2020届高三第一次模拟考试卷理科数学(一)解析版

合集下载

2020年深圳市高三一模理科数学试卷(含答案及解析)

2020年深圳市高三一模理科数学试卷(含答案及解析)

2020年广东深圳高三一模理科数学试卷一、选择题(本大题共12题,每小题5分,共计60分。

)1. A.B.C.D.已知集合,,则( ).2. A.B.C.D.设,则的虚部为( ).3. A.B.C.D.某工厂生产的个零件编号为,,,,,现利用如下随机数表从中抽取个进行检测.若从表中第行第列的数字开始,从左往右依次读取数字,则抽取的第个零件编号为( ).4. A.B.C.D.记为等差数列的前项和,若,,则为( ).5. A.B.C. D.若双曲线的一条渐近线经过点,则该双曲线的离心率为().6. A.B.C.D.已知,则( ).7.A.B.C.D.的展开式中的系数为( ).8. A.B.C. D.函数的图像大致为( ).9. A. B. C. D.如图,网格纸上小正方形的边长为,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( ).10.A.B.C.D.已知动点在以,,为焦点的椭圆 ,动点在以为圆心,半径长为的圆上,则的最大值为( ).11.A.B.C.D.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点,分别是的外心、垂心,且为中点,则( ).12.A.B. C. D.已知定义在上的函数的最大值为,则正实数的取值个数最多为( ).二、填空题(本大题共4题,每小题5分,共计20分。

)13.若,满足约束条件,则的最小值为 .14.设数列的前项和为,若,则 .15.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由,,,,中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是的概率为 .16.已知点和点,若线段上的任意一点都满足:经过点的所有直线中恰好有两条直线与曲线:相切,则的最大值为 .三、解答题(本大题共5题,每小题12分,共计60分。

2020年陕西省高考数学一模试卷(理科)(有解析)

2020年陕西省高考数学一模试卷(理科)(有解析)

