第二章整式的加减小结

合集下载

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

(人教版)南京七年级数学上册第二章《整式的加减》知识点总结

1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C 【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答. 【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2; 即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A =所以点A 2008表示的数为: 2008÷2= 1004 A 2009表示的数为:- (2009+1) ÷2=-1005 故选: C . 【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律. 2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ; D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x -- C 解析:C 【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案. 【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意; B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意; C 选项、333541x x x x -++-+-=3724x x -++,符合题意; D 选项、337322724x x x x x -+---=-+-,不符合题意. 故选:C . 【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( ) A .(x ﹣8%)(x+10%) B .(x ﹣8%+10%) C .(1﹣8%+10%)x D .(1﹣8%)(1+10%)x D解析:D 【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润. 【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D . 【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.6.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8; 第二个“金鱼”需用火柴棒的根数为6×2+2=14; 第三个“金鱼”需用火柴棒的根数为6×3+2=20; ……;第n 个“金鱼”需用火柴棒的根数为6n +2. 故选:A . 【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 8.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.9.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解.解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.10.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者D解析:D 【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项. 【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,mnx x 中指数大的,即m ,n 中较大的,故答案选D. 【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项. 11.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差D解析:D 【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果. 【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D. 【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ). A .0 B .-2C .0或-2D .任意有理数A解析:A 【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值.【详解】∵a ,b 互为相反数, ∴0a b +=, ∵c ,d 互为倒数, ∴cd =1,∵m 的绝对值等于1, ∴m =±1, ∴原式=0110-+= 故选:A. 【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.14.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C 【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数 【详解】根据题意列得:20(-2-23020302222a b a b a b a a b aa b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b ) =10b-10a+15a-15b =5a-5b ,则这次买卖中,张师傅赚5(a-b )元. 故选C . 【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.15.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 1.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.2.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数1234…n正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.3.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x.【解析】解:系数为-2,次数为4的单项式为:-2x4.故答案为-2x4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.一个关于x的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为________________________.【解析】根据题意要求写一个关于字母x的二次三项式其中二次项是x2一次项是-x常数项是1所以再相加可得此二次三项式为 解析:21122x x -+-【解析】根据题意,要求写一个关于字母x 的二次三项式,其中二次项是x 2,一次项是-12x ,常数项是1,所以再相加可得此二次三项式为211x x 22-+-. 5.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253a b ab a b ab +--+解:()22253ab ab a b ab +--+22253a b ab a b ab =++-① 22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律 【分析】直接利用整式的加减运算法则进而得出答案. 【详解】解:原式=2a 2b+5ab+a 2b-3ab =2a 2b+a 2b+5ab-3ab =(2a 2b+a 2b )+(5ab-3ab ) =3a 2b+2ab .第②步依据是:加法交换律. 故答案为:加法交换律. 【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键. 6.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值. 【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠,∴2m =-. 故答案为:2-. 【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 7.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于 解析:8128a【分析】根据题意给出的规律即可求出答案. 【详解】由题意可知:第n 个式子为2n-1a n , ∴第8个式子为:27a 8=128a 8, 故答案为:128a 8. 【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型. 8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案. 【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.10.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.11.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)【分析】用个位上的数字表示出十位和百位上的数然后根据数的表示列式整理即可得答案【详解】∵个位数字为n 十位数字比个位数字少2百位数字比个位数字多1∴十位数字为n-2百位数字为n+1∴这个三位数为100解析:11180n +【分析】用个位上的数字表示出十位和百位上的数,然后根据数的表示列式整理即可得答案.【详解】∵个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,∴十位数字为n-2,百位数字为n+1,∴这个三位数为100(n+1)+10(n-2)+n=111n+80.故答案为111n+80.【点睛】本题考查了列代数式,主要是数的表示,表示出三个数位上的数字是解题的关键. 1.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.2.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,通过观察,用你所发现的规律确定22017的个位数字.解析:22017的个位数字是2.【分析】根据已知的等式观察得到规律:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,由此得到答案.【详解】观察可知:24n+1的个位数字是2,24n+2的个位数字是4,24n+3的个位数字是8,24n+4的个位数字是6(n 为自然数),每四个一循环,∵22017=450412⨯+,∴22017的个位数字是2.【点睛】此题考查数字的规律,有理数乘方计算的实际应用,观察已知中等式的特点总结规律,并运用规律解答问题是解题的关键.4.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得;(3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级数学上册第二章整式的加减小结复习课件

