)组成。

如图所示曲柄——能绕机架上的转动副作整周回转的连架杆。

摇杆——只能在某一角度范围(小于360°)内摆动的连架杆。

铰链四杆机构按照连架杆是曲柄还是摇杆分为曲柄摇杆机构、双曲柄机构、双摇杆机构三种基本型式。

1、曲柄摇杆机构曲柄摇杆机构——两连架杆中一个是曲柄,一个是摇杆的铰链四杆机构。

当曲柄为原动件时,可将曲柄的连续转动,转变为摇杆的往复摆动。

应用:雷达调整机构2、双曲柄机构两连架杆均为曲柄的铰链四杆机构称为双曲柄机构。

当原动曲柄连续转动时,从动曲柄也作连续转动如图所示在双曲柄机构中,若其相对两杆相互平行如右图所示,则成为或平行四边形机构(平行双曲柄机构)。

如图所示当平行四边形机构的四个铰链中心处于同一条直线上时,将出现运动不确定状态,一般采用相同机构错位排列的方法,来消除这种运动不确定状态。

如图所示应用:在机车车轮联动机构中,则是利用第三个平行曲柄来消除平行四边形机构在这种死点位置的运动不确定性。

3、双摇杆机构两连架杆均为摇杆的铰链四杆机构称为双摇杆机构应用:飞机起落架通过用移动副取代转动副、变更杆件长度、变更机架和扩大转动副等途径,可以得到铰链四杆机构的其他演化型式二,含一个移动副的四杆机构 1,曲柄滑块机构通过将摇杆改变为滑块,摇杆长度增至无穷大,可得到曲柄滑块机构,如图所示对心曲柄滑块机构与偏置曲柄滑块机构曲柄滑块机构应用于活塞式内燃机2、导杆机构在图所示曲柄滑块机构中,若改取杆1为固定构件,即得导杆机构。

第二章曲柄连杆机构3

第二章曲柄连杆机构3

第二章 曲柄连杆机构
干摩擦式扭转减振器 1-惯性盘 2-弹簧 3-曲轴 4-平衡重 5-摩擦片 6-带轮
第二章 曲柄连杆机构
第二章 曲柄连杆机构
四、飞轮
飞轮为一外缘有齿圈的铸铁圆盘。 (一) 作用:
1、贮存能量:在作功行程贮存能量,用以完成其它三个行 程,使发动机运转平稳。
第二章 曲柄连杆机构
2)直列四冲程六缸发动机
曲拐对称布置于三个 平面内。 相邻作功气缸的曲拐 夹角为7200/6=1200。 发动机工作顺序有: 1—5—3—6—2—4 ; 1—4—2—6—3—5
第二章 曲柄连杆机构
第二章 曲柄连杆机构 直列六缸工作循环表(点火顺序:1-5-3-6-2-4
第二章 曲柄连杆机构
常用的防漏装置有挡油盘、填料油封、自紧油封、 回油螺纹等。
第二章 曲柄连杆机构
第二章 曲柄连杆机构
(5)曲轴油道 1-主轴颈;2-曲轴;3-连杆轴颈;4-圆角;5-积污腔;6-油管; 7-开口销;8-螺塞;9-油道;10-挡油盘;11-回油螺纹
第二章 曲柄连杆机构
(6)曲轴的轴向定位
为阻止车辆行驶时,离合器经常 结合与分离和带锥齿轮驱动时施加于曲 轴上的轴向力以及在上、下坡行驶或突 然加速、减速出现的曲轴轴向窜动,曲 轴必须有轴向定位,以保证曲柄连杆机 构的正常工作。但也应允许曲轴受热后 能自由膨胀,所以曲轴轴向上只能有一 处设置定位装置。
柴油机一般多 采用此种支撑 方式
缩短了曲轴的长度, 主轴承载荷较
使发动机总体长度 大 非全支承曲轴 有所减小
承受载荷较小 的汽油机可以 采用此种方式
第二章 曲柄连杆机构
第二章 曲柄连杆机构
(四)结构:
连杆轴颈