2020年陕西省高考数学一模试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1.设(1−i)x=1+yi,其中x,y是实数,则x+yi在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.设集合A={x|x+1≤3},B={x|4−x2≤0},则A∩B=()A. (−∞,−2]B. (−∞,−4]C. [−2,2]D. (−∞,−2]∪{2}3.函数f(x)=|x|+1是()A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数4.等差数列{a n}中,已知a7=9,S5=5,则S8的值是()A. 23B. 30C. 32D. 345.执行如图所示的程序框图,则当输入的x分别为3和6时,输出的值的和为()A. 45B. 35C. 147D. 756.为了解城市居民的健康状况,某调查机构从一社区的120名年轻人,80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=()A. 26B. 24C. 20D. 137.设a=log0.60.5,b=log2(log38),则()A. a<1<bB. a<b<1C. b<1<aD. 1<b<a8.(x2−3x+2)5的展开式中含x3的项的系数为()A. −1560B. −600C. 600D. 15609.已知抛物线C:y2=4x的焦点为F,过点F的直线l交抛物线于M,N两点,且|MF|=2|NF|,则直线l的斜率为()A. ±√2B. ±2√2C. ±√22D. ±√2410.若函数f(x)=3sin(2x+φ)(0<φ<π)的图象向右平移π3个单位后关于y轴对称,则f(x)的单调增区间为()A. B.C. D.11.如图所示为某三棱锥的三视图,若该三棱锥的体积为,则它的外接球表面积为()A. B. C. D.12.函数f(x)=x3−ax2−bx+a2在x=1处有极值10,则点(a,b)坐标为()A. (3,−3)B. (−4,11)C. (3,−3)或(−4,11)D. 不存在二、填空题(本大题共3小题,共15.0分)13.已知a⃗=(1,−1),b⃗ =(−1,2),则(2a⃗+b⃗ )⋅a⃗=______.14.曲线f(x)=2x−1x在点(1,f(1))处的切线与圆x2+y2=R2相切,则R=______.15.已知双曲线C:x2a2−y2b2=1(a>0,b>0),点A,B在双曲线C的左支上,o为坐标点,直线BO与双曲线C的右支交于点M.若直线AB的斜率为3,直线AM的斜率为1,则双曲线C的离心率为____.三、多空题(本大题共1小题,共5.0分)16.若数列{a n}满足a1⋅a2⋅a3…a n=n2+3n+2,则a4=(1),a n=(2).四、解答题(本大题共7小题,共82.0分)17. 在△ABC 中,D 是BC 的边上的点,cos∠BAD =35,cos∠ADC =−√55. (1)求sin B 的值;(2)若BD =2DC =2,求AC 的长.18. 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(Ⅰ)求甲在3局以内(含3局)赢得比赛的概率;(Ⅱ)记X 为比赛决出胜负时的总局数,求X 的分布列和数学期望.19. 如图,在四棱锥P −ABCD 中,底面ABCD 是平行四边形,AB =2AD =2,∠DAB =60°,PA =PC =2,且平面ACP ⊥平面ABCD .(Ⅰ)求证:CB ⊥PD ;(Ⅱ)求二面角C −PB −A 的余弦值.20.已知函数f(x)=lnxx−1(1)试判断函数f(x)的单调性;(2)设m>0,求f(x)在[m,2m]上的最大值;(3)试证明:对∀n∈N∗,不等式ln(1+nn )e<1+nn.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,离心率为12,P是C上的一个动点.当P为C的上顶点时,▵F1PF2的面积为√3.(1)求C的方程;(2)设斜率存在的直线PF2与C的另一个交点为Q.若存在点T(t,0),使得|TP|=|TQ|,求t的取值范围.22.平面直角坐标系xOy中,曲线C的参数方程为{x=√3+2cosα(α为参数),在以坐标原点y=1+2sinαO为极点,x轴非负半轴为极轴的极坐标系中,点P在射线l:θ=π上,且点P到极点O的距离3为4.(Ⅰ)求曲线C的普通方程与点P的直角坐标;(Ⅱ)求▵OCP的面积.23.已知f(x)=|x−2a|+|2x+a|,g(x)=2x+3.(1)当a=1时,求不等式f(x)<4的解集;,1)时,f(x)<g(x)恒成立,求a的取值范围.(2)若0<a<3,且当x∈[−a2【答案与解析】1.答案:D解析:本题主要考查了复数的概念,运算及几何意义,考查了学生的运算求解能力,属基础题. 由题意解得x ,y ,从而得出x +yi 在复平面内所对应的点所在象限.解:∵x ,y 是实数,∴(1−i)x =x −xi =1+yi ,∴{x =1−x =y ,解得x =1,y =−1,∴x +yi 在复平面内所对应的点为(1,−1),位于第四象限,故选D .2.答案:D解析:本题考查了交集的运算,是基础题.先求出集合A ,B ,然后进行交集的运算即可.解:A ={x|x ≤2},B ={x|x ≤−2或x ≥2};∴A ∩B =(−∞,−2]∪{2}.故选:D .3.答案:B解析:函数定义域为R ,f(−x)=|−x |+1=|x |+1=f(x),∴f(x)是偶函数.4.答案:C解析:本题考查了等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题. 利用等差数列的通项公式与求和公式即可得出.解:设等差数列{a n }的公差为d ,∵a 7=9,S 5=5,∴a 1+6d =9,5a 1+ 5×4 2d =5,解得:a 1=−3,d =2,则S 8=8×(−3)+ 8×7 2×2=32.故选:C .5.答案:D解析:本题主要考查了程序框图的应用,考查了函数解析式,属于基础题;根据题意得到f(3)=f(5)=f(7)=72−5=44,f(6)=62−5=31,即可得解.解:因为y =f(x)={x 2−5,x ⩾6f(x +2),x <6, 则f(3)=f(5)=f(7)=72−5=44;f(6)=62−5=31,所以f(3)+f(6)=75.故选D .6.答案:D解析:解:由分层抽样得n 120+80+60=360,解得n =13,故选:D .本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础. 7.答案:C解析:解:∵a =log 0.60.5>log 0.60.6=1,b =log 2(log 38)<log 2(log 39)=log 22=1, ∴a >1>b .故选:C .利用对数的运算法则、对数函数的单调性即可得出.本题考查了对数的运算法则、对数函数的单调性,属于基础题.解析:解:∵(x2−3x+2)5=(x−1)5(x−2)5=(C50x5−C51x4+C52x3−C53x2+C54x−1)(C50x5−2C51x4+4C52x3−8C53x2+16C54x−32).∴展开式中含x3的项的系数为:−36C53−24C53C54=−1560.故选:A.(x2−3x+2)5=(x−1)5(x−2)5,分别展开两个二项式,即可得到含x3的项的系数.本题考查二项式定理的应用,二项展开式的通项公式,是基础题.9.答案:B解析:【试题解析】本题考查直线斜率的求法,抛物线的简单性质的应用,属于中档题.依题意F(1,0),设直线AB的方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2−4my−4=0,由此能够求出直线AB的斜率.解:依题意F(1,0),设直线AB的方程为x=my+1,将直线AB的方程与抛物线的方程联立,消去x得y2−4my−4=0,设A(x1,y1),B(x2,y2),所以y1+y2=4m,y1y2=−4,①因为|MF|=2|NF|,所以y1=−2y2,②,联立①和②,消去y1,y2,得m=±√24所以直线AB的斜率是±2√2.故选:B.10.答案:C解析:本题考查函数y=Asin(ωx+φ)的图象与性质.先根据三角函数图象的平移规律及平移后的图象关于y轴对称,求出φ,得到f(x)的解析式,再求单解:函数f(x)的图象向右平移π3个单位得到函数的图象,因为平移后的图象关于y轴对称,所以−2π3+φ=π2+kπ,k∈Z,又0<φ<π,所以k=−1,φ=π6,所以,令−π2+2kπ⩽2x+π6⩽π2+2kπ,k∈Z,得−π3+kπ⩽x⩽π6+kπ,k∈Z,因而函数f(x)的单调增区间为[−π3+kπ,π6+kπ],k∈Z.故选C.11.答案:B解析:本题考查三视图及多面体外接球的表面积,具有综合性,考查空间想象能力.正确找到直观图是解题关键.由三视图可知,该几何体是一条棱垂直底面的三棱锥,然后根据三棱锥的体积公式求得.解:由三视图可知,该几何体是一条棱垂直底面的三棱锥,可以看成长2宽1高1的长方体切除后剩下的,其外接球与长方体外接球相同.若该三棱锥的体积为,可得x=2.故外接球直径为√12+12+22=√6,半径为√62.故外接球表面积为.故选B.12.答案:B解析:本题考查利用导数研究函数的极值,解题的关键是熟练掌握极值的充要条件,属于中档题. 首先对函数进行求导,然后根据极值条件进行求解,要注意进行检验. 解:求导可得,f′(x)=3x 2−2ax −b , 由已知得{f ′(1)=0f (1)=10,即{3−2a −b =01−a −b +a 2=10解得a =−4,b =11或a =3,b =−3当a =3,b =−3时,f ′(x)=3x 2−6x +3=3(x −1)2⩾0, 此时f(x)递增,函数f(x)不存在极值 故a =−4,b =11,即点(a,b)坐标为(−4,11) 故选B .13.答案:−1解析:解:a ⃗ =(1,−1),b ⃗ =(−1,2),则2a ⃗ +b ⃗ =(1,0) (2a ⃗ +b ⃗ )⋅a ⃗ =−1+0=−1. 故答案为:−1.直接利用向量的坐标运算以及向量的数量积求解即可. 本题考查向量的数量积的运算,基本知识的考查.14.答案:√105解析:本题考查导数的运用:求切线的斜率,考查直线和圆相切的条件:d =r ,考查方程思想和运算能力,属于基础题.求得f(x)的导数,可得切线的斜率和切点,由点斜式方程可得切线方程,再由圆心到切线的距离等于半径,计算可得所求值.解:f(x)=2x −1x 的导数为f′(x)=2+1x 2, 可得切线的斜率为k =3,切点为(1,1), 即有在x =1处的切线方程为y −1=3(x −1), 即为3x −y −2=0,由切线与圆x 2+y 2=R 2相切, 可得d =√10=R ,解得:R =√105.故答案为√105.15.答案:2解析:本题考查了双曲线的离心率,考查了转化思想,属于中档题. 解:设B(m,n),则直线BO 与双曲线的右支交于点 M(−m,−n), 设A(x 0,y 0),可得直线 AB 的斜率为y 0−nx 0−m , 直线 AM 的斜率为y 0+nx 0+m;∴y 02−n 2x 02−m 2=b 2a 2x 02−b 2a 2n 2x 02−n 2=b 2a 2=3×1=3,∴e =√1+b2a 2=2,故答案为:216.答案:32{6,n =1n +2n,n >1解析:解:数列{a n }满足a 1⋅a 2⋅a 3…a n =n 2+3n +2, 当n =1时,a 1=1+3+2=6;当n >1时,a 1⋅a 2⋅a 3…a n−1=(n −1)2+3(n −1)+2=n 2+n −2; 所以a n =n 2+3n+2n 2+n =n+2n;所以a 4=4+24=32,a n ={6,n =1n+2n,n >1.故答案为:32,{6,n =1n+2n,n >1.在原数列递推式中,取n 为n −1得另一递推式,作商后求得数列的通项公式和a 4的值. 本题考查了数列递推式以及由数列递推式求数列通项公式的问题,属中档题.17.答案:(本小题满分12分)解:(1)∵cos∠ADB =cos(π−∠ADC)=−cos∠ADC =√55,∠ADB ∈(0,π),∴sin∠ADB =2√55,……………………2′ ∵cos∠BAD =35,∠BAD ∈(0,π),∴sin∠BAD =45.……………………4′ ∴sinB =sin[π−(∠BAD +∠ADB)]=sin(∠BAD +∠ADB) =sin∠BADcos∠ADB +cos∠BADsin∠ADB =45×√55+35×2√55=2√55.………………………6′ (2)在△ABD 中,由正弦定理得:ADsinB =BDsin∠BAD ,即2√55=245,∴AD =√5.……………9′在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2−2AD ⋅DC ⋅cos∠ADC =5+1+2×√5×1×√55=8,∴AC =2√2.………12′解析:(1)利用三角形的内角和以及两角和与差的三角函数化简求解即可. (2)利用正弦定理以及余弦定理转化求解AC 的长.本题考查三角形的解法,两角和与差的三角函数以及正弦定理余弦定理的应用,考查计算能力.18.答案:解:(Ⅰ)用事件A i 表示第i 局比赛甲获胜,则A i 两两相互独立.P =P(A 1A 2+A 1A 2A 3)=P(A 1)P(A 2)+P(A 1)P(A 2)P(A 3)=23⋅23+13⋅23⋅23=1627. (Ⅱ)X 的取值分别为2,3,4,5, P(x =2)=23⋅23+13⋅13=59,P(x =3)=13⋅23⋅23+23⋅13⋅13=29, P(x =4)=23⋅13⋅23⋅23+13⋅23⋅13⋅13=1081, P(x =5)=23⋅13⋅23⋅13+13⋅23⋅13⋅23=881, 所以X 的分布列为X2345P 59291081881EX=2×59+3×29+4×1081+5×881=22481.解析:(Ⅰ)用事件A i表示第i局比赛甲获胜,则A i两两相互独立,由此能求出甲在3局以内(含3局)赢得比赛的概率.(Ⅱ)X的取值分别为2,3,4,5分别求出相应的概率,由此能求出X的分布列和数学期望.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题.19.答案:(I)证明:连接AC,BD,设交点为O,连接OP,则O是BD的中点,∵PA=PC,O是AC的中点,∴PO⊥AC,又∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,∴PO⊥平面ABCD,又BC⊂平面ABCD,∴BC⊥PO.∵AB=2AD=2,∠DAB=60°,∴BD=√1+4−2×1×2×cos60°=√3,∴AD2+BD2=AB2,∴AD⊥BD,又BC//AD,∴BC⊥BD,又PO⊂平面PBD,BD⊂平面PBD,PO∩BD=O,∴BC⊥平面PBD,又PD⊂平面PBD,∴BC⊥PD.(II)解:OA=√AD2+OD2=√72,∴PO=√PA2−OA2=32.以D为原点,以DA,DB,及平面ABCD过D的垂线为坐标轴建立空间直角坐标系D−xyz,则A(1,0,0),B(0,√3,0),P(0,√32,32),C(−1,√3,0),∴BC⃗⃗⃗⃗⃗ =(−1,0,0),AB ⃗⃗⃗⃗⃗ =(−1,√3,0),BP ⃗⃗⃗⃗⃗ =(0,−√32,32), 设平面PBC 的法向量为m⃗⃗⃗ =(x,y ,z),则{m ⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0m ⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0, ∴{−x =0−√32y +32z =0,取z =1得m ⃗⃗⃗ =(0,√3,1), 同理可得平面PAB 的法向量为n ⃗ =(3,√3,1), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ ||n ⃗⃗ |=2×√13=2√1313. 由图形可知二面角C −PB −A 为钝二面角, ∴二面角C −PB −A 的余弦值为−2√1313.解析:(I)证明PO ⊥平面ABCD 得出PO ⊥BC ,利用勾股定理证明BC//BD ,从而BC ⊥平面PBD ,于是BC ⊥PD ;(II)建立空间坐标系,求出平面PAB 和平面PBC 的法向量,通过计算法向量的夹角得出二面角的大小.本题考查了线面垂直的判定,空间向量与二面角的计算,属于中档题.20.答案:解:(1)函数f(x)的定义域是:(0,+∞)由已知f ′(x)=1−lnx x 2令f′(x)=0得,1−lnx =0,∴x =e ∵当0<x <e 时,f ′(x)=1−lnx x 2>0,当x >e 时,f ′(x)=1−lnx x <0∴函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减,(2)由(1)知函数f(x)在(0,e]上单调递增,在[e,+∞)上单调递减 故①当0<2m ≤e 即0<m ≤e2时,f(x)在[m,2m]上单调递增 ∴f(x)max =f(2m)=ln(2m)2m−1,②当m ≥e 时,f(x)在[m,2m]上单调递减 ∴f(x)max =f(m)=lnm m−1,③当m<e<2m,即e2<m<e时∴f(x)max=f(e)=1e−1.(3)由(1)知,当x∈(0,+∞)时,f(x)max=f(e)=1e−1,∴在(0,+∞)上恒有f(x)=lnxx −1≤1e−1,即lnxx ≤1e且当x=e时“=”成立,∴对∀x∈(0,+∞)恒有lnx≤1ex,∵1+nn >0,1+nn≠e,∴ln1+nn <1e⋅1+nn⇒ln(1+nn)e<1+nn即对∀n∈N∗,不等式ln(1+nn )e<1+nn恒成立.解析:(1)利用商的求导法则求出所给函数的导函数是解决本题的关键,利用导函数的正负确定出函数的单调性;(2)利用导数作为工具求出函数在闭区间上的最值问题,注意分类讨论思想的运用;(3)利用导数作为工具完成该不等式的证明,注意应用函数的最值性质.本题考查导数在函数中的应用问题,考查函数的定义域思想,考查导数的计算,考查导数与函数单调性的关系,考查函数的最值与导数的关系,注意问题的等价转化性.21.答案:解:(1)设椭圆的半焦距为c.因为S▵F1PF2=12⋅2c⋅b=√3,所以bc=√3,又e=ca =12,a2=b2+c2,所以a=2,b=√3,c=1,所以C的方程为x24+y23=1.(2)设直线PQ的方程为y=k(x−1),P(x1,y1),Q(x2,y2),PQ的中点N(x0,y0).当k=0时,t=0符合题意.当k ≠0时,由{y =k (x −1),x 24+y 23=1,得(4k 2+3)x 2−8k 2x +4k 2−12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2−124k 2+3,所以x 0=x 1+x 22=4k 24k 2+3,y 0=k (x 0−1)=−3k4k 2+3,即N (4k 24k 2+3,−3k4k 2+3).因为|TP |=|TQ |, 所以TN ⊥PQ , 则k TN ⋅k =−1, 所以3k 4k 2+3t−4k 24k 2+3⋅k =−1, 故t =k 24k 2+3=14+3k 2,因为4+3k 2>4, 所以t ∈(0,14).综上,t 的取值范围为[0,14).解析:本题重点考查椭圆的标准方程,考查直线与椭圆的位置关系,考查存在性问题的研究,联立直线方程与椭圆方程是解题的关键.(1)由离心率可得a ,c 的关系,由面积可得bc 的关系,由求得a ,b ,故可得答案,(2)设直线PQ 的方程为y =k (x −1),当k =0时,t =0符合题意.当k ≠0时,联立方程组可得(4k2+3)x2−8k2x+4k2−12=0,结合韦达定理和k TN⋅k=−1,故可得t的取值范围.22.答案:解:(1)消去参数α,得曲线C的普通方程为(x−√3)2+(y−1)2=4,点P的极坐标为(4,π3),直角坐标为(2,2√3).(2)(方法一)圆心C(√3,1),OC:y=√33x⇒x−√3y=0,点P到OC的距离d=|2−√3⋅2√3|2=2,且|OC|=2,所以S△OCP=12|OC|⋅d=2.(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图像利用极坐标的几何含义,可得,|OC|=2,|OP|=4,所以=12⋅2⋅4⋅sin π6=2.所以S△OCP=2.解析:本题考查了简单曲线的极坐标方程和曲线的参数方程,是中档题.(1)消去参数α可得曲线C的普通方程,由P的极坐标转为P的直角坐标;(2)(方法一),先得出直线OC的方程,再得出点P到OC的距离,即可得出△OCP的面积;(方法二)圆心C(√3,1),其极坐标为(2,π6),而P(4,π3),结合图像利用极坐标的几何含义,可得△OCP的面积.23.答案:解:(1)当a=1时,不等式f(x)<4可化为|x−2|+|2x+1|<4,若x<−12,则有2−x−2x−1<4,解得x>−1,∴此时−1<x<−12;若−12≤x≤2,则有2−x+2x+1<4,解得x<1,∴此时−12≤x<1;若x>2,则有x−2+2x+1<4,解得x<53,∴此时无解,综上可得,原不等式的解集是{x|−1<x <1}; (2)当x ∈[−a2,1)时,f(x)=|x −2a|+2x +a , f(x)<g(x)即为|x −2a|<3−a 恒成立, ∵0<a <3,∴3−a >0, ∴a −3<x −2a <3−a ,即3a −3<x <3+a 在x ∈[−a2,1)上恒成立, ∴{−a2>3a −31≤3+a 0<a <3,解得0<a <67.解析:本题主要考查绝对值不等式的求解,属于中档题. (1)将f(x)分区间求解即可;(2)将f(x)<g(x)恒成立转化为|x −2a|<3−a 恒成立,然后求解得到{−a2>3a −31≤3+a 0<a <3,解出a 的取值范围.。

