波分知识讲座(华为)
华为100G波分设备产品资料(OSN 9800 系统硬件介绍)
支持主流中继板。但由于散热不支持双槽位 100G中继、40G中继
TN52SCC
TNF8SCC
和9800/9600电子架共软件包
和1832电子架共2筛选 1832包装单板
筛选支持。但由于散热不支持双槽 位100G中继、40G中继
1832包装单板
TN15AFB
2022/3/23
OptiX OSN 9800/9600 产品系统硬件
修订记录
内容信息
文档名称
OptiX OSN 9800 V100R001C00系统硬件介绍
目标受众
华为公司网络产品线技术服务工程师、培训工程师、合作工程师等
本课程介绍NG WDM智能光传送平台根据以IP为核心的城域网发展趋势而推出,NG WDM采用全 新的架构设计,可实现动态的光层调度和灵活的电层调度。 本文档适用的产品和版本为: OSN9800/9600,V100R001C00 培训目标: 了解NG WDM 9800/9600产品的架构,系统功能,硬件组分,单板功能,以及产品安装。
版本信息
版本 /日期
变更描述
作者/工号
责任部门
20130531
初始版本
常天海/00134105 传送网研发
Page 2
产品总体介绍
Page 3
OSN 9800/9600 网络应用场景
国干 省干
城域核心
OSN 1800 II
OSN 8800 T32
OSN 1800 I
OSN 8800 T16
OSN 8800 T64
OTN智能,覆盖光层和电层
Page 5
OSN 平台子架概述
6800平台子架
R7C00 8800平台子架
华为波分技术-自动光功率均衡_APE_
OTU OTUFF I 源自UU调节站点 检测站点
WSS调节模式
图 11-4所示<a href="/">魔兽世界私服</a>为这种应用模式 的组网图。 APE功能中,接收端的 MCA单板检测每个通道的光功率均衡。根据检测值, 发送端 WSM9/WSMD4/WSMD2单板调节光功率衰减值平衡每通道光信噪比。通过监控信道 (如 SC1和 SC2)实现站点之间的通信。 图 11-4 APE组网(WSS模式)
11.5.1 配置原则
APE是可选功能,根据用户要求选择配置。
网络级配置原则
启动 APE调节功能,首先必须将调节站点的调节板与监测站点的检测板的任意一个光 口配成一个 APE功能对,并设定 APE调节使能。
由于 DWDM为双纤双向系统,可以在两个方向上各配置一个 APE对,每个 APE对配置 一块检测板,一块调节板。
11自
动光功率均衡( APE)
关于本章
11.1 APE简介 系统提供 APE(Automatic Power Equilibrium)功能。通过启动 APE调节,保证接收 端光功率的平坦性从而保证信噪比。 11.2 可获得 性介绍了支持 APE功能的设备类型及软件版本等相关信息。 11.3 功能实 现APE功能的实现是通过各种功能单元单板相互配合,共同完成的。 11.4 APE的应用 APE功能可用于链形或环形组网的任意两个站点中,这里介绍站点间 APE的应用方式。 11.5 配置 A介PE绍了 APE的配置原则和配置步骤。 11.6 参数说明:光功率均衡 自动光功率预均衡的配置通过本界面实现。可设置 APE对,设置波长监视标志,固化功 率标准曲线,启动、停止 APE调节。 11.7 配置示 例本节以 P项目为例,介绍 APE的配置方法。 11.8 验证 APE APE功能可保证接收端光功率的平坦性从而保证信噪比,测试 APE可以检测该功能是否 正常启动。 11.9 例行维 护采用 APE(Automatic Power Pre-Equilibrium)功能,避免因光纤传输条件的变化而 导致各通道功率的平坦性发生变化,使接收端各信道的功率均衡且信噪比得到优化。检 查 APE功能,保证接收端光功率的平坦性,从而保证信噪比。 11.10 故障处 理介绍了 APE常见故障的处理方法。 11.11 相关告 警无
华为波分技术-光线路保护技术
图 1-3光线路保护应用(正常)
OTMA OTMB :工作信号流向 :保护信号流向
由图 1-3可见,正常情况下,在 A站发 B站收方向,A站 OLP将信号同时发往工作和保 护线路光纤,B站 OLP选择接收工作线路光纤传来的信号。
在 B站发 A站收方向, B站 OLP将信号同时发往工作和保护线路光纤, A站 OLP选择接 收工作线路光纤传来的信号。
输入光功率差异为工作通道输入光功率变化值与保护通道输入光功率变化值之差。
上述告警产生机理请参见《告警和性能事件参考》。
OptiX BWS 1600G
特性描述
1 光线路保护
工作原理
光线路保护采用两对光纤,一对为工作路径,在线路正常情况下传送业务信号;另一 对为保护路径,在线路发生断纤或信号衰减过大情况下,承载保护信号。 OLP单板采用的保护方式为双发选收、单端倒换。如图 1-1所示, OLP板的 RI1/TO1 光口对应工作线路光纤,RI2/TO2光口对应保护线路光纤。