连杆机构总复习题及解答

连杆机构总复习题及解答

第二章 连杆机构一. 考点提要1. 构件间只用低副连接的机构(除纯用移动副连接的楔块机构以外)称为连杆机构。

2 连杆机构的优点和缺点低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。

因此,平面连杆机构在各种机械和仪器中获得广泛应用。

连杆机构的缺点是:低副中存在间隙,数目较多的低副会引起运动累积误差;而且它的设计比较复杂,不易精确地实现复杂地运动 3.连杆机构的类型和演化最简单的平面连杆机构是由四个构件组成的,称为平面四杆机构。

它的应用非常广泛,而且是组成多杆机构的基础。

由此可通过、扩大转动副半径、变更机架、变更杆件尺寸转动副演化为移动副等方法可演化出其他低副机构。

4.曲柄存在条件(1)曲柄摇杆机构的曲柄存在条件 首先,最短杆与最长杆的长度之和必须小于或等于其他两杆长度之和。

否则就一定是双摇杆机构,即不存在曲柄。

在此条件满足的前提下,是否有曲柄就看以哪一个构件为机架,以最短杆为机架是双曲柄机构,以最短杆的饿邻杆为机架是曲柄摇杆机构,以最短杆的对杆为机架是双摇杆。

如图3.1(a )所示,一曲柄摇杆机构的曲柄长度a ,连杆长度b ,摇杆长度c ,机架长度d ,则曲柄AB 要能到达与机架共线的两个位置,即11C AB 和22C AB 要存在,根据三角形中两条边长度之和一定大于第三条边的性质解得曲柄存在条件是:b a ; c a ;d a 即曲柄是最短杆。

如果以BC 为机架,以AD 为连杆也可以得到同样的结论。

事实上,铰链四杆机构中只有最短杆和邻杆的两个转动副有可能是整转副。

(2)曲柄滑块机构的曲柄存在条件曲柄滑块机构的曲柄存在条件如图3.1(b)是:e a b如果连杆长度小于曲柄长度与偏距之和则杆AB 无法到达图中B 在A 点正上方的位置。

图3.1 曲柄存在条件(1) (3)导杆机构的曲柄存在条件导杆机构的曲柄存在条件是:e d a 和 e d a 。

机械原理 第2章-连杆机构

机械原理 第2章-连杆机构

图2-8a
图2-8b
内燃机内的核心构件活塞、连杆、曲轴和缸套就 是曲柄滑块机构。其活塞就是滑块,缸体就相当 于上图的机架,它的制造要求十分精密。
22
2、导杆机构
图2-9(a)就是和图2-8一样的曲柄滑块机构。但如果改AB杆(1杆)为 机架,就变为图(b)所示的导杆机构。在图(b)中,杆4称为导杆,滑 块3相对导杆滑动并一起绕 A点转动,通常把杆2作为原动件。在图(b) 中,由于L1<L 2,两连架杆2 和4 均可相对于机架 1整周回转,称为曲柄转 动导杆机构或转动导杆机构。 但图(b)中如果L1>L2,则图(b)就变成为图2-10了,此时连架杆4 就只能往复摆动,称为曲柄摆动导杆机构或摆动导杆机构。摆动导杆机 构在牛头刨床中应用较多,其简图见右下图。
〖1〗最短杆的对边作为机架,两连架杆就是二个摇杆。 〖2〗这时最短杆与最长杆长度之和不论小于或大于其余两杆长度之和都只 能得到双摇杆机构,且有,如果最短杆和最长杆长度之和大于其余两杆长 度之和,无论哪个构件作机架都只能得到双摇杆机构。
18
(3)双摇杆机构的应用
双摇杆机构有广泛的应用。如下面二图中都是由摇杆机构组成,它们 都是把最短边BC的对边AD作机架。请注意它们的运动轨迹,对左图鹤式 起动机,它能使E点沿水平线EE’移动,这对吊放物体很有利;而对于右 图飞机起落架,放下时ABC成一线,保证了稳定,收起时轮胎成水平,节 约了空间。这些设计十分巧妙,这是我们要学习的。
图2-2e
图2-2e1
图2-2e2 机车车轮联动机构
16
(3)双曲柄机构的应用 双曲柄机构也有一定的应用,如下面惯性筛就是一种, 但用的最多是平行四边形机构,所以又叫平行双曲柄机构。 下面的摄影平台升降机构,就是利用了平行四边形机构运 动中,构件始终保持水平的特点,使人站在上面不觉得倾 斜。