人教版七年级数学上册第二章整式的加减小结复习课件
24、6/15的分子乘以2,要使分数的大小不变, 分母应增加( 15 );若分母除以3,要使分数 的大小不变,分子应减去( 4 ).
25、甲乙两人做同样多的零件,甲用了1/4小时, 乙用了1/5小时,( 乙 )做的快。
26、甲乙同时进行百米赛跑,同样的时间里,甲 跑了全程的9/10,乙跑了全程的8/9,( 甲 ) 跑得快。
4、一个平行四边形和一个三角形的底相等,面积 也相等。平行四边形的高是3厘米,那么三角形 的高是( )。
5、一个等腰直角三角形的一条直角边长9分米, 它的面积是( )。
6、一个梯形的面积是80平方厘米,高是16厘米, 它的上底与下底的和是( )。
7 、一个梯形的面积是90平方厘米,它的上底与下 底的和15厘米,高是( )厘米。
复习1
填空
1、一个平行四边形和一个三角形等底等高,平行
四边形的底是12厘米,高是5厘米,那么三角形
的面积是(
)。
2、一个平行四边形和一个三角形等底等高,三角形的面积是20平方分米,Fra bibliotek么平行四边形的面积
是(
)。
3、一个平行四边形和一个三角形的底相等,面积 也相等。三角形的高是3厘米,那么平行四边形 的高是( )。
12、5A=B,A、B都是不等于0的自然数,则A、B 的最大公因数是( ),最小公倍数是( )。
13、 A、B都是不等于0的自然数,A除B商是3 , 则A、B的最大公因数是( ),最小公倍数是 ( )。
14、A/B是相邻的两个自然数那么它们的最大公因 数是( ),最小公倍数是( )。
15、把5克糖放入100克水中,糖占糖水的( ), 水占糖水的( )。
单位就是最小的合数。
20、5里面有( )个1/6, 1里面有( )个 1/7, 2里面有12个( )。

最新人教版初中七年级上册数学第二章《整式的加减小结》精品课件

最新人教版初中七年级上册数学第二章《整式的加减小结》精品课件
代数式
1
2

的系数是
3


3
,次数是
3
.
深化练习
2
(1) 若5x2y与xmyn是同类项,则m=( 2 ),n=( 1 ).
(2) 若单项式a2b与3am+nbn能合并,则m=( 1 ),n=( 1 ).
深化练习
3
下列各项中,去括号正确的是( C )
A.x2-(2x-y+2)=x2-2x+y+2
二、同类项、合并同类项
1.同类项:所含字母相同,并且相同字母的指数也相同的项叫
做同类项.几个常数项也是同类项.
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同
类项,即把它们的系数相加作为新的系数,而字母部分不变.
(1) 同类项不考虑字母的排列顺序,如-7xy与yx是同类项;
(2) 只有同类项才能合并,如x2+x3不能合并.
11x6,……,按照上述规律,第2019个单项式是( C )
A.2018x2019
B.4035x2018
C.4037x2019
D.4037x2018
解析:观察单项式得第n个单项式为(2n-1)xn,
所以第2019个单项式是(2×2019-1)x2019=4037x2019.
本题源于《教材帮》
深化练习
数或一个字母也是单项式.
2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.
3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项
式的次数.
4.多项式:几个单项式的和叫做多项式.
5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.
6.整式:单项式和多项式统称整式.

第二章整式的加减-小结

第二章整式的加减-小结
注意: 1、多项式的次数为最高次项的次数. 2.多项式的每一项都包括它前面的符号.
1.同类项
(1) 所含字母相同; (2)相同字母的指数也分别相同;
(满足这样条件)的项, 叫同类项; (3)所有的常数项也是同类项。
2.合并同类项法则:
系数相加, 字母和字母的指数不变。
课堂练习
1.选择题:
(1)一个二次式加上一个一次式,其和是( B )
❖ 第n年在A公司收入为10000+(n-1)×200, ❖ 第n年在B公司收入为
5000 n 1100 5000 n 1100 50 10050 (n 1) 200
❖ 而 10000 (n 1) 200 10050 (n 1) 200 50,
已知数a,b在数轴上的位置如图所示
子表示
.
2.第n个Hale Waihona Puke 案中有地砖块.……
第一个
第二个 第 10 题图
第三个
例4 如图,是一组有规律的图案,第 1 个 图案由 4 个基础
图形组成,第 2 个图案由 7 个基础图形组成,……,第 n (n 是正
整数)个图案中由 3n 1 个基础图形组成.
-
……
(1)
(2)
(3)
311 32 1 33 1
(1)用含x的代数式分别表示y1和y2,则
y1=________,y2=________.
(2)某人估计一个月内通话300分钟,应选择哪种移 动通讯合算些?
❖ 例2 A和B两家公司都准备向社会招聘人才, 两家 公司招聘条件基本相同, 只有工资待遇有如下差 异:A公司年薪10000元, 从第二年开始每年加工龄 工资200元, B公司半年年薪5000元, 每半年加工 龄工资50元, 从经济收入的角度考虑的话, 选择哪 家公司有利?

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点

七年级上册的数学第二章“整式的加减”主要知识点1. 整式的概念-单项式:由数与字母的积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

-系数:单项式中的数字因数叫做单项式的系数。

-次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

-多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

2. 整式的加减法则-同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

-合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项时,把同类项的系数相加,字母和字母的指数不变。

3. 去括号与添括号-去括号法则:如果括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;如果括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。