: 固定光衰减器
站点 A
站点 B
操作步骤
步骤 1如图 1-5所示,在 A站客户侧接入 SDH/SONET分析仪,B站客户侧用光纤跳线环回。步骤 2利用信号分析仪测试光通道,<a href="/">魔兽sf</a>确保无误码产 生。步骤 3登录网管,在拓扑图上,双击光网元的图标,打开光网元的状态图。步骤 4右键单 击网元,选择“网元管理器”,进入“网元管理器”窗口。步骤 5在网元管理器左边导航树中选择 网元,在功能树中选择“配置 > 光线路保护”。步骤 6单击“查询”,保护对列表列出所有光线路 保于护正对常。状保态护,对并的且倒业换务状处态在和工通作道通状道态。应步处骤 7可采用三种方式执行光线路保护倒换测试: 如 图 1-6所示,拔掉站点 A的 OLP单板接收端口 RI1 的光纤实现倒换。 在 光线路保护 中 右键单击选定的保护对,选择 强制倒换到保护通道 实现倒换。 在 光线路保护 中右键 单击选定的保护对,选择 人工倒换到保护通道 实现倒换。
华为的波分原理教程
单模光纤的非线性效应
• 受激非弹性散射
– 受激拉曼散射 – 受激布里渊散射
• 克尔效应
– 自相位调制 – 交叉相位调制
• 四波混频
1. 低啁啾、高波长稳定性的激光源 2. 低噪声系数、增益平坦的光放大器 3. 稳定可靠的各种光无源器件(复用器、解
复用器、光纤光栅、隔离器等)
光源\ 光接收机
无源光器件
R R x x N 2f f R N 2 R 2 1S S D D 2 D n D E M U X M P I- R S ’ O AR ’ M P I- S M U X R R m m n 2 S 2 T T x x N 2
单纤单向系统和单纤双向系统
单纤双向传输方式
… … … … …
…
λ1 λ2
DCF色散补偿光纤
G.652、G.655(LEAF、TRUEWAVE)在1550窗口有正色 散系数及正色散斜率,信号传输时造成正色散的累积, 使脉冲展宽。 补偿原理:DCF光纤有负色散系数,在传输光纤中接入 这种光纤可抵消正色散,使脉冲得到压缩(DCF色散补 偿器)。 SDH系统补偿,只需一定的色散补偿量;DWDM系统补 偿,色散量一定,且要求DCF有适当的负色散斜率。
S D 1 R 1
T x 1
R x 1
S 1
T T x x N 2f f S N 2 2 R R m m 2 n M U X M P I- S R ’O AS ’ M P I- R D E M U X S S D D n 2R 2 R R x x N 2
S n
R n
O S C
R x 1
T x 1
T
λ3 λ1
λ3 λ1
T+ΔT
华为OptiX BWS 1600G波分原理52页PPT文档
1
1 2
n
2
┉
┋
n
第7页
1、波分复用技术
华为公司WDM产品的演变
160×10Gb/s 32×10Gb/s 32×2.5Gb/s 16×2.5Gb/s 4×2.5Gb/s
第8页
1、波分复用技术
单向WDM
光源λ1
光源λ2
光
复
用
OA
器
OA
OA
光源λN
λ1~λN
光检测 器λ1
光 解 复
光检测 器λ2
WDM为运营商提供了经济的传 输网络组网方式;目前华为公司 商用的波分容量已经达到 1600Gbit/s。而实验室中还在进 行更大容量的WDM实验。
全光网络、网络融合、MSTP、光交 叉连接与波长路由器已经问世。未 来网络中数据与光将结合,向光组 网的转变是宽带革命的核心 。
第4页
1、波分复用技术
第18页
2、传输媒质
传输媒质分类
G.652光纤:大量铺设,传高 速信号需色散补偿
17
色散系数 (ps/nm·km)
1310
G.653光纤:1550nm波长区混频 严重,不适合DWDM
正色散系数G.655光纤
1550
波长λ(nm)负色散系 数G.655光纤
1.1550nm 波 长 区 具 有 最 小 色 散 和 衰 减 , 适 合 DWDM系统、高速信号传输 2.应用:TrueWave真波光纤(正色散区的SPM效 应有利于传输);LEAF-大有效面积光纤(克服非 线性效应)
华为OptiX BWS 1600G波分培训
传输部 2019年5月30日
第1页
目录
一、波分原理 二、系统硬件 三、设备原理及组网 四、信号流及光功率计算 五、网络设计
华为 G波分设备产品资料 OSN 系统硬件介绍
SLOT 15
SLOT 14
SLOT 13
SLOT 12
SLOT 11
SLOT 10
SLOT 9
SLOT 8
SLOT 7
SLOT 6
SLOT 5
SLOT 4
SLOT 3
SLOT 2
SLOT 1
101
IU22 110
槽位说明 主控/业务兼容槽位
通用CHNOLOGIES CO., LTD.