2020年高三一模理科数学试卷(大教育全国名校联盟)(含答案及解析)

2020年高三一模理科数学试卷(大教育全国名校联盟)(含答案及解析)

13. 已知向量

,且 与 的夹角为 ,则
D. ②③④ .
14. 定义在 上的函数 满足:①对任意的 ,
,都有
时,
,则函数 的解析式可以是

;②当
15. 设数列 的前 项和为 ,且
,若
,则

16. 已知四棱锥
的底面
是边长为 的正方形,且
的五个顶点在以 为半径的同一球面上,当 最长时,则
棱锥
的体积为

2020年高三一模理科数学试卷(大教育全国名校联盟)
一、选择题
(本大题共12小题,每小题5分,共60分。)
1. 已知集合 A.

B.
C.
,则
( ).
D.
2. 若复数 A.
是纯虚数,则
( ).
B.
C.
D.
3. 已知 , 是两条不同的直线; 、 是两个不同的平面.且

,,,
则” ”是
”的( ).
A. 充分不必要条件
的前 项和为 ,且 B.
, C.
,则
( ). D.
8. 在平面直角坐标系 中,已知椭圆
直线 A.
的距离为 B.
,则 的离心率为( ). C.
的右焦点为 D.
.若 到
9. 已知函数 A. 函数 B. 函数 C. 函数
.则下列结论错误的是( ).
的最小正周期为
的图象关于点
对称

上单调递增
D. 函数 的图象可由
开始
输出

否 结束
A.
B.
C.
D.
/
【答案】 A
【解析】
( 不是素数),

2020年高考一模理科数学模拟试卷(含答案解析)

2020年高考一模理科数学模拟试卷(含答案解析)

2020年高考一模理科数学模拟试卷一、选择题1.已知集合A={x|9x2﹣3<1},B={y|y<2},则(∁R A)∩B=()A.B.∅C.D.2.已知复数z1=3﹣bi,z2=1﹣2i,若是实数,则实数b的值为()A.6B.﹣6C.0D.3.AQI即空气质量指数,AQI越小,表明空气质量越好,当AQI不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI的统计数据.则下列叙述正确的是()A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为1004.已知函数f(x)的图象如图所示,则函数f(x)的解析式可能是()A.f(x)=(4x+4﹣x)|x|B.f(x)=(4x﹣4﹣x)log2|x|C.f(x)=(4x+4﹣x)log2|x|D.f(x)=(4x+4﹣x)|x|5.设a=log48,b=log0.48,c=20.4,则()A.b<c<a B.c<b<a C.c<a<b D.b<a<c6.已知A、B是圆O:x2+y2=16的两个动点,||=4,=﹣.若M是线段AB的中点,则•的值为()A.8+4B.8﹣4C.12D.47.“仁义礼智信”为儒家“五常”,由孔子提出“仁、义、礼”,孟子延生为“仁、义、礼、智”,董仲舒扩充为“仁、义、礼、智、信”,将“仁义礼智信”排成一排,“仁”排在第一位,且“智信”相邻的概率为()A.B.C.D.8.如图所示,在单位正方体ABCD﹣A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P 取得最小值,则此最小值为()A.2B.C.2+D.9.已知双曲线的右焦点为F,渐近线为l1,l2,过点F的直线l与l1,l2的交点分别为A,B,若AB⊥l2,则|AB|=()A.B.C.D.10.已知数列{a n}的通项公式为,则数列{a n}的前2020项和为()A.B.C.D.11.已知函数,现有如下命题:①函数f(x)的最小正周期为;②函数f(x)的最大值为;。