机械设计基础第2章平面连杆机构比赛

机械设计基础第2章平面连杆机构比赛

参赛机构应符合规定的尺寸和材料要求,
并能够完成指定的任务。
3
安全要求
比赛期间,参赛机构和参赛队员应遵守 安全规定,确保比赛过程安全。
参赛队伍的组成
团队人数
每个参赛队伍由3-5名队员组成。
角色分工
队员可以担任不同的角色,包括设计师、制造工程师和测试员等。
团队合作
参赛队伍需要紧密合作,共同解决设计和制造过程中的挑战。
评分标准和奖项设置
评分标准
评分考虑机构设计、性能、创新 性以及制造质量等因素。
奖项设置
荣誉和认可
比赛设有冠军、亚军和季军奖项, 并颁发优秀设计奖和创新奖等。
获奖者将受到学校和行业的认可, 并获得参赛经验和荣誉。
比赛流程和时间安排
1
报名阶段
参赛队伍需要在指定时间内完成报名,并提交机构设计方案。
2
设计和制造阶段
1 促进学习
通过比赛,学生可以深入了解平面连杆机构的原理和应用,提高机械设计的能力。
2 激发创新
比赛鼓励参赛者设计和构建创新的平面连杆机构,推动技术的进步。
3 培养团队合作
参赛队伍需要合作,共同解决问题,培养团队协作和沟通能力。比赛规则和要求 Nhomakorabea1
参赛资格
比赛面向机械设计相关专业的学生,并
机构要求
2
需报名参赛。
机械设计基础第2章平面 连杆机构比赛
本章介绍平面连杆机构比赛的相关内容,包括定义、分类、目的、规则和要 求、参赛队伍的组成、评分标准和奖项设置以及比赛流程和时间安排。
平面连杆机构的定义
什么是平面连杆机 构?
平面连杆机构由一组连接在 一起的刚性杆件组成,用于 转换运动和传递力和能量。

汽车发动机之——第二章 机体组及曲柄连杆机构

汽车发动机之——第二章 机体组及曲柄连杆机构

2.3 活塞连杆组
气环断面形状:
形状
特点
矩形环 结构简单、制造方便、易于生产、应 用面广
扭曲环
断面不对称,受力不平衡,使活塞环 扭曲
锥面环
减少了环与气缸壁的接触面,提高了 表面接触压力,有利于磨合和密封。
梯形环 加工困难,精度要求高
示意图
桶面环 外圆为凸圆弧形
2.3 活塞连杆组
(2)油环:刮除飞溅到汽缸壁上的多余的机油,并在汽缸壁
2.3 活塞连杆组
隔断由活塞顶传向第一 道活塞环的热流。
2.3 活塞连杆组
增加环 槽的耐 磨性。
增加活塞的 强度,提高 第一道环槽 的耐磨性。
2.3 活塞连杆组
(3)活塞裙部 位置:从油环槽下端面起至活塞最下端的部分,包括
销座孔。 作用:对活塞在汽缸内的往复运动起导向作用,并承
受侧向力,防止破坏油 膜。
2.2 机体组
• 在风冷汽缸的外壁铸制散热片,以增加散热面积, 增强散热能力。
2.2 机体组
• 二、汽缸盖 功用:密封汽缸的上部,与活塞、汽缸等共同构成燃
烧室。 材料:灰铸铁或合金铸铁,铝合金。 工作条件:由于接触温度很高的燃汽,所以承受的热
负荷很大。
2.2 机体组
2.2 机体组
• 水冷发动机的汽缸盖有整体式、分块式和单体
活塞顶与高温燃汽直接接触,使活塞顶的温度很高。 活塞在侧压力的作用下沿汽缸壁面高速滑动,由于润 滑条件差,因此摩擦损失大,磨损严重。 •2 • 广泛采用铝合金,只在极少数汽车发动机上采用铸铁 或耐热钢。
2.3 活塞连杆组
•3
顶部:构成燃烧室, 承受气体压力。
头部:安装活塞环, 制作 较厚。
裙部:导向,传力。 承受侧压力销座孔 处制有加强筋。