U32供电区域 系统区,必配63A IU17~IU32 B路 IU01~IU16 A路 IU17~IU32 A路 IU01~IU16 B路
总装 机柜编码 02114123
02113989
02113854 02113853 02300756 02300754
机柜可实现子架配置类型
备注
总装机柜-OptiX OSN E9800&9600-TNVB1RACK03-N66B型 TSI机柜(2200*600*600mm,LSZH)无子架(1*U32+4*通用 型平台子架)
OTN智能,覆盖光层和电层
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 5
OSN 平台子架概述
6800平台子架
R7C00 8800平台子架
R7C00 1832平台子架
V1R1C00 9800 P18平台子架
各种平台子架之间的关系
都是基于R6C05开发的6800平台子架基础上生成,背板、机箱、风扇、AUX、EFI相同 1832平台子架主控使用TNF8SCC,8800和9800 P18平台子架使用TN52SCC 各产品支持的光层板、电中继板清单不同
华为波分技术-只能光功率调节
图 8-1 IPA功能描述
站点 A站点
B
当光信号恢复正常后,光放大器 3和 1的激光器被重新启动,继续工作。
8.3.3 激光器重启动
线路恢复以后,IPA可以打开控制实施板激光器。 在 IPA判断断纤之后关断控制实施板的激光器,此后通过重启动控制实施板的激光器, 探测线路是否恢复正常。 IPA重启动的方式有以下两类: 脉冲重启动 在 IPA判断断纤<a href="/">魔兽私服</a>之后关断控制 实施板的激光器,并需要发送重启动脉冲以检测传输链路是否已经恢复正常。脉冲 重启动有以下三种方式: 自动重启动 在 重启方式 为 自动 ,并且 脉冲重启动开关 为 打开 时,控制实施 板每隔 关断持续时间 ,将打开激光器测试线路是否恢复正常。如线路正常 IPA将结束;如线路仍不正常,在经过 打开持续时间 后,激光器关闭;并重 复以上过程直至线路恢复正常为止。 人工重启仅在 重启方式 为 人工 时有效。人工执行 人工重启 后,控制 实施板的激光器仍持续关闭 关断持续时间 后, 打开激光器测试线路是否恢复正 常,如线路正常 IPA将结束;如线路仍不正常,在经过 打开持续时间 后,激光 器关闭。 测试启动仅在 重启方式 为 人工 时有效。人工执行 测试启动 后,控制 实施板的激光器立即打开,测试线路是否恢复正常,如线路正常 IPA将结束;如 线路
8.3.3 激光器重启 动
线路恢复以后,IPA可以打开控制实施板激光器。 8.3.4 涉及的单 列举了 IPA功能涉及的单板及作用。 板
8.3.1 断纤检测
在配置 IPA后,通过 IPA的检测板和辅助检测板接收的告警判断是否发生断纤。 IPA功能的断纤检测有二种方式: 光放大器 LOS检测 元的光信号检测 通过以上检测方式的任意组合选取,可以更为准确的识别光纤断纤情况。断纤处理逻辑 如下: 当所有已配置的检测条件同时满足断纤条件时,启动 IPA关断进程。 只要任 一检测条件恢复正常,启动 IPA恢复进程。 OptiX BWS 1600G系统的各检测板及辅助检测板的 IPA断纤判断条件相关告警如表 8-2 所示。 表 8-2 OptiX BWS 1600G各检测板及辅助检测板的 IPA断纤判断条件相关告警 辅助检测单
华为波分技术-光放大技术
激光器等级 E3OAUC05/E4OAUC05单板激光器等级: CLASS 3B 其
它 OAU单板激光器等级: CLASS 1M
9.1.5 版本描 述
9.1.6 网管配 置
表9-1 OAU单板版本描述
对光功率的检测和上报 提供泵浦激光器的温度控制 提供 泵浦驱动电流、背光电流、制冷电流、泵浦激光器温度的检测 和单板环境温度的检测
9.1.3 工作原理及信号
流原理
C-band的 OAU C-band OAU主要包括 E3OAU和 E4OAU单板,功能框 图如图 9-2所示。
图9-2 OAU单板功能框图
传输距离
光无中继传输段长度可达 80~120km
功能与特性 增益调节
描述
OAU单板可以实现增益调节功能。 E3和 E4OAU的 C波段波 长通道的增益可以在增益边界 ±2.5 dB范围内调节。根据需要具 有不同的典型增益;可以支持系统实现不同跨段的无电中继传 输
在线光性能监测
增益锁定技术
瞬态控制技术 性能监视与告警监 测
表9-4光功率放大器 E3OAUC01指标要求
项目
标称增益
通道分配
总输入功率范围
单通道输入 功率范围
40通道 80通道
160通道
噪声指数(NF)
输入反射系数
输出反射系数
泵浦在输入端的泄漏
输入可容忍的昀大反射系数
输出可容忍的昀大反射系数
昀大总输出功率
通道增加/移去的增益响应时 间
通道增益
单位
nm dBm dBm dBm dBm dB dB dB dBm dB dB dBm ms