2020届高三第一次模拟考试卷理科数学(一)附解析

2020届高三第一次模拟考试卷理科数学(一)附解析

2020届高三第一次模拟考试卷理科数学(一)附解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,( ) A . B . C . D .2.( ) A . B . C . D .3.如图为某省年月快递业务量统计图,图是该省年月快递业务收入统计图,下列对统计图理解错误的是( )A .年月的业务量,月最高,月最低,差值接近万件B .年月的业务量同比增长率超过,在月最高C .从两图来看年月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从月来看,该省在年快递业务收入同比增长率逐月增长{}2|650A x x x =-+≤{|B x y ==A B =I [)1,+∞[]1,3(]3,5[]3,534i 34i12i 12i+--=-+4-44i -4i 1201914~2201914~201914~322000201914~50%3201914~14~20194.已知两个单位向量,满足的夹角为( ) A .B .C .D . 5.函数的部分图象大致为( )A .B .C .D .6.已知斐波那契数列的前七项为、、、、、、.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花朵,花瓣总数为,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A . B . C . D .7.如图,正方体中,点,分别是,的中点,为正方形的中心,则( )12,e e 12|2|e e -=12,e e 2π33π4π3π41()cos 1x x e f x x e +=⋅-1123581339956781111ABCD A B C D -E F AB 11A D O 1111A B C DA .直线,是异面直线B .直线,是相交直线C .直线与所成的角为D .直线,所成角的余弦值为8.执行如图所示的程序框图,输出的的值为()A .B .C .D .9.已知定义在上的奇函数满足,且在区间上是减函数,令,,,则,,的大小关系为( )A .B .C .D .10.已知点是双曲线的右焦点,动点在双曲线左支上,点为圆上一点,则的最小值为( )EF AO EF 1BB EF 1BC 30︒EF 1BB S 0242-R ()f x (2)()f x f x +=-[1,2]ln 2a =121()4b -=12log 2c =()f a ()f b ()f c ()()()f b f c f a <<()()()f a f c f b <<()()()f c f b f a <<()()()f c f a f b <<2F 22:193x y C -=A B 22:(2)1E x y ++=2||||AB AF +A .B .C .D .11.如图,已知,是函数的图象与轴的两个相邻交点,是函数的图象的最高点,且,若函数的图象与的图象关于直线对称,则函数的解析式是( )A .B .C .D .12.已知三棱锥满足底面,在中,,,,是线段上一点,且.球为三棱锥的外接球,过点作球的截面,若所得截面圆的面积的最小值与最大值之和为,则球的表面积为( ) A . B .C .D .二、填空题:本大题共4小题,每小题5分.13.已知曲线在点处的切线方程为,则实数98P Q ()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><x R ()f x3RP RQ ⋅=uu r uu u r()g x ()f x 1x =()g x ππ()sin()24g x x =+ππ()sin()24g x x =-ππ()2sin()24g x x =+ππ()2sin()24g x x =-P ABC -PA ⊥ABC ABC △6AB =8AC =AB AC ⊥D AC 3AD DC =O P ABC -D O 40πO 72π86π112π128π()(1)ln f x ax x =-(1,0)1y x =-a的值为 .14.已知等差数列的前项和为,满足,且,则最大时的值是 .15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦)(“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .16.点,是抛物线上的两点,是拋物线的焦点,若,中点到抛物线的准线的距离为,则的最大值为 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)的内角所对的边分别为,已知.(1)求的大小;{}n a n n S 711S S =10a >n S n A B 2:2(0)C y px p =>F C 120AFB ∠=︒AB D C d ||dAB ABC △,,A B C ,,a b c 22()sin a c b C +=+B(2)若,,且的面积为.18.(12分)如图所示的多面体中,四边形是边长为的正方形,,,,平面. (1)设与的交点为,求证:平面; (2)求二面角的正弦值.8b =a c >ABC △a ABCDEF ABCD 2ED FB ∥12DE BF =AB FB =FB ⊥ABCD BD AC O OE ⊥ACF E AF C --19.(12分)设椭圆的左焦点为,右焦点为,上顶点为是坐标原点,且(1)求椭圆的方程;(2)已知过点的直线与椭圆的两交点为,,若,求直线的方程.2222:1(0)x y C a b a b+=>>1F 2F B O 1||||OB F B ⋅=C 1F l C M N 22MF NF ⊥l20.(12分)已知函数,为的导数,证明:(1)在区间上存在唯一极大值点; (2)在区间上有且仅有一个零点.1π()4cos()23xf x x e =--()f x '()f x ()f x '[π,0]-()f x [π,0]-21.(12分)月,全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得分.设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.112019111 012231X X n i p i①求,,;②规定,经过计算机计算可估计得,请根据①中,,的值分别写出,关于的表达式,并由此求出数列的通项公式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为,的参数方程为(为参数).(1)写出曲线的直角坐标方程和的普通方程;1p 2p 3p 00p =11(1)i i i i p ap bp cp b +-=++≠1p 2p 3p a c b {}n p xOy O x 1C 2sin ρθ=2C 1122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩t 1C 2C(2)设点为曲线上的任意一点,求点到曲线距离的取值范围.23.(10分)【选修4-5:不等式选讲】已知,,.证明:(1); (2).理科数学(一)答 案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】由已知可得,,则.2.【答案】DP 1C P 2C 0a >0b >23a b +=2295a b +≥3381416a b ab +≤[]1,5A =[)3,B =+∞[3,5]A B =I【解析】由复数的运算法则可得:. 3.【答案】D【解析】对于选项A :年月的业务量,月最高,月最低,差值为,接近万件,所以A 是正确的;对于选项B :年月的业务量同比增长率分别为,,,,均超过,在月最高,所以B 是正确的;对于选项C :年、、月快递业务量与收入的同比增长率不一致, 所以C 是正确的.4.【答案】C【解析】∵,∴, ∴,∴. 5.【答案】B【解析】的定义域为, ∵, ()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-201914~32439724111986-=2000201914~55%53%62%58%50%3201923412|2|e e -121443e e +-⋅=1212e e ⋅=121cos ,2e e <>=12π,3e e <>=1()cos 1x x e f x x e +=⋅-(,0)(0,)-∞+∞U 11()cos()cos ()11x x x x e e f x x x f x e e --++-=-⋅=-⋅=---∴函数奇函数,排除A 、D , 又因为当时,且,所以, 故选B .6.【答案】C【解析】由题设知,斐波那契数列的前项之和为,前项之和为, 由此可推测该种玫瑰花最可能有层.7.【答案】C【解析】易知四边形为平行四边形,所以直线,相交; 直线,是异面直线;直线,C 正确. 8.【答案】B【解析】第一次循环,,;第二次循环,,;第三次循环,,;第四次循环,,.可知随变化的周期为,当时,输出的.1()cos 1x x e f x x e +=⋅-0x +→cos 0x >101x x e e +>-1()cos 01x x e f x x e +=⋅>-6207337AEOF EF AO EF 1BB EF 1BB 4S =1i =2S =2i =4S =1i =2S =2i =S i 22019i =2S =【解析】∵是上的奇函数,且满足,∴,∴函数的图象关于对称,∵函数在区间是减函数,∴函数在上为增函数,且,由题知,,,∴.10.【答案】A【解析】设双曲线的左焦点为,,∴.11.【答案】C【解析】由已知,得,则,, 于是,得,又,∴,, 由,及,得,故, 因为与的图象关于对称,则. ()f x R (2)()f x f x +=-(2)()f x f x +=-()f x 1x =()f x [1,2]()f x [1,1]-(2)(0)0f f ==1c =-2b =01a <<()()()f c f b f a <<C 1F 21126AF AF a AF =+=+216AB AF AB AF +=++=115559AB AF BE F E +++≥+==3(,)2R A (1,)RP A =--u u r (1,)RQ A =-u u u r 213RP RQ A ⋅=-=u u r u u u r 2A =51222T =-4T =2ππ2T ω==π12π22k ϕ⋅+=k ∈Z π||2ϕ<π4ϕ=-ππ()2sin()24f x x =-()g x ()f x 1x =ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+【解析】将三棱锥补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球,记三角形的中心为,设球的半径为,,则球心到平面的距离为,即, 连接,则,∴,在中,取的中点为,连接,,则,,∴. 在中,,由题意得到当截面与直线垂直时,截面面积最小,设此时截面圆的半径为,则,所以最小截面圆的面积为,当截面过球心时,截面面积最大为, ∴,,球的表面积为.(或将三棱锥补成长方体求解).P ABC -O ABC 1O R 2PA x =O ABC x 1OO x =1O A 15O A =2225R x =+ABC △AC E 1O D 1O E 1132O E AB ==124DE AC ==1O D =1OO D Rt△OD =OD r 2222225(13)12r R OD x x =-=+-+=12π2πR 212ππ40πR +=228R =24π112πR=二、填空题:本大题共4小题,每小题5分.13.【答案】【解析】,,∴. 14.【答案】9【解析】设等差数列的公差为,由,可得, 即,得到, 所以, 由可知,故当时,最大. 15.【答案】 【解析】观察八卦图可知,含根阴线的共有卦,含有根阳线的共有卦,含有根阴线根阳线的共有卦,含有根阴线根阳线的共有卦,故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为. 16.【答案】 【解析】设,, 21()ln ax f x a x x -'=+(1)11f a '=-=2a ={}n a d 711S S =1176111071122a d a d ⨯⨯+=+12170a d +=1217d a =-211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+10a >1017a -<9n =n S 3143131213123123328C C 3C 14+=3AF a =BF b =则,, ∴, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2)【解析】(1)由,得,所以,即, 所以有,因为,所以,所以,,所以, 又,所以,所以,即. (2)因为, 又,所以,把代入到中,得. 2a b d +=222222cos AB a b ab AFB a b ab =+-∠=++d AB ==≤=π35+()22sin a c b C +=+2222sin a c ac b C ++=+2222sin a c b ac C +-+=()2cos 1sin ac B C +=()sin cos 1sin C B B C +=(0,π)C ∈sin 0C >cos 1B B +=cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭1sin 2π6B ⎛⎫-= ⎪⎝⎭0πB <<ππ5π666B -<-<6ππ6B -=π3B =11sin 22ac B ac ==12ac =22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=10a c +=10c a =-12()ac a c =>5a =+18.【答案】(1)证明见解析;(2)【解析】(1)证明:由题意可知:平面,从而,∴,又为中点,∴,在中,,∴,∴, 又,∴平面.(2)面,且,如图以为原点,,,方向建立空间直角坐标系,从而,,,,,由(1)可知是面的一个法向量,设为面的一个法向量,由,令,得, 3ED ⊥ABCD EDA EDC ≅Rt Rt △△EA EC =O AC DE AC ⊥EOF △3OE OF EF ===222OE OF EF +=OE OF ⊥AC OF O =I OE ⊥ACF ED ⊥ABCD DA DC ⊥D DA DC DE (0,0,1)E (2,0,0)A (0,2,0)C (2,2,2)F (1,1,0)O (1,1,1)EO =-uu u r AFC (,,)x y z =n AEF 22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r 1x =(1,2,2)=-n设为二面角的平面角,则,, ∴二面角角的正弦值为19.【答案】(1);(2). 【解析】(1)设椭圆的焦距为,则,∴, ∵,∴,又,,∴,∴,∴. (2)由(1)知,,设直线方程为, 由,得, 设,,则,, ∵,∴,∴,∴,∴,∴,∴,∴. θE AF C --|||cos ||cos ,|3||||EO EO EO θ⋅=<>==⋅n n n uu u r uu u r uu u r sin 3θ∴=E AF C --322132x y +=10x ±+=C 2c 3c a =a =222a b c =+b =1OB F B ⋅OB b =1F B a =ab =2=1c =a =b =22132x y +=1(1,0)F -2(1,0)F l 1x ty =-221132x ty x y =-⎧⎪⎨+=⎪⎩22(23)440t y ty +--=11(,)M x y 22(,)N x y 122423t y y t +=+122423y y t -=+22MF NF ⊥220F M F N ⋅=uuuu r uuu r 1212(1)(1)0x x y y --+=1212(11)(11)0ty ty y y ----+=21212(1)2()40t y y t y y +-++=22224(1)8402323t t t t -+-+=++22t =t =∴的方程为.20.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:定义域为,且. 令,,,. ∵在上单调递减,在上单调递减, 在上单调递减.又,, ∴,使得,∴当时,;当时,, 即在区间上单调递增;在上单调递减, 则为唯一的极大值点,即在区间上存在唯一的极大值点.(2)由(1)知,且在区间存在唯一极大值点,在上单调递增,在上单调递减,而,l 10x ±+=()f x (,)-∞+∞1π()2sin()23x f x x e '=---1π()2sin()23x g x x e =---[π,0]x ∈-1π()cos()23x g x x e '=---[π,0]x ∈-x y e =-[π,0]-1πcos()23y x =--[π,0]-()g x '[π,0]-π(0)cos()103g '=---<ππππ1(π)cos()023g e e -'-=----=->0(π,0)x ∃∈-0()0g x '=0[π,)x x ∈-()0g x '>0(,0]x x ∈()0g x '<()g x 0[π,)x -0(,0]x 0x x =()g x ()f x '[π,0]-0x 1π()2sin()23x f x x e '=---()f x '[π,0]-()f x '0[π,)x -0(,0]x ππππ1(π)2sin()1023f e e -'-=----=->,故在上恒有, ∴在上单调递增,又,, 因此,在上有且仅有一个零点.21.【答案】(1)见解析;(2)①,,;②,,. 【解析】(1)的可能取值为,,.,, . ∴的分布列为(2)①由(1)知,, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得分; 二是两轮有一轮甲得分,有一轮甲得分,π(0)2sin()1103f '=---=>()f x '[π,0]-()0f x '>()f x [π,0]-ππππ1(π)4cos()023f e e --=---=-<π(0)4cos()1103f =--=>()f x [π,0]-116P =2736P =343216P =6(1)7a b =-1(1)7c b =-11(1)56n n P =-X 1-01121(1)(1)233P x =-=-⨯=12121(0)(1)(1)23232P x ==⨯+-⨯-=121(1)(1)236P x ==⨯-=X 16P =101∴, 经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得分;二是三轮有两轮各得分,一轮得分;三是轮得分,两轮各得分;四是两轮各得分,轮得分,∴. ②由,知, 将,,,代人,求得,, ∴,, ∴,∴.∴, ∵,∴是等比数列,首项和公比都是. , ∴. 22.【答案】(1),;(2). 【解析】(1)的直角坐标方程,的普通方程12211117C ()()662636P =⨯+=110110111-322122233331111111()C ()()C ()()C ()()6626263P =+++11i i i i P aP bP cP +-=++1111i i i a c P P P b b+-=+--00P =116P =2736P =343216P =617a b =-117c b =-6(1)7a b =-1(1)7c b =-116177i i i P P P +-=+117166i i i P P P +-=-111()6i i i i P P P P +--=-1016P P -=1{}n n P P --16116n n n P P --=01021111(1)1166()()()(1)15616n n n n n P P P P P P P P --=+-+-++-==--L ()2121:1x y C +-=20C y -=[1C ()2211x y +-=2C.(2)由(1)知,为以为圆心,为半径的圆,的圆心到的距离为, 则与相交,到曲线距离最小值为,最大值为, 则点到曲线距离的取值范围为. 23.【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵,,,∴,, ∴, ∴当,时,的最小值为, ∴. (2)∵,,,∴,当且仅当时,取等号, ∴ , 0y -+=1C (0,1)1r =1C (0,1)2C 1d ==<1C 2C P 2C 0d r +=P 2C [10,]20a >0b >23a b +=320a b =->302b <<222222699(32)51295()555a b b b b b b +=-+=-+=-+≥65b =3325a b =-=22a b +952295a b +≥0a >0b >23a b +=3≥908ab <≤322a b ==334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--∴时,的最大值为, ∴. 98ab =334a b ab +81163381416a b ab +≤。

陕西省榆林市2020届高三模拟第一次测试理数试题及答案

陕西省榆林市2020届高三模拟第一次测试理数试题及答案


$)(
%!$,(
%满

)!
+!!,!
+
! #
!#)(-!
+)(
-
!#,(!
#,(-! + !#)( -,( !
" #证 明 '数 列 $)( -,(%!$)( ,,(%为 等 比 数 列 *
数 学 理 科 试 题 ! 第 ) 页 ! 共 " 页
"#记8( 为数列$)(%的前( 项和!证明'8(&!)&!