-添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号。

4. 整式的加减运算步骤1. 去括号:根据去括号法则去掉括号。

2. 识别同类项:找出所有同类项。

3. 合并同类项:利用合并同类项法则进行合并。

4. 整理结果:按照一定顺序(如降幂或升幂)写出最终的整式。

5. 应用题-整式的加减运算还经常出现在应用题中,如求解面积、体积、距离等问题,需要学生将实际问题抽象为整式的加减运算。

6. 注意事项-在进行整式加减时,要仔细识别同类项,避免漏项或重复计算。

-注意系数的符号,特别是负号的作用。

-运算后要进行必要的化简,使结果更加简洁明了。

《第2章整式的加减》小结与复习

《第2章整式的加减》小结与复习

第2章小结与复习【学习目标】对本章的内容进行回顾和总结,熟练掌握代数式、单项式、多项式、同类项等有关概念和合并同类项、去括号及添括号法则.掌握整式的运算.【学习重点】回顾本章知识,构建知识体系.【学习难点】整式加减.行为提示:创景设疑,帮助学生知道本节课学什么.说明:引导学生回顾本章知识点,展示本章知识结构图.使学生系统了解本章知识及它们之间的关系.教学时,边回顾边建立知识结构图.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入 生成问题知识结构我能建: 用字母表示数代数式列代数式求代数式的值整式单项式单项式的次数、系数多项式多项式的次数、项数升(降)幂排列整式加减去(添)括号合并同类项自学互研 生成能力知识模块一 代数式与整式典例1:(1)把含盐15%的盐水a 千克与含盐20%的盐水b 千克混合得到的盐水浓度是(含盐的百分比)( B )A .17.5%B .15%a +20%b a +b×100% C .a +b 15%a +20%b D .15%a +20%b 85%a +80%b×100% (2)校园里刚栽下一棵1.8米高的小树苗,以后每年长0.3米,则n 年后的树高是(1.8+0.3n)米;(3)“a 的2倍与1的和”用代数式表示是2a +1;(4)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重x -25千克; (5)某班共有x 个学生,其中女生人数占45%,用代数式表示该班的男生人数是55%x 人.典例2:(1)下列说法中不正确的是( D )A .-a 2b 的系数是-1,指数是3B .a 2-1是整式 C .6a 2-2b -3的项是6a 2,-2b ,-3 D .22ab 2c 3-3a 3是八次二项式(2)已知多项式-13x 2y m +1+12xy 2-3x +6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m ,n 的值.解:由题意得:2+m +1=6,2n +2=6,m =3,n =2.变例:(齐齐哈尔中考)已知x 2-2x =5,则2x 2-4x -1的值为9.知识模块二 整式加减典例1:-x 2n -1y 与8x 9y 是同类项,则代数式(2n -9)2015的值是( B ) A .0 B .1 C .-1 D .1或-1学习笔记:行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间. 典例2:一个长方形的一边长是2a +3b ,另一边长是a +b ,则这个长方形的周长是( B )A .12a +16bB .6a +8bC .3a +8bD .6a +4b仿例:(1)一个多项式P 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则P 等于( D )A .x 2-4xy -2y 2B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy(2)2a 5-3b 5-4⎝⎛⎭⎫12a 5-12a 3b 2+2a 2b 3-34b 5. 解:原式=2a 5-3b 5-2a 5+2a 3b 2-8a 2b 3+3b 5=2a 3b 2-8a 2b 3.变例:(1)已知a =-15,求15a 2-{-4a 2+[5a -(2a 2-a)]}; 解:原式=21a 2-6a ,将a =-15代入, 得原式=21×⎝⎛⎭⎫-152-6×⎝⎛⎭⎫-15=5125; (2)3x 2y -⎣⎡⎦⎤2xy 2-2⎝⎛⎭⎫xy -32x 2y +xy +3xy 2,其中x =3,y =-13. 解:原式=3x 2y -(2xy 2-2xy +3x 2y +xy)+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy 2+xy.将x =3,y =-13代入, 得原式=3×⎝⎛⎭⎫-132+3×⎝⎛⎭⎫-13=13+(-1)=-23. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 代数式与整式知识模块二整式加减检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。

第二章:整式的加减基本技能归纳

第二章:整式的加减基本技能归纳

第二章:整式的加减一、基本概念及性质1、同类项——所含的字母相同,相同字母的指数也相同(1)去括号——依据 去括号,bc ab c b a +=+)(,)(1)(c b c b ++=++,)(1)(c b c b +-=+-(2)找——依据“三个相同”,找同类项,并重新排列(3)写——把每组同类项写成:+(各项的系数)字母局部(4)算——合并括号内的系数(5)简——省略“+”和“( )”,并按某个字母的降幂排列练习:(1)6321+-st st (2)67482323---++-a a a a a a(3))31(2)1(22x x x x +--+-(4)4432323++-x x y y x 与1233232--+xy y x x 的差(5)若一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是三、常见题型归纳(1)多位数的表达:(2)去掉某些项(不含某某项)⇔①化简(值与某未知数无关) ②令某某项的系数=0练习1、多项式b x x x a b ++--3)4(是关于x 的二次三项式,求b a -的相反数练习2、多项式8932-+-xy kxy x 中不含xy 项练习3、若代数式)374()42(22++--+-+y x bx y ax x 的值与字母x 的取值无关,求代数式)341(2432222b a b a --+-的值(3)几个单项式的和等于单项式⇔这些单项式都是同类项练习4、若n b a 33与55b a m -的和是单项式,则=m ,=n练习5、假如344359251y x y x y x n m =+-,那么n n m )(+=(4)将错就错⇔弄清这些多项式之间的关系练习6、在计算A 、B 两个多项式的差时,小黄误将A-B 写成A+B ,求得结果是7292+-x x ,假如B=232-+x x ,那么请你协助小黄求出A-B 的准确答案(5)整体思想求代数式的值⇔比较含有未知数项的系数,找出倍数关系 ①化简②含未知数的项=常数项练习7 已知,2-=xy 3=+y x ,求整式)]322(5[)103(x y xy x y xy -+-++的值练习8已知代数式86232=+-y y ,求整式1232+-y y 的值。