第二章平面连杆机构

第二章平面连杆机构

§2-1 平面四杆机构的基本类型
a曲柄摇杆机构 b双曲柄机构
c曲柄摇杆机构 d双摇杆机构
曲柄摇杆机构 平面四杆机构基本型式: 双曲柄机构
双摇杆机构
§2-1 平面四杆机构的基本类型
(一)曲柄摇杆机构(a、c图) 两连架杆中,一个为曲柄,而另一个为摇杆。
曲柄摇杆机构
例:牛头刨床横向进给机构1
§2-1 平面四杆机构的基本类型
回转式油泵
曲柄滑块泵
简易冲床
双滑块机构
摆动式油缸
刨床机构
§2-1 平面四杆机构的基本类型
一、铰链四杆机构基本类型
连接两连 架杆的杆
与机架相 连的杆
固定不动 的杆
曲柄—能绕机架整周回转的连架杆;
摇杆—只能在一定角度范围内绕机架摆动的连架杆;
周转副(整转副)—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。
搅拌器1
剖光机
刮雨器
C 2 3 B1 4 D A
缝纫机脚踏板机构1
飞剪
雷达调整机构
§2-1 平面四杆机构的基本类型
(二)双曲柄机构(b图)
两连架杆均为曲柄。
双曲柄机构
平行双曲柄机构
反平行四边形机构
§2-1 平面四杆机构的基本类型
例:旋转式水泵
机车驱动联动机构1 3
公共汽车车门启闭机构
惯性筛
§2-1 平面四杆机构的基本类型
四、死点
C1 F A C2 D
F B1 γ=0
B2
γ=0
曲柄摇杆机构中,以摇杆为原动件,摇杆处在 两极限位置时(当曲柄与连杆共线时),γ=0,这 时通过连杆传给从动件曲柄的力恰好通过其回转中 心,使机构出现“顶死”现象。该位置称死点位置。

第二章 曲柄连杆机构动力学分析

第二章 曲柄连杆机构动力学分析

α =180º 时活塞的加速度已不是最大负向加速度 amin R 2 (1 ) (极大值)
可以看出,对于中低速柴油机其连杆较长,λ 小于1/4,活塞加速 度在360º 范围内只有两个极值;对于高速内燃机,λ 一般大于1/4, 活塞加速度在360º 范围内有四个极值 实际发动机的活塞最大加速度: 汽油机amax=(500-1500)g 柴油机amax=(200-800)g
Le 2 1 2
在曲柄连杆机构运动学计算中,通常将活塞的位移、速度和加速度 分别除以R、Rω 、Rω 2,无量纲化,写成 无量纲位移(活塞位移系数): x 1 x 1 cos 1 1 2 sin 2 R (精确式)


x 1 cos
1 sin 1 2 2 L cos 1 sin 2 (近似式)
2 2Leabharlann L cos(精确式)
在α =0º 或180º 时达到极值: Le 连杆摆动角加速度ε L: sin 2 2 L 1 3/ 2 2 2 1 sin
cos vmax
L
1
L R 1 2 1 R R 1 2 cos
2 2
由近似式可得出活塞平均速度
cm
1



0
Sn R (sin sin 2 )d R 2 30

2
活塞的最大速度和平均速度之比是反映活塞运动交变程度的一个 指标:
v max R 1 2 2 1 2 cm 2 R
mr R e
2 i
Pj m j a m j R 2 cos m j R 2 cos2 PjI PjII
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 连杆机构2.1 平面连杆机构的类型1、连杆机构的应用内燃机、鹤式吊、火车轮、急回冲床、牛头刨床、翻箱机、机械手爪、椭圆仪、开窗、车门、折叠伞、床、牙膏筒拔管机、自行车等。