-
2
=ቤተ መጻሕፍቲ ባይዱ
6
.
| CD || n | 1 6 3
∴ 直 线 CD 与 平 面 ACM 所 成 的 角 的 余 弦 值 为
6
. ……………………………12分
3
18.(本小题满分 12 分)
解:(Ⅰ)∵ 2b cos A a cos C c cos A 0 ,
由正弦定理得 2sin B cos A sin Acos C sin C cos A 0 , 即 2sin B cos A sin( A C) 0 ,
∵A+B+C=π,∴sin(A+C)=sinB,∴ 2 sin B cos A sin B 0 . …………………2 分
#!!本小题满分!#分设椭 圆 0')%## -.,## +!")%,%&#的 左)右 焦 点 分 别 为 /!!/#!椭 圆 0 与. 轴正半轴交于点$!连接 $/#!过点 $ 作$:*$/# 交% 轴负半轴于点:!
且#/2!/)#-/2#):+2)&!若过 $!:!/# 三 点 的 圆 恰 好 与 直 线4'%,槡).,)+& 相 切!过

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析

山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。

是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。

的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。

,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。

陕西兴平市2020届高三数学(理)上学期第一次模拟试卷附答案解析

陕西兴平市2020届高三数学(理)上学期第一次模拟试卷附答案解析

sin
1 2
x
4
表示为
y
sin
1 2
x
2
,结合三角函数的变换规律可得出正
确选项.
【详解】
Q
y
sin
1 2
x
4
sin
1 2
x
2
,因此,为了得到函数
y
sin
1 2
x
的图象,只需将函数
y
sin
1 2
x
4
的图象向右平移
2
个单位长度,故选:D.
【点睛】
本题考查三角函数的平移变换,解决三角函数平移变换需要注意以下两个问题:
【详解】
根据题意:集合 A {x | 1 x 1} ,集合 B {x | 0 x 1} , A B (0,1)
故选 A .
【点睛】
本题考查一元二次不等式与对数不等式解法以及交集的定义,考查基本分析求解能力,属基础题.
2.若复数 z 1 ai 为纯虚数,则实数 a 的值为( ) 1 i
7
log4
7
1 2
log2
7
log2
7 log2 3 ,即 log5 7 log2 3 ,即 b a ,故选 D.
【点睛】
本小题主要考查指数式和对数式比较大小,考查对数函数的性质,考查比较大小的方法,属于中档题.
12.定义在
R
上的可导函数
f
x 满足
f
1
1,且
2
f
'x
1,当
x
2
, 3 2
”是“ tan
1”的(
)条件
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要

高三数学(理)第一次高考模拟考试(2020届附答案)

高三数学(理)第一次高考模拟考试(2020届附答案)

n=5 s=0 WHILE s<15 S=s + n n=n -1 WEND PRINT n END (第5题)2020届高三数学(理)第一次高考模拟考试(附答案)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.满足条件{1,2}{1,2,3}A ⋃=的集合A 有( )A .1个B .2个C .4个D .8个2.已知445sin sin cos ααα=-则的值为 ( )A .—35B .—15C .15D .353.已知()f x 是定义在R 上的奇函数,当0x ≥时,值域为[—2,3],则()()y f x x =∈R 的值域为( )A .[—2,2]B .[—2,3]C .[—3,2]D .[—3,3]4.棱长为1的正方形ABCD —A 1B 1C 1D 1中,11AB BC ⋅的值为( )A .1B .—1C .2D .—25.右边程序执行后输出的结果是( ) A 1- B 0 C 1 D 26.21()n x x-的展开式中,常数项为15,则n 的值是( )A .3B .4C .5D .67.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人 相邻但不排在两端,不同的排法共有( ) A .1440种B .960种C .720种D .480种8.曲线||2||2x y +=的图象大致是( )9.已知双曲线方程22221(0)x y a b a b-=>>,过右焦点F 2且倾斜角为60°的线段F 2M 与y轴交于M ,与双曲线交于N ,已知224MF NF =,则该双曲线的离心率为( )A.13- B1- C.13+ D110.如果函数()f x 对任意的实数x ,存在常数M ,使得不等式|()|||f x M x ≤恒成立,那么就称函数()f x 为有界泛涵,下面四个函数;①()f x =1②()f x =x 2 ③()(sin cos )f x x x x =+④2()1xf x x x =++ 其中属于有界泛函的是 ( ) A .①②B .③④C .①③D .②④第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题4分,共20分。

2020届高三上第一次模考理科数学试卷及答案解析

2020届高三上第一次模考理科数学试卷及答案解析

2020届高三第一次统一测试理科数学试题本试卷满分为150分,考试时间为120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =--≥,{}22|≤≤-=x x B ,则A B =I ( ) A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,22. 若复数z 满足(1)42z i i -=+,则z =( )A .25BC .5D .173. 设S n 是等差数列{n a }的前n 项和,12a =-8,S 9=-9,则S 16= ( )A .-72B .72 C.36 D.-364.设向量→a ,→b ,满足2||2||==→→b a 且1|32|=+→→b a ,则向量→a 在向量→b 方向的投影为( )A. -2B. -1C. 1D. 25()cos 2παπα⎛⎫+=- ⎪⎝⎭,则tan 2α=( )A .773 B .37 C .77D 6.设0.1log 0.2a =, 1.1log 0.2b =,0.21.2c =,0.21.1d =则( ) A .a b d c >>> B .c a d b >>> C .d c a b >>>D .c d a b >>>7.若βα,是两个不同的平面,m 为平面α内的一条直线,则“βα⊥”是“β⊥m ”的( )条件A.充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 8.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为( ) A.255 B.35 C.45 D.559.已知)(x f 是定义在R 上的偶函数,且)3()5(-=+x f x f ,如果当[)4,0∈x 时,)2(log )(2+=x x f ,则)766(f =( )A .2-B .3C .3-D .210.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π611.已知)(x f 是定义在R 上的奇函数,当0≥x 时,x x x f 2)(2+=,若)()2(2a f a f >-,则实数a 的取值范围是( )A.),2()1,(+∞--∞YB. )2,1(-C.)1,2(-D.),1()2,(+∞--∞Y 12.已知函数()e sin x f x x =,其中x ∈R ,e 2.71828=L 为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围是( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞(Ⅱ卷 非选择题 满分90分)二、填空题(本题共有4小题,每小题5分,共20分)13.已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪≤⎨⎪-≤⎩则2z x y =+的最大值为14.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = 15.在ABC ∆中,角C B A ,,的对边分别c b a ,,,若ABC ∆的面积为)(21222b a c --则内角C 的余弦值=16.在三棱锥A BCD -中,底面为Rt △,且BC CD ⊥,斜边BD 上的高为1,三棱锥A BCD -的外接球的直径是AB ,若该外接球的表面积为16π,则三棱锥A BCD -的体积的最大值为__________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答)(一)必考题:60分.17.(本题满分12分)已知数列{}n a 满足()2n n S a n n =-∈*N . (1)证明:{}1n a +是等比数列;(2)求()13521n a a a a n +++++∈*N L .18.(本题满分12分)已知ABC ∆是斜三角形,内角C B A ,,所对的边的长分别为c b a ,,,且C a A c cos 3sin =(1)求角C;(2)若A A B C c 2sin 5)sin(sin ,21=-+=,求ABC ∆的面积。