人教版数学七年级上册第二章整式的加减《小结与复习(二))》学习任务单(公开课学案)及课后练习作业设计

人教版数学七年级上册第二章整式的加减《小结与复习(二))》学习任务单(公开课学案)及课后练习作业设计

人教版数学七年级上册第二章整式的加减
《小结与复习(二)》学习任务单及课后练习
【学习目标】
进一步理解同类项、合并同类项的概念,掌握去括号法则和合并同类项法则,并理解两个法则的依据,能较准确、熟练地应用去括号法则和合并同类项法则进行整式的加减运算和整式求值.通过整式求值,养成认真审题的思维习惯,并加强对条件的分析,发现未知和已知之间的隐含关系,“凑出”整体利于代换,体会换元的数学思想方法.
【课前学习任务】
1.阅读课本 74 页小结内容;
2.阅读课本 63 至 69 页内容,复习同类项和合并同类项的概念、去括号和合并同类项的法则.
【课上学习任务】
学习任务一:练一练
去括号:
合并下列各式的同类项:
学习任务:
例 1 化简:
思考:
某同学做一道数学题,“已知两个多项式 A、B,B=2x2+3x-4,试求 A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10. 请你替这位同学求出“A-2B”的正确答案.
【学习资源】
课本72-73 页数学活动2、活动3.
【课后练习】
第一部分
复习题2
3.计算:
4.计算:
5.先化简下式,再求值:
其中 x = -3
第二部分
思考:
某同学做一道数学题,“已知两个多项式 A、B,B=2x2+3x-4,试求 A-2B”.这位同学把“A-2B”误看成“A+2B”,结果求出的答案为5x2+8x-10. 请你替这位同学求出“A-2B”的正确答案.
课后练习答案:。

整式的加减--基础知识总结

整式的加减--基础知识总结

第二章 《整式的加减》基础知识小结一、整式1. 单项式 ① 单项式:由数与字母的乘积组成的式子;② 单独的一个数或字母也是单项式;③ 单项式的系数:单项式前面的数字因数;④ 单项式的次数:单项式中所有字母指数的和;⑤ 单项式的判断:1)数与字母是否是乘积关系;2)分母中不能含有字母;3)式子中不含加、减运算关系。

2. 多项式 ① 多项式:几个单项式的和;② 多项式的项:多项式中的每个单项式。

其中不含字母的项叫常数项或零次单项式③ 多项式的次数:多项式里次数最高项的次数;④ 多项式的判断: 代数式中的每一项均为单项式;⑤ 多项式的排列:1)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列;2)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列。

3. 整式 ①整式:单项式与多项式统称整式;② 注意问题:1)单项式或多项式的某项的系数包括前面的符号;2)多项式重新排列时,各项要连同它前面的符号一起移动; 3)多项式不含的项,表示此项的系数为0。

4)当字母的指数是1时,“1”通常省略不写;5)系数是1或-1时,通常省略不写。

二、整式的加减1. 合并同类项 ① 同类项:所含字母相同,并且相同字母的指数也相同的项;② 几个常数项也是同类项(零次单项式);③ 同类项的判断:1)所含字母相同;2)相同字母的次数相同;3)同类项与系数大小、字母的排列顺序无关。

④ 合并同类项:把多项式中的同类项合并成一项.可以运用交换律,结合律和分配律⑤ 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;2. 整式的加减 ① 去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

②整式加减的一般步骤:1)“一去”:如果遇到括号按去括号法则先去括号;2)“二找”:结合同类项;3)“三合”:合并同类项。

1。

第二章整式的加减全章知识点总结精选全文

第二章整式的加减全章知识点总结精选全文

可编辑修改精选全文完整版第二章 整式的加减知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。

注意:单项式是一种特殊的式子,它包含一种运算、三种类型。

一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。

知识点2、单项式的系数 单项式中的数字因数叫做这个单项式的系数。

注意:(1)单项式的系数可以是整数,也可能是分数或小数。

如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。

(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2. (3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。