华为波分技术-自动功率控制_ALC_
Pout1
图 10-4 ALC单站异常检测流程图
–首节点定时发起查询, ALC检测开始后,上游节点每 10秒钟向下游传送其输出光
功率值 Pout1及增益与衰减的偏差值 Paccumulate offset1。下游节点未收到上游节点的
这些参数值时,将主动向上游节点查询。 –检测节点查询本节点输入光功率 Pin2
10.11 相关告 警无
10.12 相关性能事 件无
10.1 ALC简介
系统提供 ALC(Automatic Level Control)功能。当某一段线路衰减增加时,只会引 起该段放大器的输入功率下降,输出功率和下游其他放大器的输入、输出功率都不会 改变。 在 DWDM系统应用中,光纤老化、光连接器老化或人为因素都可能引入线路的异常衰减。 对于光放大器仅为增益控制模式的系统,当某一段线路衰减增加时,下游所有光放大器 的输入和输出功率都将下降,系统的 OSNR将变差,同时接收机接收到的光功率也会下 降,这将极大影响接收性能。而且发生衰减增大的线路越靠近发送端对 OSNR的影响就 越大。图 10-1表示光纤线路发生异常衰减时,系统各光线路放大中继站的功率变化情 况。 对于采用 ALC模式的系统,当某一段线路衰减增加时,只会引起该段放大器的输入功率 下降,输出功率和下游其他放大器的输入、输出功率都不会改变,因此对 OSNR的影响 相对小得多,并且接收机接收到的光功率不会发生变化。图 10-2表示光纤线路发生异 常衰减时,采用 ALC模式的系统各光线路放大中继站的功率变化情况。
10.3.1 ALC单站异常检测
介绍了当系统光功率异常时,ALC的检测过程。
链路衰减调节模式单站 ALC功能的实现步骤如下,上下游节点之间的关系示意图如图 10-3所示,图 10-4所示为此模式的 ALC单站异常检测流程:
华为波分技术-子架间波长保护技术
BER为 10e-4时,为 180ms。 BER为 10e-5时,为 1080ms。
各种 OTU单板会上报不同的告警,各种告警产生机理请参考《告警和性能事件参考》。
图 6-1子架间波长保护原理
A : 工作信号流向
B : 保护信号流向
图 6-1中同一站点的每一组收发 OTU是同一块板,同一站点的收发 OLP是同一块板。
SCC与 OTU之间经过背板进行通信,图 6-1中未示出。
正常情况下,在发送端利用一块 OLP板将客户侧设备的业务分为两路,分别送往 工作 OTU(OTU1)和保护 OTU(OTU2)。 工作及保护波长路由上的业务到达收端后,首先由 OTU板完成信号检测,若检测 正常,则工作 OTU和保护 OTU的信号均送到 OLP。再由 OLP进行工作、保护两 路信号光功率比较,选择工作信号送往客户侧设备。 当收端 OTU1检测到信号异常时,满足触发条件时,上报 SCC板, SCC板对 OTU1 和 OTU2进行控制:OTU1的客户侧激光器关闭、OTU2的客户侧激光器正常工 作。仅来自保护波长路由的信号被送往 OLP板。OLP板进行光功率比较,仅保护 波长有光,将保护信号送往客户侧设备。 工作波长路由恢复正常后,根据在网管上预先的配置,业务信号可以恢复到 OTU1 上,也可以保持在 OTU2上。
子架间波长保护采用首端双发、对端选收的方式,工作及保护 OTU可以在不同子架中。 用 OLP板实现的保护和用 DCP板实现的保护原理相同,区别在于 OLP板针对 1路业务实 现保护,DCP板可同时对 2路业务实现保护。 下面以 OLP板实现的子架间波长保护为例介绍,其原理如图 6-1所示。此时,工作和保 护 OTU可以放置在不同子架。工作和保护信号可经过不同路由到达接收端。 OLP及 DCP板工作原理介绍请参见《硬件描述》。
华为波分技术-客户侧1+1保护技术
当收端保护板(OLP/DCP)检测发现工作通道线路信号有 SF/SD告警时,将上报 SCC 板并由 OLP/DCP板将信号自动倒换到保护通道中,从而确保业务不因工作通道异常 而中断。
3.4 扩展板内波长保护的应
用
介绍扩展板<a href="/">魔兽世界私服</a>内波长保护
可单击“保护组名(波长保 护组)”获取详细信息。
保护类型参数值域随单板和产品不同标识波长保护的类型。而有差异。可单击“保护 类型(波长保护组)”获取详细信息。
控制通道例如:NE185-11-OLP-1 保护倒换单板的控制通道。(RI1/TO1)
检测通道例如:NE185-11-OLP-2 保护倒换单板的检测通道。(RI2/TO2)
图 3-2扩展板内波长保护应用(正常)
:工作信号流向
OADM A OADM B
:保护信号流向
:光信号
由图 3-2可见,正常情况下,A站 OLP板将 OTU板的业务信号分为主备两路,并经工作 和保护路由将业务同时发往 B站。信号到达 B站后,OLP板仅将来自工作路由的信号经 OTU送到客户设备。
同样,在 B站 OTU将信号经两条路由同时发往 A站。在 A站,OLP板仅将来自工作路由 的信号送到 OTU板,并昀终送至客户侧设备。