2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案

2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案

理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足: x2  3x  4  0 ,( x  4)( x  1)  0 , x  4 或x  1 , A  {x | x  4 或 x  1} , CU A={x | 1„ x „ 4} , y  2x  2  2 , B  {y | y  2} ,可知 (CU A)  B  {x | 2  x „ 4} .故选 D. 2. 【答案】A【解析】 z  1  i  (1  i)(1  2i)  1  3i ,复数 z 的虚部为  3 ,1 2i555故错误;② | z | ( 1)2  ( 3)2  10 ,故错误;③复数 z 对应的555点为 ( 1 , 3) 为第三象限内的点,故正确;④复数不能比较大小, 55故错误.故选 A.3. 【答案】C【解析】 Sn  2an  4 ,可得当 n  1 时, a1  2a1  4 , a1  4 ,当n…2时,S n 12 an 14与已知相减可得an an 12,可知数列{ an } 是首项为 4,公比为 2 的等比数列, a5  4  24  64 .故选 C.4. 【答案】D【解析】可知降落的概率为pA22 A55 A661 3.故选D.5. 【答案】C【解析】函数 f (x)  2 020x  sin 2x 满足 f (x)  2 020x  sin 2x  f (x) ,且 f (x)  2 020  2cos 2x  0 ,可知函数 f (x) 为单调递增的奇函数, f (x2  x)  f (1  t) 0 可以变为 f (x2  x)  f (1  t) f (t  1) ,可知 x2  x t  1 ,t „ x2  x  1 ,x2  x  1  (x  1)2 2 3 3 ,可知实数 t „ 3 ,故实数 t 的取值范围为 (∞,3] .故选 C.44446. 【答案】A【解析】双曲线的渐近线方程为 y   3x ,可得双曲线的方程为x2  y2   ,把点 P(2,3) 代入可得 4  3= ,   1 ,双曲线的 3方程为 x2  y2  1,c2  1  3  4,c  2,F(2,0) ,可得 A(2,2 3) , 3B(2, 23),可得SAOB1 224343 .故选 A.7. 【答案】B【解析】 f (x)  sin(x  π )sin x  cos2 x3 (sin x cos π  cos x sin π )sin x  1  cos 2x332 3 sin 2x  1 cos 2x  3  1 ( 3 sin 2x  1 cos 2x)  3444 2224 1 sin(2x  π )  3264把函数 f (x) 的图象向右平移 π 单位,再把横坐标缩小到原来的一 6半,得到函数 g(x) ,可得 g (x)  1 sin(4x  π )  3 ,最小正周期为2642π  π ,故选项 A 错误; x  π , 4x  π  4  π  π  π ,故选426666 2项 B 正确;最大值为 1  3  5 ,故选项 C 错误;对称中心的方程 244为 (kπ  π ,3)(k  Z) ,故选项 D 错误.故选 B. 4 24 48. 【答案】D【解析】可知 BDC  120°,且 AD  3 ,BD  DC  1 ,在 BDC中,根据余弦定理可得 BC 2  1  1  2 11 cos120° 3, BC  3 ,据正弦定理可得 BC  2r , sin120°3 32r,r 1 , O1 为 BDC2的外心,过点 O1 作 O1O  平面 BDC , O 为三棱锥 A  BCD 的外 接球的球心,过点 O 作 OK  AD , K 为 AD 的中点,连接 OD 即为外接球的半径 R  12  ( 3 )2  7 ,可得外接球的表面积为22S  4πR2  4π  ( 7 )2  7π .故选 D. 29. 【答案】C【解析】二项式 (x  y)n 的展开式的二项式项的系数和为 64 ,可得 2n  64 ,n  6 ,(2x  3)n  (2x  3)6 ,设 x  1  t ,2x  3  2t  1 ,(2x  3)n  (2x  3)6  (2t  1)6  a 0  a1t  a 2t 2   a 6t 6 ,可得 Tr1  C64 (2t)6414  C64 22t 2  60t 2 ,可知 a2  60 .故选 C. 10.【答案】A【解析】设点 P(x0 ,y0) ,则 x0  y0  6  0 ,则过点 P 向圆 C 作切 线,切点为 A,B ,连接 AB ,则直线 AB 的方程为 xx0  yy0  4 ,可得y0x06,代入可得(xy) x06y40,满足 x y 0 6y  4  0 x 2 3,故过定点为M(2,2).故选A. y2 33311.【答案】B【解析】f (x)  log2 (x2  e|x|) ,定义域为 R ,且满足 f ( x)  f (| x |) ,当 x  0 时,单调递增,而 (5)0.2  1 , 0  (1)0.3  1 , b  a ,42cf(log 125)  4f( log25) 4f(log25 4),而0log25 4 log221, 2( 1 )0.3 21 2,  log 25 4 (1)0.3 , 2f(log25)  4f(( 1 )0.3 ) 2,故 c a,故 c  a  b .故选 B.12.【答案】D【解析】f (x1)  f (x2 ) x1  x21 x1x2,不妨设 x1x2 ,则f( x1) f (x2 ) 1 x21 x1,整理可得f (x1) 1 x1f (x2 ) 1 x2,设函数 h(x) f (x) 1 xa ln xx1 x在[e2 ,e4 ]上单调递减,可知 h'(x)a(1  ln x2x)1 x2„0,可知 a…1 1  lnx,而函数F ( x)1 1 lnx在[e2,e4 ]单调递增,F (x)maxF (4)11 41 3,可知实数a…1 3.故选D.二、填空题13.【答案】 9 5 5【解析】向量 a b在 a上的投影为| a b|cos (a b)  a|a| (1,5)  (1,2)  9 5 .5514.【答案】 5  2 6【解析】首先作出可行域,把 z  ax  by(a  0,b  0) 变形为 y  a x  z ,根据图象可知当目标函数过点 A 时,取最大值为 1, bb理科数学答案第 1 页(共 4 页) x 2x y 1 0 y40A(3,2),代入可得3a2b1,则1 a1 b3a a2b 3a  2b  3  2b  3a  2 5  2 2b  3a  5  2 6 ,当且仅当bababb  6 a 取等号,可知最小值为 5  2 6 .故选 C. 215.【答案】 4 3【解析】 cos A  cos B  2 3 sin C ,根据正弦定理 sin B cos A ab3asin Acos B  2 3 sin B sin C ,可知 sin( A  B)  2 3 sin B sin C ,33sin C  2 3 sin B sin C ,sin B  3 ,在 ABC 内,可知 B  π 或3232π ,因为锐角 ABC ,可知 B  π ,利用余弦定理可得 b2  a2  c2 332ac cos B  a2  c2  ac 2ac  ac  ac ,可知 ac „ 16 ,则 ABC 的面积的最大值 1 ac sin B „ 1 16  3  4 3 ,当且仅当 a  c 时,取222等号,故面积的最大值为 4 3 .16.【答案】 4 5【解析】抛物线 C :y2  2 px( p  0) 的准线方程为 x  2 ,可知抛物线 C 的方程为:y2  8x ,设点 A(x1 ,y1) ,B(x2 ,y2 ) ,AB 的中点为 M (x0 ,y0 ) ,则 y12  8x1 ,y22  8x2 两式相减可得 ( y1  y2 )( y1  y2 ) 8(x1 x2 ),y1  y2  x1  x2 8 y1  y2 ,可知    8  (1)  1 2 y0 x0  y0  6  0,解得  x0 y02 4,可得 M(2,4),则 OA  OB  2OM  2(2,4)  (4,8) ,可得 | OA  OB |  | (4,8) |  42  82  4 5 .三、解答题17.【解析】(1) a1  1,an1  2an  1 ,可得 an1  1  2(an  1) ,{an  1} 是首项为 2,公比为 2 的等比数列.--------------- 2 分  an  1  2  2n1  2n , an  2n  1 .即数列 { an } 的通项公式 an  2n  1 .--------------- 4 分数列 { bn } 的前 n 项的和为 Sn  n2 ,可得 b1  S1  1 ,当 n 2 时, bn  Sn  Sn1  n2  (n  1)2  2n  1 ,故数列 { bn } 的通项公式为 bn  2n  1 .--------------- 6 分(2)可知 cn  bn  an  (2n  1)  (2n  1) (2n  1)  2n  (2n  1) --------------- 7 分设 An  1 2  3 22  5  23   (2n  1)  2 n , 2 An  1 22  3  23    (2n  3)  2 n  (2n 1)  2 n 1 , 两式相减可得  An  2  2(22  23   2 n)  (2n  1)  2 n 1 ,可得 An  6  (2n  1)  2n1  2n2 ,--------------- 10 分而数列 {2n 1}的前n项的和为Bn(1 2n 1)  2nn2,所以 Tn  6  (2n  1)  2n1  2n2  n2 .--------------- 12 分 18.【解析】(1)证明: PD  面 ABCD , PD  BC ,在梯形 ABCD 中,过 B 作 BH  DC 交 DC 于 H , BH  1 ,BD  DH 2  BH 2  1  1  2 ,BC  2 ,( 2)2  ( 2)2  22 ,即 DB2  BC 2  DC 2 ,即 BC  DB .--------------- 2 分  BC  DB , PD  BD  D , BC  平面 PDB ,  BC  平面 EBC 平面 PBC  平面 PDB .--------------- 4 分 (2)连接 PH , BH  面 PDC ,BPH 为 PB 与面 PDC 所成的角, tan BPH  BH  1 , BH  1 , PH  2 , PH 2 PD2  DH 2  PH 2 , PD2  1  2 , PD  1 ,--------------- 6 分以 D 为原点,分别以 DA , DC 与 PD 为 x ,y ,z 轴,建立如图所示的E(空0间,2直,角12)坐,标可系知,则PBP(0(1,,01,,1) ,1)A,(A1,B0,(00),,1B,(01),1,,0) ,C (0,2,0) ,设平面PAB 可知 PB  a AB  a 设平面 PEB的法向量为 a  (x,y,z) , 0 0  xy y z 00,可取 a(1,0,1),-----------的法向量为 b(x,y ,z ) ,BE(1,1,1),8分2可知 PB BE  b b 0 0 x x y y z 1 2 z0 0 ,可取 b(3,1,4),-----10分可知两向量的夹角的余弦值为 cos  a  b  1 3  0 11 4| a || b | 1 1 32 1  42 7 13 ,可知两平面所成的角为钝角,可知两平面所成角的余弦 26值为  7 13 .--------------- 12 分 2619.【解析】(1)完成 2  2 列联表, 满意 不满意总计男生302555女生50合计80156540120 ----------- 4 分根据列联表中的数据,得到 K 2  120  (30 15  25  50)2 55 65 80  40 960  6.713  6.635 ,所以有 99% 的把握认为对“线上教育是否 143满意与性别有关”.--------------- 6 分(2)由(1)可知男生抽 3 人,女生抽 5 人,   0,1,2,3 .P(0)C53 C835 ,P( 28 1)C52C31 C8315 28,P(2)C51C32 C8315 ,P( 563)C33 C831 56.---------------8分可得分布列为0123P515152828561------------ 10 分56可得 E( )  0  5  1 15  2  15  3 1  9 .--------------- 12 分 28 28 56 56 820.