(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。

如2πxy 的系数就是2π. 知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。

注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。

如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.。

(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。

(3)单项式的指数只和字母的指数有关,与系数的指数无关。

如单项式-43242z y x 的次数是字母z y x ,,的指数和,即2+3+4=9而不是13次 (4)单项式通常根据字母的次数进行命名。

初一数学第二章整式的加减知识点归纳+练习

初一数学第二章整式的加减知识点归纳+练习

2021-2022学年度 秋季 七年级上学期 人教版数学第二章 整式的加减 知识点归纳2.1.1 单项式由 与 的积组成的式子叫做单项式。

单独一个数字或字母.......也是单项式,如5-,y 等。

(注意:分母中出现字母的,就不再是单项式。

如:x1) 系数:单项式中的 因数叫做这个单项式的系数。

(★:π属于数字,不是字母) 次数:单项式所有字母的 之和叫做这个单项式的次数。

注意:①数字次数是0;②系数和次数是1时,1通常省略不写;③若单项式中出现“-”号,则“-”号是系数的性质符号。

例:指出下列各单项式的系数和次数:(1)xy 5, (2)a 21-, (3)5a , (4)42bc a , (5)732y x π【练习】下列式子中,哪些是单项式?指出这些单项式的系数和次数。

x ,ab 21-,x1,b a +2,y x 25-,20-,2mn -2.1.2 多项式多项式:几个 的和.叫做多项式。

(注意:分母中出现字母的,就不是多项式。

如:a x+1) 多项式的项:多项式中的每个单项式,叫做多项式的 。

如b a +2中,a 2,b 都是项。

多项式的次数:多项式中,次数最高的项的 ,叫做这个多项式的次数。

(★最高次项是指多项式中次数最高的项,如:122+-a a 中最高次项是:2a ) 常数项:多项式中,不含 的项称为常数项。

例1:多项式232+-+-y x xy xπ的项分别是 ,次数是 ;最高次项是 ;常数项是 。

多项式的命名:多项式可以由项数及次数确定为 次 项式。

如:122+-a a ,共 项,次数为 ,故称为 次 项式。

例2:给下列多项式命名。

①6524252--+y y y : 次 项式 ②345567x x x +-: 次 项式多项式的排序:多项式可以按各项次数的高低进行排列,若从低到高为升幂排列;若从高到低,则为降幂排列。

如:122+-a a 为 排列;221a a +-为 排列。

第2章 整式的加减(单元总结)(人教版)(解析版)

第2章 整式的加减(单元总结)(人教版)(解析版)

第二章整式的加减单元总结【思维导图】【知识要点】知识点一单项式概念:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.注意:(1) 圆周率是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写;(3) 单项式的系数是带分数时,通常写成假分数.补充:⏹ 代数式相关知识概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.◆ 列代数式方法列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了. ◆ 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.(2)数字通常写在字母前面.(3)带分数与字母相乘时要化成假分数.(4)除法常写成分数的形式.⏹ 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.【典例分析】1.有a 名男生和b 名女生在社区做义工,他们为建花坛搬砖.男生每人搬了40块,女生每人搬了30块,这a 名男生和b 名女生一共搬了____块砖(用含a 、b 的代数式表示)【答案】4030a b +【解析】首先表示出男生共搬运的砖数,再表示出女生共搬运的砖数,然后相加即可.解:男生每人搬了40块,共有a 名男生,∴男生共搬运的砖数是:40a ,女生每人搬了30块,共有b 名女生,∴女生共搬运的砖数是:30b ,∴男女生共搬运的砖数是:40a+30b .故答案为:40a+30b .2.下列各式:22xy b -,3a ,3y x +,6xy ,0.72b ,2202a x a b >=+,-,,.其中,是单项式的有________. π【答案】22xy b -,6xy ,0.72b ,+2,a - 【解析】根据单项式的概念逐一进行判断即可得. 【详解】22xy b -是单项式,3a 不是单项式,3y x +是多项式,6xy 是单项式,0.72b 是单项式,+2是单项式,a -是单项式,20x >不是单项式,2a b =不是单项式,所以单项式有:22xy b -,6xy ,0.72b ,+2,a -, 故答案为:22xy b -,6xy ,0.72b ,+2,a -. 【点睛】本题考查了单项式的定义,熟练掌握“由数与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)”是解题的关键.3.单项式237a b π的系数是________,次数是________.【答案】7π 5【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】单项式237a b π的系数是3C π=,次数是2+3=5, 故答案为:3C π=,5.【点睛】本题考查了单项式的系数与次数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.知识点二 多项式概念:几个单项式的和叫多项式.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.【典例分析】4.已知A 是关于x 的三次多项式,B 是关于x 的四次多项式,则下列结论:①A +B 是七次式;②A -B 是一次式;③AB 是七次式;④A -B 是四次式,其中正确的是________(填序号).【答案】③④【解析】根据A 与B ,确定出A-B 和AB 的次数即可.【详解】若A 是三一个次多项式,B 是一个四次多项式,那么A-B 是四次整式,AB 是一个七次多项式. 故答案为③④.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.5.下列整式中,单项式是________________;多项式是 ________________.322221,,,2,,2153a x by x y r x xy y x π--++-. 【答案】21,,23a x y r π-; 32225,,21xb y x x y y x -++- 【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:21,,23a x y r π-,多项式有:3222,,215x by x xy y x -++-,故填21,,23a x y r π-;3222,,215x by x xy y x -++-. 【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.6.多项式是ab 2-2ab -1是____次____项式.【答案】三 三【解析】利用每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】多项式2a 21b ab --是三次三项式.故答案为:三,三.【点睛】本题考查多项式.知识点三 整式的加减同类项概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.合并同类项法则:系数相加,字母与字母的指数不变.步骤:①找 ②移 ③合去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.注意:1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项.5、遇到多层括号一般由里到外,逐层去括号。