特征:至少有一作平面运动的构件,称为连杆。

2、连杆机构的分类⎩⎨⎧空间连杆机构平面连杆机构分类常以构件数命名:如四杆机构、多杆机构。

2.1.1 平面连杆机构的基本型式1、平面四杆机构的基本型式基本型式:如图2—1所示铰链四杆机构为平面四杆机构的基本型式,其它四杆机构都是由它演变得到的。

常用名词:曲柄—作整周定轴回转的构件; 连杆—作平面运动的构件; 摇杆—作定轴摆动的构件; 连架杆—与机架相联的构件;周转副—能作360°相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。

三种基本型式:曲柄摇杆机构、双曲柄机构、双摇杆机构。

1)曲柄摇杆机构特征:曲柄+摇杆。

作用:将曲柄的整周回转转变为摇杆的往复摆动。

如图2—2所示雷达天线。

2)双曲柄机构特征:两个曲柄。

作用:将等速回转转变为等速或变速回转。

如图2—3所示惯性筛等。

图2—2图2—4 图2—3特例:平行四边形机构,如图2—4所示。

特征:两连架杆等长且平行,连杆作平动图2—1实例:火车轮、摄影平台(图2—5)、播种机料斗机构(图2—6)、天平(图2—7)、香皂成型机等。

图2—5 图2—6 图2—7为避免在共线位置出现运动不确定,采用如图2—8所示两组机构错开排列。

或采用反平行四边形机构如图2—9所示车门开闭机构图2—8图2—93)双摇杆机构特征:两个摇杆。

应用举例:如图2—10所示铸造翻箱机构、图2—11所示风扇摇头机构等。

特例:如图2—12所示等腰梯形机构-汽车转向机构图2—10 图2—11图2—122.1.2 平面连杆机构的演化1)改变构件的形状和运动尺寸,如图2—13所示。

图2—13曲柄摇杆机构当一个连架杆杆长变为无穷大时,就演化为曲柄滑块机构;若滑块导路通过曲柄回转中心则为对心曲柄滑块机构,若不过则为偏心曲柄滑块机构;进一步改变构件的形状和运动尺寸还可得到双滑块机构正弦机构如图2—14所示。

图2—142)改变运动副的尺寸图2—15曲柄滑块机构当曲柄与连杆间的转动副尺寸扩大到超过曲柄中心时,可得如图2—15所示偏心轮机构。

3)选不同的构件为机架曲柄滑块机构当以曲柄为机架时,可得如图2—16所示导杆机构(若导杆不能整周转动则为摆动导杆,若能够整周转动则为转动导杆),应用实例如图2—17所示小型刨床或图2—18所示牛头刨床。

曲柄滑块机构若选连杆为机架则可得如图2—19所示摇块机构,应用实例如图2—20所示自卸卡车举升机构。

曲柄滑块机构若选滑块为机架则可得如图2—21所示直动滑杆机构,应用实例如图2—21所示手摇唧筒。

这种通过选择不同构件作为机架以获得不同机构的方法称为:机构的倒置;如图2—22所示选择双滑块机构中的不同构件作为机架可得不同的机构。

图2—20图2—214)运动副元素的逆换将低副两运动副元素的包容关系进行逆换,不影响两构件之间的相对运动。

例如如图2—23所示导杆机构若将构件2和3的包容关系进行逆换则可得摇块机构,但各构件间的相对运动关系不变。

图2—16图2—17图2—18 图6—19图2—23 图2—222.2 平面连杆机机构的工作特性2.2.1 运动特性1、平面四杆机构有曲柄的条件如图2—24所示,设a<d,连架杆若能整周回转,必有两次与机架共线,则由△B’C’D 可得:a+d ≤b+c 则由△B”C”D 可得:b ≤(d-a)+c 即: a+b ≤d+c c ≤(d-a)+b 即: a+c ≤d+b 将以上三式两两相加得:a ≤b, a ≤c, a ≤d可见AB 杆为最短杆。