【解析】(1)x2  4 y ,焦点 F (0 , 1) ,代入得 b 1,e  c  2 , a2a2  b2  c2 ,解得 a2  2,b2  1 , x2  y2  1 ,-------------- 2 分 2 直线的斜率为 1,且经过 (1,0) ,则直线方程为 y  x 1 ,联立   x2 2y2 1,解得y  x 1,x y 0 1或 x y 4 3 1 3, ,C(0,1) ,D( 4 ,1) ,--------------- 4 分 33理科数学答案第 2 页(共 4 页)| CD |  4 2 ,又原点 O 到直线 y  x 1 的距离 d 为 2 ,32 SCOD1 2| CD|d1 242 32  2 .--------------- 6 分 23(2)根据题意可知直线 m 的斜率存在,可设直线 m 的方程为: y  kx  t,ykxt,联立  x2  2y2 1,(2k 2 1)x24ktx2t 220,可得   (4kt)2  4(2k 2  1)(2t 2  2)  0 ,整理可得 t 2  2k 2  1 ,可知 F2 (1,0) , A(1,k  t),B(2,2k  t) ,--------------- 8 分则 | AF2 |  (1 1)2  (k  t  0)2 k 2  2kt  t2| BF2 | (2 1)2  (2k  t  0)2 1  (4k 2  4kt  t2) k 2  2kt  t2  2 为定值.--------------- 12 分 2k 2  4kt  2t 2 221.【解析】(1)函数 f (x) 的定义域为 (0, ∞) ,f (x)  x  a  1  x2  ax  1 ,设 h(x)  x2  ax  1 ,xx函数 h(x) 在 (1,3) 内有且只有一个零点,满足 h(1)  h(3)  0 ,可得 (1  a  1)(9  3a  1)  0 ,解得 2  a  10 , 3故实数 a 的取值范围为 (2,10) .--------------- 4 分3(2) 2 f (x)  2x  2 „ (a 1)x2 ,可以变形为 2ln x  2x  2 „a(x22x),因为x0,可得a…2ln x x2 2x   2x2,--------------6分设g(x)2ln x  2x  x2  2x2,g' ( x)2(x  1)(2ln x (x2  2x)2x).设 h(x)  2 ln x  x ,h(x) 在 (0, ∞) 单调递增,h(1 )  2ln 2  1  0 , h(1)  1  0 .22故存在一点 x0  (0.5,1) ,使得 h(x0 )  0 ,--------------- 8 分当 0  x  x0 时, h(x)  0,g'(x)  0 ,函数 g(x) 单调递增;当 x  x0 时, h(x)  0,g'(x)  0 ,函数 g(x) 的最大值为 g(x0) ,且 2 ln x0  x0  0 ,--------------- 10 分g (x)max g(x0) 2ln x0  2x0  2  x02  2x01 x0,可知 a 1 x0,又1 x0 (1,2) ,可得整数 a 的最小值为 2.--------------- 12 分22.【解析】(1)由题可知:2 2   2 cos2   6 , 2(x2  y2 )  x2  6 ,曲线 C 的直角坐标方程为 y2  x2  1 , 32直线 l 的普通方程为 3x  4 y  4  3a  0 ,--------------- 3 分两方程联立可得 33x2  6  (4  3a)x  (4  3a)2  48  0 ,可知   [6  (4  3a)]2  4  33  [(4  3a)2  48]  0 ,解得 a  66  4 或 a   66  4 .--------------- 6 分33(2)曲线 C 的方程y2x21,可设x 2 cos ,32 y  3 sin则 2x  3y  2 2 cos  3 3 sin  (2 2)2  (3 3)2 sin(  ) ,其中 tan  2 6 ,可知最大值为 9(2 2)2  (3 3)2  35 .--------------- 10 分 23.【解析】(1)当 a  1 时, f (x)  | 3x  6 |  | x  1 |  x 10 ,当 x  1时, (3x  6)  (x  1)  x 10 ,解得 x „ 1 , 可得 x  1;--------------- 2 分 当 1„ x „ 2 时, (3x  6)  (x  1)  x 10 ,解得 x „ 1 , 可得 x  1; 当 x  2 时, (3x  6)  (x 1)  x 10 ,解得 x 5 , 综上可得 {x | x 5或x „ 1} .--------------- 4 分 (2)由 f (x)  0 可知, f (x)  | 3x  6 |  | x 1| ax  0 , | 3x  6 |  | x 1|  ax ,设 g(x)  | 3x  6 |  | x 1| , h(x)  ax , 同一坐标系中作出两函数的图象如图所示,--------------- 6 分 4x  5,x  1, g(x)  2x  7,1„ x „ 2,可得 A(2,3) , 4x  5,x  2, 当函数 h(x) 与函数 g (x) 的图象有两个交点时,方程 f (x)  0 有两 个不同的实数根,--------------- 8 分由函数图象可知,当 3  a  4 时,有两个不同的解,故实数 a 的 2取值范围为 ( 3 ,4) .--------------- 10 分 2理科数学答案第 3 页(共 4 页)理科数学答案第 4 页(共 4 页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三第一次模拟考试卷理科数学(一)解析版一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,( ) A . B . C . D . 【答案】D【解析】由已知可得,,则.2.( ) A . B . C . D . 【答案】D【解析】由复数的运算法则可得:. 3.如图为某省年月快递业务量统计图,图是该省年月快递业务收入统计图,下列对统计图理解错误的是( ){}2|650A x x x =-+≤{|B x y ==A B =I [)1,+∞[]1,3(]3,5[]3,5[]1,5A =[)3,B =+∞[3,5]A B =I 34i 34i12i 12i+--=-+4-44i -4i ()()()()()()()()34i 12i 34i 12i 510i 510i 34i 34i 4i 12i 12i 12i 12i 5++----+---+--===-++-1201914~2201914~A .年月的业务量,月最高,月最低,差值接近万件B .年月的业务量同比增长率超过,在月最高C .从两图来看年月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从月来看,该省在年快递业务收入同比增长率逐月增长 【答案】D【解析】对于选项A :年月的业务量,月最高,月最低,差值为,接近万件,所以A 是正确的;对于选项B :年月的业务量同比增长率分别为,,,,均超过,在月最高,所以B 是正确的;对于选项C :年、、月快递业务量与收入的同比增长率不一致, 所以C 是正确的.4.已知两个单位向量,满足的夹角为( )201914~322000201914~50%3201914~14~2019201914~32439724111986-=2000201914~55%53%62%58%50%3201923412,e e 12|2|e e -=12,e eA .B .C .D . 【答案】C【解析】∵,∴, ∴,∴. 5.函数的部分图象大致为( )A .B .C .D .【答案】B【解析】的定义域为,∵, ∴函数奇函数,排除A 、D ,又因为当时,且,所以, 2π33π4π3π412|2|e e -121443e e +-⋅=1212e e ⋅=121cos ,2e e <>=12π,3e e <>=1()cos 1x x e f x x e +=⋅-1()cos 1x x e f x x e +=⋅-(,0)(0,)-∞+∞U 11()cos()cos ()11x x xx e e f x x x f x e e --++-=-⋅=-⋅=---1()cos 1x x e f x x e +=⋅-0x +→cos 0x >101x xe e +>-1()cos 01x x e f x x e +=⋅>-故选B .6.已知斐波那契数列的前七项为、、、、、、.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花朵,花瓣总数为,假设这种“雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有( )层. A . B . C . D . 【答案】C【解析】由题设知,斐波那契数列的前项之和为,前项之和为, 由此可推测该种玫瑰花最可能有层.7.如图,正方体中,点,分别是,的中点,为正方形的中心,则( )A .直线,是异面直线B .直线,是相交直线C .直线与所成的角为D .直线,所成角的余弦值为【答案】C11235813399567862073371111ABCD A B C D -E F AB 11A D O 1111A B CD EF AO EF 1BB EF 1BC 30︒EF 1BB 3【解析】易知四边形为平行四边形,所以直线,相交;直线,是异面直线;直线,C正确.8.执行如图所示的程序框图,输出的的值为()A. B. C. D.【答案】B【解析】第一次循环,,;第二次循环,,;第三次循环,,;第四次循环,,.可知随变化的周期为,当时,输出的.9.已知定义在上的奇函数满足,且在区间上是AEOF EF AOEF1BBEF1BBS0242-4S=1i=2S=2i=4S=1i=2S=2i=S i22019i=2S=R()f x(2)()f x f x+=-[1,2]减函数,令,,,则,,的大小关系为( )A .B .C .D . 【答案】C【解析】∵是上的奇函数,且满足, ∴,∴函数的图象关于对称,∵函数在区间是减函数,∴函数在上为增函数,且,由题知,,,∴.10.已知点是双曲线的右焦点,动点在双曲线左支上,点为圆上一点,则的最小值为( )A .B .C .D .【答案】A【解析】设双曲线的左焦点为,, ∴.ln 2a =121()4b -=12log 2c =()f a ()f b ()f c ()()()f b f c f a <<()()()f a f c f b <<()()()f c f b f a <<()()()f c f a f b <<()f x R (2)()f x f x +=-(2)()f x f x +=-()f x 1x =()f x [1,2]()f x [1,1]-(2)(0)0f f ==1c =-2b =01a <<()()()f c f b f a <<2F 22:193x y C -=A B 22:(2)1E x y ++=2||||AB AF +98C 1F 21126AF AF a AF =+=+216AB AF AB AF +=++=115559AB AF BE F E +++≥+==11.如图,已知,是函数的图象与轴的两个相邻交点,是函数的图象的最高点,且,若函数的图象与的图象关于直线对称,则函数的解析式是( )A .B .C .D .【答案】C【解析】由已知,得,则,, 于是,得, 又,∴,, 由,及,得,故, 因为与的图象关于对称,则. P Q ()sin()f x A x ωϕ=+π(0,0,||)2A ωϕ>><x R ()f x 3RP RQ ⋅=uu r uu u r()g x ()f x 1x =()gx ππ()sin()24g x x =+ππ()sin()24g x x =-ππ()2sin()24g x x =+ππ()2sin()24g x x =-3(,)2R A (1,)RP A =--u u r (1,)RQ A =-u u u r 213RP RQ A ⋅=-=u u r u u u r2A =51222T =-4T =2ππ2T ω==π12π22k ϕ⋅+=k ∈Z π||2ϕ<π4ϕ=-ππ()2sin()24f x x =-()g x ()f x 1x =ππππππ()(2)2sin[(2)]2sin[π()]2sin()242424g x f x x x x =-=--=-+=+12.已知三棱锥满足底面,在中,,,,是线段上一点,且.球为三棱锥的外接球,过点作球的截面,若所得截面圆的面积的最小值与最大值之和为,则球的表面积为( ) A . B . C . D . 【答案】C【解析】将三棱锥补成直三棱柱,且三棱锥和该直三棱柱的外接球都是球,记三角形的中心为,设球的半径为,,则球心到平面的距离为,即, 连接,则,∴,在中,取的中点为,连接,,则,,∴. 在中,,由题意得到当截面与直线垂直时,截面面积最小,设此时截面圆的半径为,则,所以最小截面圆的面积为,当截面过球心时,截面面积最大为, ∴,,球的表面积为.