第二章 整式的加减 复习与小结 课件 2024-2025-华东师大版(2024)数学七年级上册

第二章 整式的加减 复习与小结  课件 2024-2025-华东师大版(2024)数学七年级上册

3 整式的有关概念
例3 在 ,x + 1,-2, ,0.72xy, , 中单项
式的个数有 ( C ) √ √
√√
A. 2个
B. 3个
C. 4个
D. 5个
分析: 是除法形式,不是单项式,
是多项式.
针对训练
4. (马尾期末) 下列说法正确的是 ( A ) A. -3ab²的系数是 -3 B. 4a3b 的次数是 3 4 C. 2a + b - 1 的各项分别为 2a,b,-1 D. 多项式 x2 - 1 是二次三项式
D. 2 个
代数式是用运算符号把数或表示数的字母连接起来 的式子,注意不能含有 =、<、 >、≤、≥、≈、≠ 等符号. S = πr2,a > 0 中含有 = 和 >,不是代数式.
针对训练
1.(广东·期中)下列各式中,符合代数式书写规则的
是( B ) A. x×5
B. 1 xy
2
C. mn2
D.m÷n
针对训练 6. (台江期末) 计算:
化简: 解:原式
= -x - y.
6 整式的加减运算与求值
例6 先化简,再求值:6y3 + 4(x3 - 2xy) - 2(3y3 - xy), 其中 x = -2,y = 3. 解:原式 = 6y3 + 4(x3 - 2xy) - 2(3y3 - xy)
= 6y3 + 4x3 - 8xy - 6y3 + 2xy = 4x3 - 6xy 当 x = -2,y = 3 时, 上式 = 4×(-2)3 - 6×(-2)×3 = 4.
当 x = ,y = 时,上式
.
7 与整式的加减有关的探索性问题