若设a>d ,同理有:d ≤a ,d ≤b ,d ≤c AD 杆为最短杆。

由上可得曲柄存在的条件为:1)最长杆与最短杆的长度之和应≤其他两杆长度之和称为杆长条件。

2)连架杆或机架之一为最短杆。

此时,铰链A 为周转副。

若取BC 为机架,则结论相同,可知铰链B 也是周转副。

由此可知:当满足杆长条件时,其最短杆参与构成的转动副都是周转副。

图2—26当满足杆长条件时,说明存在周转副,当选择不同的构件作为机架时,可得不同的机构。

如图2—25所示:曲柄摇杆、双曲柄、双摇杆机构。

图2—24图2—252、急回运动和行程速比系数在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于两个极限位置,简称极位,如图2—26所示。

此两处曲柄之间的夹角θ称为极位夹角。

当曲柄以ω逆时针转过180°+θ时,摇杆从C 1D 位置摆到C 2D 。

所花时间为t 1 ,平均速度为V 1,那么有:ωθ)180(1+=οt θω+==ο180212111c c c c ⌒⌒t V当曲柄以ω继续转过180°-θ时,摇杆从C 2D ,置摆到C 1D ,所花时间为t 2 ,平均速度为V 2 ,那么有:ωθ)180(2-=οt θω-==ο180212122c c c c ⌒⌒t V因曲柄转角不同,故摇杆来回摆动的时间不一样,平均速度也不等。

并且:t 1 >t 2 V 2 > V 1摇杆的这种特性称为急回运动。

用以下比值表示急回程度:θθ-+====οο1801802112122112t t t c c t c c V V K ⌒⌒称K 为行程速比系数。

只要θ≠0,就有K>1,且θ越大,K 值越大,急回性质越明显。

由:θθ-+=οο180180K ,可得:11180+-=K K οθ如图2—27所示的偏置曲柄滑块机构和图2—28所示的导杆机构由于存在急回特性,故可用在空行程节省运动时间中,例如牛头刨、往复式输送机等。

图2—27图2—283、运动的连续性机构具有运动的连续性:当主动件连续运动时,从动件也能连续地占据预定的各个位置。

在铰链四杆机构中,若机构的可行域被非可行域分隔成不连续的几个域,而从动件各给定位置又不在同一个可行域内,则机构的运动必然是不连续的。

2.2.2 传力特性1、四杆机构的压力角与传动角如图2—29所示四杆机构。

其切向分力:P t= Pcosα= Psinγ;法向分力:P n= Pcosγ;γ↑→P t↑,对传动有利。

因此可用γ的大小来表示机构传动力性能,称γ为传动角。

为了保证机构良好的传力性能,设计时要求:γmin≥50°。

γmin出现的位置:当∠BCD≤90°时,γ=∠BCD当∠BCD>90°时,γ=180°-∠BCD当∠BCD最小或最大时,都有可能出现γmin,此位置一定是主动件与机架共线两处之一,如图2—30所示。

图2—29图2—30 图2—31由余弦定律有:∠B1C1D=arccos[b2+c2-(d-a)2]/2bc若∠B1C1D≤90°,则γ1=∠B1C1D∠B2C2D=arccos[b2+c2-(d+a)2]/2bc若∠B2C2D>90°,则γ2=180°-∠B2C2Dγmin=[∠B1C1D, 180°-∠B2C2D]min机构的传动角一般在运动链最终一个从动件上度量,如图2—31所示。