常SD后O到LP倒板换的完成RI的1/TO1光口对应工作通道,RI2/TO2光口对应保护通道。
时间为 50ms。SD
O误L码P/检DC出P时板间工如作原理介绍请参见《硬件描述》。
下: BER为
图10e-B33E-时R1为扩,为展109e板0-m4内s。波长保护原理
时,为 180ms。
BERቤተ መጻሕፍቲ ባይዱ 10e-5
波分原理
Multiplex)
第二种分类: 第二种分类:
单向WDM 单向 双向WDM 双向
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 5
CWDM简介(1)
CWDM载波通道间距较宽,因此一根光纤上只能复用2到16个左 载波通道间距较宽,因此一根光纤上只能复用 到 个左 载波通道间距较宽 右波长的光信号。 右波长的光信号。 CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光, 调制激光采用非冷却激光, 采用的是冷却激光, 调制激光采用非冷却激光 采用的是冷却激光 整个CWDM系统成本只有 系统成本只有DWDM的30%。 整个 系统成本只有 的 。 稀疏波分复用系统一般工作在从1260nm到1620nm波段,间隔 到 波段, 稀疏波分复用系统一般工作在从 波段 个信道。 为20nm,可复用 个信道。 ,可复用16个信道
pulse
Fiber cladding
pulse
λ1 λ2 λ3 ...
Fiber core
Fiber cladding
λ1 λ2 λ3 ...
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 13
波分介绍
传统波分WDM 传统波分WDM OTN波分 OTN波分
Huawei Confidential
Page 11
光纤的损耗
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗 三种损耗。 衰减系数
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 12
光纤中的色散
传输技术培训:100G OTN波分系统
业界各厂家100G单项能力评 估
VS
OSN 8800 OSN 9600
100G商用度
100G编码 是否支持100G
OTN 100G OTN设备 交
叉容量 100G板卡 100G光模块
ADC&DSP芯片
华为 规模商用 软判+硬判
支持
6.4T/10T+ 支线路合一、分离
自研 自研
F5000 Z8700 ……
10G/40G/100G系统参数对比
100G系统的传输容量可达8Tbps(80×100G)。 100G系统比40G系统在色散容限、PMD容限方面具有巨大优势,基本
无需色散和PMD补偿,而保护能力与10G系统相同。
(中兴资料)
第 7页
100G OTN设备性能对比
华为优势领先,中兴、烽火紧随其后。
第 5页
需要注意的问题
100G OTN商用刚刚开始,实际工程中可能出现的问题还不太明确, 可预测注意以下几个方面的问题:
OLA的选用和配置对OSNR造成的影响; 非线性效应问题; 非矩形带通频谱ROADM级联说导致的窄带滤波效应问题; 不同速率、不同调制方式数据混传导致的串扰问题。
第 6页
样量化为数字信号后,数字信号处理技术可实现载波频率相位估计和 线性相位噪声的均衡和补偿;还可采用前向纠错编码FEC对误码进行 修复。从而实现提高数据传输的可靠性、可行性。
FEC:
✓ 硬判:通过级联各种FEC编码算法以获得更大的编码增益。 ✓ 软判:采用多个比特位对信号进行量化,以此提高FEC编码增益。
第 3页
技术优势
100G PM-QPSK调制(相干检测偏振复用正交相移键控):
采用恒定幅度4级相位调制和正交偏振复用相结合的方式获得十六进制调制的 效果(4bit)。
精选华为OTN技术培训教程(PPT4)
目录
• OTN技术概述 • 华为OTN产品介绍 • OTN技术原理与协议栈 • 华为OTN设备配置与操作指南 • 华为OTN网络规划与优化建议 • 案例分析:华为OTN技术在行业应用实践
OTN技术概述
01
OTN定义与发展
OTN(Optical Transport Network, 光传送网)是以波分复用技术为基础、 在光层组织网络的传送网,是下一代 的骨干传送网。
OH)
传输媒质层
与传输媒质有关,支持一个或多 个光复用段或光通道的连接功能
关键协议解析及作用
G.709协议
定义了OTN的帧结构、开销、映 射和复用等,是OTN技术的核心
协议
G.798协议
定义了OTN的网络管理接口和信息 模型,用于实现OTN网络的配置、 故障、性能和安全等管理功能
G.872协议
定义了OTN的体系结构和网络功能, 包括光层和电层的网络功能、各层 网络之间的关系以及客户信号的适 配和映射等