河南省七年级数学上册第二章整式的加减总结(重点)超详细

河南省七年级数学上册第二章整式的加减总结(重点)超详细

河南省七年级数学上册第二章整式的加减总结(重点)超详细单选题1、把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9答案:C分析:根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),算出第⑥个图案中菱形个数即可.解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n−1),∴则第⑥个图案中菱形的个数为:1+2×(6−1)=11,故C正确.故选:C.小提示:本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.2、下列关于“代数式4x+2y”的意义叙述正确的有()个.①x的4倍与y的2倍的和是4x+2y;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(4x+2y)元.A.3B.2C.1D.0答案:B分析:根据代数式4x+2y的意义分别对三个叙述进行判断即可.解:①x的4倍与y的2倍的和是4x+2y,正确;②小明以x米/分钟的速度跑了4分钟,再以y米/分钟的速度步行了2分钟,小明一共走了(4x+2y)米,正确;③苹果每千克x元,橘子每千克y元,买4千克橘子、2千克苹果一共花费(2x+4y)元,错误;故正确的有2个故选:B.小提示:此题考查了代数式的问题,解题的关键是掌握代数式的意义以及性质.3、化简a-2a的结果是()A.-a B.a C.3a D.0答案:A分析:根据整式的加减运算中合并同类项计算即可;解:a−2a=(1−2)a=−a;故选:A.小提示:本题主要考查整式加减中的合并同类项,掌握相关运算法则是解本题的关键.4、已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,…,依此类推,则a2022的值为()A.-1010B.-1011C.-1012D.-2022答案:B分析:分别求得a1,a2,a3,a4,…找到规律,当下标为偶数时,其值等于下标的一半的相反数,据此即可求解.解:∵a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-1,a4=-|a3+3|=-2,a5=−|−a4+4|=−2,a6=−|−a5+5|=−3…,当下标为偶数时,其值等于下标的一半的相反数,∴a2022的值为-1011.故选B.小提示:本题考查了数字类规律,找到规律是解题的关键.5、用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41答案:C分析:第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.小提示:本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.6、如图所示,在这个运算程序当中,若开始输入的x是2,则经过2021次输出的结果是()A.1B.3C.4D.8答案:C分析:根据运算程序代值求解得到输出结果的规律求解即可.解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,……以此类推,可知每6个一循环,且输入次数与输出结果的对应规律是:6n+1对应1;6n+2对应6;6n+3对应3;6n+4对应8;6n+5对应4;6n+6对应2;∵2021=6×336+5,∴经过2021次输出的结果是4.故选:C.小提示:本题考查运算程序背景下的数字规律,根据运算程序算出输出结果,然后找到输出结果的规律是解决问题的关键.7、如果单项式2a2m−5b n+2与ab3n−2可以合并同类项,那么m和n的值分别为()A.2,3B.3,2C.-3,2D.3,-2答案:B分析:根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可.解:由题意得:2m-5=1,n+2=3n-2,∴m=3,n=2,故选:B.小提示:本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.8、下列去括号或添括号不正确的是()A.a−b+c=a−(b−c)B.a−b+c=a+(c−b)C.a−2(b−c)=a−2b+2c D.a−2(b−c)=a−2b+c答案:D分析:根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括到括号里的各项都改变符号.进行分析即可.解:A. a−b+c=a−(b−c),正确,故A不符合题意;B. a−b+c=a+(c−b),正确,故B不符合题意;C. a−2(b−c)=a−2b+2c,正确,故C不符合题意;D. a−2(b−c)=a−2b+c,∵a−2(b−c)=a−2b+2c,∴计算不正确,故D符合题意;故选:D小提示:本题考查了去括号和添括号的方法,注:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.9、“x的平方与5的和的相反数减去x的差”用代数式表示为()A.−(x2+5)−x B.−(x+5)2−xC.x2−5−x D.x2+5−x答案:A分析:根据“x的平方与5的和”为x2+5,在用相反数的定义,最后计算的是差;解:由题意得:−(x2+5)−x,故选:A.小提示:本题考查列代数式,解题关键弄清运算顺序,注意x的平方与5的和与x与5的和的平方之间的区别.10、已知:关于x,y的多项式ax2+2bxy+3x2−3x−4xy+2y不含二次项,则3a−4b的值是()A.-3B.2C.-17D.18答案:C分析:先对多项式ax2+2bxy+3x2−3x−4xy+2y进行合并同类项,然后再根据不含二次项可求解a、b的值,进而代入求解即可.解:ax2+2bxy+3x2−3x−4xy+2y=(a+3)x2+(2b−4)xy−3x+2y,∵不含二次项,∴a+3=0,2b−4=0,∴a=-3,b=2,∴3a−4b=−9−8=−17.故选:C.小提示:本题主要考查整式加减中的无关型问题,熟练掌握整式的加减是解题的关键.11、对实数a,b依次进行以下运算;M1=a,M2=b,M3=2M2−M1,M4=2M3−M2,M5=2M4−M3,⋯,M n=2M n−1−M n−2,⋯.若点P n(M n,M n+1),其中n为正整数.下列说法中正确的有()①M5=4b−3a;②M n中,a与b的系数之和为 1;③点P11的坐标为(11b−10a,12b−11a).A.0 个B.1 个C.2 个D.3 个答案:C分析:根据M1,M2,依次求出M3,M4,M5,进而得出规律,然后根据规律进行判断.解:∵M1=a,M2=b,∴M3=2M2−M1=2b−a,M4=2M3−M2=2(2b−a)−b=3b−2a,M5=2M4−M3=2(3b−2a)−(2b−a)=6b−4a−2b+a=4b−3a,…,①正确;由此发现规律:M n=(n−1)b−(n−2)a,∵(n−1)−(n−2)=1,∴M n中,a与b的系数之和为 1,②正确;∵M11=10b−9a,M12=11b−10a,∴点P11的坐标为(10b−9a,11b−10a),③错误;故选:C.小提示:本题考查了整式加减中的规律问题,熟练掌握运算法则,正确求出M3,M4,M5,进而得出规律是解题的关键.12、要使多项式mx2−2(x2+3x−1)化简后不含x的二次项,则m的值是()A.2B.0C.−2D.3答案:A分析:先将原式化简,再根据题意判断m的值即可;解:原式=mx2−2x2−6x+2=(m−2)x2−6x+2∵原式化简后不含x的二次项,∴m−2=0,∴m=2,故选:A.小提示:本题主要考查代数式的应用,掌握相关运算法则是解题的关键.13、某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元答案:D分析:分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.解:∵20立方米中,前17立方米单价为a元,后面3立方米单价为(a+1.2)元,∴应缴水费为17a+3(a+1.2)=20a+3.6(元),故选:D.小提示:本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.14、将多项式−9+x3+3xy2−x2y按x的降幂排列的结果为()A.x3+x2y−3xy2−9B.−9+3xy2−x2y+x3C.−9−3xy2+x2y+x3D.x3−x2y+3xy2−9答案:D分析:根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.解:多项式−9+x3+3xy2−x2y按x的降幂排列为x3−x2y+3xy2−9.故选D.小提示:此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.15、如图,下列四个式子中,不能表示阴影部分面积的是()A.3(x+2)+x2B.x(x+3)+6C.x2+5D.(x+3)(x+2)−2x答案:C分析:根据图形列出各个算式,再得出答案即可.解:阴影部分的面积S=x2+3(2+x)=x(x+3)+3×2=(x+3)(x+2)﹣2x,故A、B、D都可以表示阴影部分面积,只有C不能,故选:C.小提示:本题考查了列代数式,能根据图列出算式是解此题的关键.填空题16、按规律排列的单项式:x,−x3,x5,−x7,x9,…,则第20个单项式是_____.答案:−x39分析:观察一列单项式发现偶数个单项式的系数为:−1,奇数个单项式的系数为:1,而单项式的指数是奇数,从而可得答案.解:x,−x3,x5,−x7,x9,…,由偶数个单项式的系数为:−1,所以第20个单项式的系数为−1,第1个指数为:2×1−1,第2个指数为:2×2−1,第3个指数为:2×3−1,······指数为2×20−1=39,所以第20个单项式是:−x39.所以答案是:−x39小提示:本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握“从具体到一般的探究方法”是解本题x|m|−(m−5)x2+6是关于x的五次三项式,则m的值为__________.17、多项式13答案:−5分析:直接利用多项式的概念得出关于m的关系式,求出常数m的值即可.x|m|−(m−5)x2+6是关于x的五次三项式,解:∵13∴|m|=5,-(m-5)≠0,解得:m=-5.所以答案是:-5.小提示:此题主要考查了多项式的定义,得出关于m的关系式是解题关键.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.18、已知单项式3a2b m−1与−7a n b互为同类项,则m+n为___________.答案:4分析:根据同类项的定义得出m、n的值,然后代入求值即可.解:∵单项式3a2b m−1与−7a n b互为同类项,∴m−1=1,n=2,∴m=2,n=2,∴m+n=2+2=4.所以答案是:4.小提示:本题主要考查了同类项的定义,代数式求值,根据同类项的定义求出m=2,n=2,是解题的关键.19、也许你认为数字运算是数学中常见而又枯燥的内容,但实际上,它里面也蕴藏着许多不为人知的奥妙,下面就让我们来做一个数字游戏:第一步:取一个自然数n1=3,计算n12+2得a1;第二步:计算出a1的各位数字之和得n2,再计算n22+2得a2;第三步:计算出a2的各位数字之和得n3,再计算n32+2得a3;……依此类推,则a2020=_______.分析:根据游戏的规则进行运算,求出a1、a2、a3、a4、a5,再分析其规律,从而可求解.解:∵a1=n12+2=32+2=11,∴n2=1+1=2,a2=n22+2=22+2=6,n3=6,a3=n32+2=62+2=38,n4=3+8=11,a4=n42+2=112+2=123,n5=1+2+3=6,a5=n52+2=62+2=38,……∴从第3个数开始,以38,123不断循环出现,∵(2020﹣2)÷2=1009,∴a2020=a4=123.所以答案是:123.小提示:本题主要考查数字的变化规律,解答的关键是由所给的规则得到存在的规律.20、计算4a+2a−3a的结果等于_________.答案:3a分析:根据合并同类项的法则计算即可.解:4a+2a−3a=(4+2-3)a=3a.所以答案是:3a小提示:此题考查了合并同类项,掌握把同类项的系数相加,所得结果作为系数,字母和字母的指数不变是解题的关键.。