(或将三棱锥补成长方体求解).P ABC -PA ⊥ABC ABC △6AB =8AC =AB AC ⊥D AC 3AD DC =O P ABC -D O 40πO 72π86π112π128πP ABC -O ABC 1O R 2PA x =O ABC x 1OO x =1O A 15O A =2225R x =+ABC △AC E 1O D 1O E 1132O E AB ==124DE AC ==1O D =1OO D Rt△OD =OD r 2222225(13)12r R OD x x =-=+-+=12π2πR 212ππ40πR +=228R =24π112πR =二、填空题:本大题共4小题,每小题5分.13.已知曲线在点处的切线方程为,则实数的值为 . 【答案】【解析】,,∴. 14.已知等差数列的前项和为,满足,且,则最大时的值是 . 【答案】9【解析】设等差数列的公差为,由,可得, 即,得到, 所以,()(1)ln f x ax x =-(1,0)1y x =-a 21()ln ax f x a x x-'=+(1)11f a '=-=2a ={}n a n n S 711S S =10a >n S n {}n a d 711S S =1176111071122a d a d ⨯⨯+=+12170a d +=1217d a =-211111(1)(1)281()(9)22171717n a n n n n S na d na a n a --=+=+⨯-=--+由可知,故当时,最大. 15.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、異、震、坎、离、良、兑八卦)(“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为 .【答案】【解析】观察八卦图可知,含根阴线的共有卦,含有根阳线的共有卦,含有根阴线根阳线的共有卦,含有根阴线根阳线的共有卦, 故从八卦中任取两卦,这两卦的六根线恰有两根阳线,四根阴线的概率为. 16.点,是抛物线上的两点,是拋物线的焦点,若,中点到抛物线的准线的距离为,则的最大值为 .10a >1017a -<9n =n S 3143131213123123328C C 3C 14+=A B 2:2(0)C y px p =>F C 120AFB ∠=︒AB D C d ||dAB【解析】设,,则,, ∴, 当且仅当a b =时取等号.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)的内角所对的边分别为,已知.(1)求的大小;(2)若,,且的面积为.【答案】(1);(2).【解析】(1)由,得,所以,即, 所以有,因为,所以,所以,,所以, AF a =BF b =2a bd +=222222cos AB a b ab AFB a b ab =+-∠=++3d AB ==≤=ABC △,,A B C ,,a b c 22()sin a c b C +=+B 8b =a c >ABC △a π35+()22sin a c b C +=+2222sin a c ac b C ++=+2222sin a c b ac C +-+=()2cos 1sin ac B C +=()sin cos 1sin C B B C +=(0,π)C ∈sin 0C >cos 1B B +=cos 2sin 16πB B B ⎛⎫-=-= ⎪⎝⎭1sin 2π6B ⎛⎫-= ⎪⎝⎭又,所以,所以,即. (2)因为, 又,所以,把代入到中,得. 18.(12分)如图所示的多面体中,四边形是边长为的正方形,,,,平面.(1)设与的交点为,求证:平面; (2)求二面角的正弦值.【答案】(1)证明见解析;(2). 【解析】(1)证明:由题意可知:平面,从而,∴,又为中点,∴,在中,,∴,∴,0πB <<ππ5π666B -<-<6ππ6B -=π3B =11sin22ac B ac==12ac =22222cos ()3b a c ac B a c ac =+-=+-=2()3664a c +-=10a c +=10c a =-12()ac a c =>5a =+ABCDEF ABCD 2ED FB ∥12DE BF =AB FB =FB ⊥ABCD BD AC O OE ⊥ACF E AF C --3ED ⊥ABCD EDA EDC ≅Rt Rt △△EA EC =O AC DE AC ⊥EOF △3OE OF EF ===222OE OF EF +=OE OF ⊥又,∴平面. (2)面,且,如图以为原点,,,方向建立空间直角坐标系,从而,,,,,由(1)可知是面的一个法向量,设为面的一个法向量,由,令,得, 设为二面角的平面角,则,, ∴二面角19.(12分)设椭圆的左焦点为,右焦点为,上顶点为是坐标原点,且AC OF O =I OE ⊥ACF ED ⊥ABCD DA DC ⊥D DA DC DE (0,0,1)E (2,0,0)A (0,2,0)C (2,2,2)F (1,1,0)O (1,1,1)EO =-uu u rAFC (,,)x y z =n AEF 22020AF y z AE x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩n n uu u r uu u r 1x =(1,2,2)=-n θE AF C --|||cos ||cos ,|3||||EO EO EO θ⋅=<>==⋅n n n uu u ruu u r uu u r sin θ∴=E AF C --2222:1(0)x y C a b a b+=>>1F 2F B O 1||||OB F B ⋅=(1)求椭圆的方程;(2)已知过点的直线与椭圆的两交点为,,若,求直线的方程.【答案】(1);(2).【解析】(1)设椭圆的焦距为,则, ∵,∴,又,,∴,∴,∴. (2)由(1)知,,设直线方程为,由,得,设,,则,, ∵,∴,∴,∴,∴,∴,∴,∴. ∴的方程为.C 1F l C M N 22MF NF ⊥l 22132x y +=10x ±+=C 2c c a =a =222a b c =+b =1OB F B ⋅OB b =1F B a =ab =2=1c =a =b =22132x y +=1(1,0)F -2(1,0)F l 1x ty =-221132x ty x y=-⎧⎪⎨+=⎪⎩22(23)440t y ty +--=11(,)M x y 22(,)N x y 122423t y y t +=+122423y y t -=+22MF NF ⊥220F M F N ⋅=uuuu r uuu r1212(1)(1)0x x y y --+=1212(11)(11)0ty ty y y ----+=21212(1)2()40t y y t y y +-++=22224(1)8402323t t t t -+-+=++22t =t =l 10x ±+=20.(12分)已知函数,为的导数,证明:(1)在区间上存在唯一极大值点; (2)在区间上有且仅有一个零点. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由题意知:定义域为,且.令,,,.∵在上单调递减,在上单调递减,在上单调递减.又,, ∴,使得,∴当时,;当时,, 即在区间上单调递增;在上单调递减,则为唯一的极大值点,即在区间上存在唯一的极大值点.(2)由(1)知,且在区间存在唯一极大值点,1π()4cos()23xf x x e =--()f x '()f x ()f x '[π,0]-()f x [π,0]-()f x (,)-∞+∞1π()2sin()23xf x x e '=---1π()2sin()23xg x x e =---[π,0]x ∈-1π()cos()23xg x x e '=---[π,0]x ∈-xy e =-[π,0]-1πcos()23y x =--[π,0]-()g x '[π,0]-π(0)cos()103g '=---<ππππ1(π)cos()023g e e-'-=----=->0(π,0)x ∃∈-0()0g x '=0[π,)x x ∈-()0g x '>0(,0]x x ∈()0g x '<()g x 0[π,)x -0(,0]x 0x x =()g x ()f x '[π,0]-0x 1π()2sin()23xf x x e '=---()f x '[π,0]-在上单调递增,在上单调递减,而,,故在上恒有,∴在上单调递增,又,,因此,在上有且仅有一个零点.21.(12分)月,全国美丽乡村篮球大赛在中国农村改革的发源地—安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置,甲先投,每人投一次球,两人有人命中,命中者得分,未命中者得分;两人都命中或都未命中,两人均得分.设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率. ①求,,;②规定,经过计算机计算可估计得,请根据①中,,的值分别写出,关于的表达式,并由此求出数列的()f x '0[π,)x -0(,0]x ππππ1(π)2sin()1023f e e-'-=----=->π(0)2sin()1103f '=---=>()f x '[π,0]-()0f x '>()f x [π,0]-ππππ1(π)4cos()023f e e --=---=-<π(0)4cos()1103f =--=>()f x [π,0]-112019111-012231X X n i p i 1p 2p 3p 00p =11(1)i i i i p ap bp cp b +-=++≠1p 2p 3p a c b {}n p通项公式.【答案】(1)见解析;(2)①,,;②,,.【解析】(1)的可能取值为,,.,,.∴的分布列为(2)①由(1)知,, 经过两轮投球甲的累计得分高有两种情况:一是两轮甲各得分; 二是两轮有一轮甲得分,有一轮甲得分,∴, 经过三轮投球,甲的累计得分高有四种情况:一是三轮甲各得分;二是三轮有两轮各得分,一轮得分;三是轮得分,两轮各得分;四是两轮各得分,轮得分,116P =2736P =343216P =6(1)7a b =-1(1)7c b =-11(1)56n n P =-X 1-01121(1)(1)233P x =-=-⨯=12121(0)(1)(1)23232P x ==⨯+-⨯-=121(1)(1)236P x ==⨯-=X 16P =10112211117C ()()662636P =⨯+=110110111-∴.②由,知, 将,,,代人,求得,, ∴,,∴,∴.∴, ∵,∴是等比数列,首项和公比都是. , ∴. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为,的参数方程为(为参数).(1)写出曲线的直角坐标方程和的普通方程;322122233331111111()C ()()C ()()C ()()6626263P =+++11i i i i P aP bP cP +-=++1111i i i a cP P P b b+-=+--00P =116P =2736P =343216P =617a b =-117c b =-6(1)7a b =-1(1)7c b =-116177i i i P P P +-=+117166i i i P P P +-=-111()6i i i i P P P P +--=-1016P P -=1{}n n P P --16116n n nP P --=01021111(1)1166()()()(1)15616n n n n n P P P P P P P P --=+-+-++-==--L xOy O x 1C 2sin ρθ=2C 1122x t y ⎧=-+⎪⎪⎨⎪=⎪⎩t 1C 2C(2)设点为曲线上的任意一点,求点到曲线距离的取值范围.【答案】(1),;(2). 【解析】(1)的直角坐标方程,的普通方程.(2)由(1)知,为以为圆心,为半径的圆,的圆心到的距离为, 则与相交,到曲线距离最小值为,最大值为, 则点到曲线距离的取值范围为. 23.(10分)【选修4-5:不等式选讲】 已知,,.证明:(1); (2). 【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)∵,,,∴,, ∴,P 1C P 2C ()2121:1x y C +-=20C y -=[1C ()2211x y +-=2C 0y -+=1C (0,1)1r =1C (0,1)2C 112d ==<1C 2C P 2C012d r +=P 2C [0a >0b >23a b +=2295a b +≥3381416a b ab +≤0a >0b >23a b +=320a b =->302b <<222222699(32)51295()555a b b b b b b +=-+=-+=-+≥∴当,时,的最小值为, ∴. (2)∵,,,∴,当且仅当时,取等号,∴, ∴时,的最大值为,∴.65b =3325a b =-=22a b +952295a b +≥0a >0b >23a b +=3≥908ab <≤322a b ==334a b ab +22(4)ab a b =+2[(2)4]ab a b ab =+-22819(94)94()4()168ab ab ab ab ab =-=-=--98ab =334a b ab +81163381416a b ab +≤。

相关文档
最新文档