随着IP业务的迅速增长,OTN技术已 成为承载IP业务的主要传送技术之一。
OTN技术经历了从SDH、WDM到 OTN的演进过程,OTN通过G.709、 G.798、G.872等一系列ITU-T建议规 范了新一代数字传送体系。
OTN技术特点与优势
OTN技术特点 多种客户信号封装和透明传
大颗粒的带宽复用、交叉和配置
设备故障排查与处理技巧
故障现象识别
准确识别设备故障现象,如 告警信息、业务中断、性能 下降等。
故障定位与诊断
利用设备提供的故障定位工 具和命令,结合网络拓扑和 业务配置信息,进行故障定 位和诊断。
常见故障处理
故障预防与维护
第二节华为波分
第二节 SBS W32 DWDM设备2.1 SBS W32 DWDM设备概述SBS W32 DWDM波分复用设备是华为公司推出的新一代大容量、长距离密集波分复用光传输系统。
是华为SBS光传输家族中的一员,它继承了SBS系列设备配置灵活、兼容性好的特点,是华为公司传输网全面解决方案的重要组成部分。
目前,SBS W32单芯光纤中复用的波长数是8个,可传送多达8个不同波长的STM-16(2.5G)信号,传输总容量达(8×2.5G)20Gbit/s。
而设备本身是按32波长波分复用的要求设计的,在用户需要时,能很方便地将其升级到80Gbit/s甚至更高。
SBS W32系统包含以下两种设备类型:光终端设备OTE和光中继设备ORE。
2.1.1 光终端设备:在发送方向,OTE把波长为λ1~λ8的八个波长的STM-16信号经合波器复用成一个20Gb/s的波分复用主信道,然后对其进行光功率放大,并通过光监控信道板附上一个波长为λs的光监控信道。
在接收方向,OTE先通过光监控信道板的一个分波器把光监控信道λs取出,然后对波分复用主信道进行光放大,经分波器解复用成8个波长的STM-16信号,再送到SDH设备上。
OTE可设置波长转换器,从而可接入不同厂家的STM-16信号,并允许系统在OT设备处进行波长分插。
2.1.2光中继设备:SBS W32光中继设备在每个传输方向配有一个光线路放大器。
每个传输方向ORE先取出光监控信道(OSC),并处理(ECC、公务等);再将主信道进行放大,然后主信道与光监控信道合路,并送入光纤线路。
ORE可插入色散补偿模块用于每个波长比特率超过10Gb/s的高速传输;此处也可进行1个或几个波长的分插,以便从干线传输线路中分插出1个或几个波长,构成本地传输系统。
2.2 W32 DWDM波分复用设备所采用的波长由于目前我司DWDM设备的最大容量是八波长,它所采用的八个波长值是符合ITU-T建议要求的固定值,他们分别是:2.3 W32 DWDM的传输距离根据不同传输距离要求,SBS W32提供3种设备供用户选择:360km(3个光纤段,跨距120km,每个光纤段衰减为33dB,最大色散7200ps/mn)600km(5个光纤段,跨距120km,每个光纤段衰减为33dB, 最大色散12000ps/mn)640km(8个光纤段,跨距80km每个光纤段衰减为22dB, 最大色散12800ps/mn)经波长转换或电中继后,传输段可级联。
华为波分技术-光层多路径保护
7.11 例行维 护本节描述了检查光层多路径保护倒换状态的操作步骤。
7.12 故障处 理保护功能常见故障现象有两种:不能自动倒换;不能自动恢复。
7.13 相关告 警介绍光层多路径保护倒换后产生的告警。
7.14 相关性能事 件介绍光层多路径保护检测到异常情况时产生的性能事件。
7.1 光层多路径保护简
OSCO_TLUO单S。板检测到 SF(信号失效),告警包括:R_LOS。
原理
告警有 2个检测点,即检测板 1(OSC板)和检测板 2(紧跟入口 FIU之后的 OA板),当 2个检测板同时上报 LOS,即发生站间线路断纤时,触发倒换。
当站点间的 FIU单F板IU之单间发生断纤时,带检测告警功能的单板检测到故障后直接触发倒换,不进 板之行间防断抖纤。,告警包括: 采R_用LO手S、动O方SC式_L配OS置。的光层多路径保护的倒换次序为 FIU断纤倒换优先于 SF倒换。在保 护路径存在断纤告警时不发生自动倒换;在工作路径和保护路径均无断纤告警但均存在 SF(信号失效)的情形下,网元选择将业务倒换到工作路径上。
7 光层多路径保 护
图 7-2光层多路径保护原理 OADM1
OptiX BWS 1600G 特性描述
OADM5
OLA2 OLA4
光:层工多作路路径径保:护保倒护换路只径利用空闲资源,不影响已有的其他业务。
当采用自动方式配置光层多路径保护时,网元根据全网资源的情况创建保护路径,而用户无法 指定保护路径;当采用手动方式配置光层多路径保护时,则用户可以通过配置单板间的保护光交 叉,从而指定保护路径。
7.5 复用段线性保护的应
用
介绍复用ห้องสมุดไป่ตู้线性保
护的应用场景。
复用段线性 1+1保护和复用段线性 1:N保护在应用上是相似的,用保护线路来保护工 作线路上的业务。复用段线性 1:N保护相对复用段线性 1+1保护保护线路可以实现对 昀大 14路工作业务的保护,并可承载额外业务。