2、四杆机构的死点摇杆为主动件,且连杆与曲柄两次共线时,有:γ=0。

此时机构不能运动。

称此位置为“死点”,如图2—图2—3232所示。

死点的避免与应用:(1)两组机构错开排列,如火车轮机构如图2—33所示;(2)靠飞轮的惯性,如内然机、缝纫机(图2—34)等。

(3)也可以利用死点进行工作,如起落架(图2—35)、钻夹具(图2—36)等。

图2—333、机械增益输出力矩M out(或力F out)与输入力矩M in(或力F in)之比值。

2.3 平面连杆机构的特点及功能2.3.1 平面连杆机构的特点①采用低副。

面接触、承载大、便于润滑、不易磨损、形状简单、易加工。

②改变杆的相对长度,从动件运动规律不同。

③连杆曲线丰富。

可满足不同要求。

④构件呈“杆”状、传递路线长。

⑤构件和运动副多,累积误差大、运动精度低、效率低。

⑥产生动载荷(惯性力),不适合高速。

⑦难以实现精确的轨迹。

2.3.2 平面连杆机构的功能a.实现有轨迹、位置或运动规律要求的运动b.实现从动件运动形式及运动特性的改变c. 实现较远距离的传动d.调节、扩大从动件行程e. 获得较大的机械增益2.4 平面连杆机构的运动分析机构运动分析—不考虑引起构件变形的外力、运动副中的间隙等因素,仅从几何角度研究已知原动件的运动规律,求解其它构件的运动。

如点的轨迹、构件位置、速度和加速度等。

设计任何新的机械,都必须进行运动分析工作。

以确定机械是否满足工作要求。

机构运动分析的方法:图解法—简单直观、精度低、求系列位置时繁琐解析法—正好与以上相反实验法—试凑法,配合连杆曲线图册,用于解决实现预定轨迹问题机构运动分析常用的图解法有:速度瞬心法和矢量方程图解法。

瞬心法尤其适合于简单机构的速度分析。

2.4.1 瞬心法及其应用1、速度瞬心作平面运动的两构件,在任一瞬时都可以认为它们是绕着某一点作相对转动,该点称为瞬时速度中心,简称瞬心。

瞬心是两构件上的等速重合点,如图2—34所示。

相对瞬心-重合点绝对速度不为零。

Vp2=Vp1≠0绝对瞬心-重合点绝对速度为零。

Vp2=Vp1=0特点:①该点涉及两个构件;②绝对速度相同,相对速度为零;③相对回转中心。

图3—32、瞬心数目若机构中有N个构件,则∵每两个构件有一个瞬心∴根据排列组合,瞬心数为:K=N(N-1)/2(个)构件数 4 5 6 8瞬心数 6 10 15 283、机构瞬心位置的确定1)、直接观察法(两构件以运动副相联)。

适用于求通过运动副直接相联的两构件瞬心位置,如图2—35所示。

其中,构件i、j的瞬心表示为P ij。

图2—352)、三心定律(两构件间没有构成运动副)三个彼此作平面运动的构件共有三个瞬心,且它们位于同一条直线上。

三心定律特别适用于两构件不直接相联的场合。

瞬心多边形(圆):即以构件为多边形的各个顶点,以已知瞬心为顶点间连线(用直接观察法求),作完所有已知顶点间连线后用三心定理求其它未知瞬心,这时三心定理演变成为一个个三角形,只要找到两个有公共未知边的三角形(其它边均已知),即可用两次三心定理画出两条线,其交点即为所求瞬心,具体用法见下例。

举例:求图2—36中曲柄滑块机构的速度瞬心解:瞬心数为:K=N(N-1)/2=61.作瞬心多边形(圆)2.直接观察求瞬心(以运动副相联)3.三心定律求瞬心(构件间没有构成运动副)图2—36举例:求图2—37中六杆机构的速度瞬心。

解:瞬心数为:K=N(N-1)/2=151.作瞬心多边形圆2.直接观察求瞬心3.三心定律求瞬心图2—374、速度瞬心在机构速度分析中的应用1).求线速度如图2—38所示,已知凸轮转速ω1,求推杆的速度解:①直接观察求瞬心P13、P23②根据三心定律和公法线n-n求瞬心的位置P12③求瞬心P12的速度V2=V P12=μl(P13P12)·ω1长度P13P12直接从图上量取。

相关文档
最新文档