波分产品基础原理
Description 30路2.5G支路业务处理板 16×10Gbit/s支路业务处理板 2×40Gbit/s支路业务处理板 16×10Gbit/s线路业务处理板 2×40Gbit/s线路业务处理板 1路100G线路业务处理板 2路100G线路业务处理板
Line Unit (N board)
注:这个表格仅列出了9800V1R1中支线路单板,关于单板更多信息请参考9800对应版本的《规划指南》
注:这个表格仅列出了部分6800/8800OTU单板(9800见下页),详细列表请参阅《硬件指南》
HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential Page 9
Board type Tributary Unit (T board)
Name T130 T216 T302 N216 N302 N401 N402
Client side Line side
1
SDH signal IP package ATM cells
1 2
n
2 ┋ n
DWDM equipment
┉
Fiber
Page 3
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
CWDM和DWDM
192.125THz 192.05THz 191.275THz
196.05THz
HUAWEI TECHNOLOGIES CO., LTD.
Huawei Confidential
Page 4
华为波分产品解决方案
华为波分目前主打产品均为DWDM,主要包含OSN 1800, BWS 1600G, OSN3800, OSN6800/8800/9800等产品形态,根据所配臵单 板的不同,截止2013年,提供从单波2.5GHz到单波100GHz的传输速 率,并支持电层/光层ASON等特性,可以灵活地覆盖多 OSN 9800 种传输场景。 相关设备的详细参数请查阅“硬件指南”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大输入光功率
-3 -10 -13
增益(dB)
23 23 30
27
信阳有线
设备硬件系统—监控信道处理单元SC1/SC2
28
信阳有线
设备硬件系统—监控信道处理单元
SC1/2板与其它板的关系
将本站监控信息传送到下一站的SC1/2板 取出E1、E2、F1提供给OHP板 D1-D12字节提供给SCC板 送给OHP板一个2M时钟信号 通过邮箱与SCC板保持双向通信
电源电压 -48V(-38.4~-57.6V)
良好接地
温度湿度 长期工作条件 短期工作条件
温度 5度~40度 0度~45度
相对湿度 20%~80% 10%~90%
(短期工作条件是连续工作时间不得超过48小时,全年不得 超过15天。)
36
信阳有线
波分系统维护—基本操作
1、光纤的检查、尾纤的插拔(专用工具)
18
信阳有线
设备硬件系统—全省站点
节点站:可以上下业务波长的站点。 光放站:放大线路光功率的站点。
东环: 节点站(省中心、新乡、鹤壁、安阳、濮阳、 开封、商丘、周口、许昌)
光放站(长垣、人和、柘城、漯河)
西环:节点站(省中心、漯河、驻马店、信 阳、 南阳、平顶山、洛阳、济源、焦作)
光放站(许昌、桐柏、方城、汝洲、新乡)
功率放大器(BA):放在发送机后端,用来 提高发送光功率
线路放大器(LA):放在光放站,用来弥补 线路上的衰耗
16
信阳有线
设备硬件系统—网元类型
按用途分 光分插复用器(OADM) 光线路放大设备(OLA) 光终端复用器(OTM) 电中继设备(REG)
17
信阳有线
设备硬件系统
子架的分类 1、综合子架(OIS) 2、放大子架(OAS) 3、转发子架(OCS)
29
信阳有线
设备硬件系统—监控信道接入单元SCA
30
信阳有线
设备硬件系统—系统控制与通信板SCC
31
信阳有线
设备硬件系统—开销处理板OHP
OHP板的主要功能
32
信阳有线
设备硬件系统—电源摸块
33
信阳有线
设备硬件系统—电源摸块
34
信阳有线
设备硬件系统—单板连接
单板连接图
35
信阳有线
波分系统维护—设备运行环境
号 B1字节检测-故障定位 ALS功能(激光器自动关断功能)
23
信阳有线
设备硬件系统—合波、分波单元
合波板功能图
24
信阳有线
设备硬件系统—合波、分波单元
分波板功能图
25
信阳有线
设备硬件系统—光放大板
26
信阳有线
设备硬件系统—光放大板
WBA WPA WLA
最小输入光功率
-20 -30 -28
华为波分设备培训讲座
一、 DWDM原理 二、 波分设备设备硬件系统 三、 波分设备系统维护
1
信阳有线
DWDM原理
1、概述 2、DWDM传输媒质 3、DWDM关键技术
2
信阳有线
概述—什么是波分复用?
把不同波长的光信号复用在一根光纤中进行传送 方式统称为波分复用(WDM)。
3
信阳有线
概述
省公司采用的是华为波分设备,设计容量是 16*2.5G,波长范围 1560.61~1548.51nm,对应频 率范围192.1~193.6THz。
目前配置了两波,东环:192.6、 193.5THz 西环:192.6、 193.1THz
都只使用了192.6THz通道。
4
信阳有线
概述—DWDM的优点及应用方式
超大容量、升级容易、并能最大限度的保护已有 投资、对信号进行“透明”传输、组网灵活、经 济、可靠,可于未来的全光网络兼容。
开放式 具有光接口变换功能,可于所有的任何 厂家的SDH设备相连通。根本表现是有波长转换 板。
13
信阳有线
DWDM的关键技术—EDFA
EDFA的工作原理
14
信阳有线
DWDM的关键技术—EDFA
EDFA的 主要问题
1、非线性:提高了光功率,但达到一定程度 会产生非线性效应。
2、光浪涌 3、色散受限
15
信阳有线
DWDM的关键技术—EDFA
EDFA的分类:
前置放大器(PA):放在接受机前端,用来 提高接收灵敏度
19
信阳有线
设备硬件系统
20
机机柜柜顶顶指指示示灯 灯
电源模块 ODF架
综合子架
ODF架 转发子架 ODF架 HUB
信阳有线
设备硬件系统
子架的插板区
21
信阳有线
设备硬件系统—波长转换单元
单板的常见告警
22
信阳有线
设备硬件系统—波长转换单元
TWC、RWC功能: 3R功能(再生,再定时,再整形) 把符合G.957的SDH信号转化成符合G.692的DWDM信
间接调制光源 优点:频率啁啾较低,色散受限距离较长 缺点:技术复杂,成本较高
11
信阳有线
DWDM的关键技术—发大器
分类: 半导体放大器(SOA) EDFA放大器(EDFA) 拉曼放大器(RAMAN)
12
信阳有线
DWDM的关键技术—EDFA
EDFA的主要优点 1、噪声低 2、增益高(10-30dB) 3、耦合损耗小(小于1dB) 4、输出功率比较大
9
信阳有线
DWDM的关键技术—光源
光源的要求规范
良好的光谱特性(超低啁啾声、适宜的光谱 宽度)
输出具有较高的信噪比
光源的分类
直接调制光源
间接调制光源(电吸收调制光源、马赫-策恩 得尔调制光源)
10
信阳有线
DWDM的关键技术—光源
直接调制光源
优点:技术简单、成本较底
缺点:激光器有教大的频率啁啾,只适合较近 的距离传输
集成式 没有光接口变换功能,要求SDH设备光 发送单元必须满足DWDM要求。
5
信阳有线
概述—DWDM的工作方式
DWDM的工作方式有两种:
双纤双向
单纤W现象, 但有比较严重的光反射现象,双向光放大器件的
噪声系数差。
6
信阳有线
DWDM传输媒质—光纤的特性
1、衰减
2、色散
3、非线形效应 (散射,FMW,自相位调制,交 叉相位调制等等)
7
信阳有线
•色散
色散:由于光纤所传送信号的不同频率成分或模 式成分的群速度不同,而引起传输信号畸变的一 种物理现象。
光纤主要有材料色散、波导色散、模式色散。
单模光纤只有材料色散和波导色散
8
信阳有线
DWDM的关键技术
光源 光放大器 光合波、分波器件
2、单板的复位和插拔(带防静电手环、插拔前拔 掉尾纤)
3、设备的开电和关电
4、告警声切除(SCC板ALC开关、电源盒MUTE开 关)
5、机房的环境卫生、防尘网的清理(两周一次)