第二章 整式的加减 小结复习

第二章 整式的加减 小结复习
第二章 整式的加减 小结复习
(一)知识梳理,把握重点
本章知识结构
问题1:什么样的式子是单项式、多项式? 数与字母的积组成的代数式是单项式;单 独一个字母或一个数字也是单项式;几个单项 式的和叫做多项式。
问题2:什么叫做单项式的系数、次数?什么叫 做多项式的项、次数? 单项式的数字因数叫做单项式的系数,单 项式中所有字母的指数和叫做这个单项式的次 数。多项式中的每一个单项式叫做这个多项式 的项,不含字母的项叫做常数项,多项式中最 高次项的次数叫做多项式的次数。
2 a 1 x y 1 2 2 2 , , , , x 3 xy 1 , 5 a b, x 试判断下列各式:a 3 x y 2 2
中哪些是单项式?哪些是多项式?哪些是整式? 并说出单项式的系数和次数,多项式的项和次 数。
例1 下列整式中哪些是单项式?哪些是多项式? 是单项式的指出系数和次数,是多项式的指出 项和次数:
例4
如图,是一组有规律的图案,第 1 个 图案由 4 个基础
图形组成,第 2 个图案由 7 个基础图形组成,„„,第 n (n 是正 整数)个图案中由 „„ (1) (2) (3)
3n 1
个基础图形组成.
3 1 1
3 2 1
3 3 1
答案: (1) 2 x2 y ; (2) 4m 5 ; (3) 18 3a a3 .
2
5 2 8 2 1 2 1 2 例 3 求多项式 3x y x y x xy 2 3 2 3
2
1 的值,其中, x , y 2 . 2
答案:原多项式合并同类项后,可得 2 y 2 xy ,代入
1 1 2 x , y 2 ,得原式 2 (2) (2) 9 . 2 2

人教2011版初中数学七年级上册《第二章 整式的加减 小结 构建知识体系和应用》教案_2

人教2011版初中数学七年级上册《第二章 整式的加减 小结 构建知识体系和应用》教案_2

2.2 整式的加减一、三维目标1.知识与水平目标(1)、在具体的情境中理解同类项的定义,并能识别同类项探索。

(2)、在具体情景中探索合并同类项的法则,并能熟练实行合并同类项的运算方法与过程。

2.过程与方法目标通过小组讨论,合作学习等方式,经历概念的形式过程,培养学生自主探索知识与合作交流水平。

3.情感态度与价值观激发学生的求知欲,在独立思考和合作交流的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益,体验成功的喜悦。

二、教学重难点1.教学难点:准确判断同类项,准确合并同类项三、教学过程1、情境引入在我们日常生活中经常需要将事务分类,例如:超市的货物摆放、药店的药品摆放。

教师提问:如果有一罐硬币(分别为一角、五角、一元的)你会如何去数呢?生活中的事务能够分类,同样我们学过的单项式也能够分类。

2、合作探究活动一.找朋友(1)-5x³y² (2)(2/3)x³y² (3)x³y²z (4)15zy²x³ (5)-125(6)12 (7)-a³ (8)-5a³问题1.将上面8个单项式分成4类,看谁分的又快又好,说一说你的分类依据是什么?问题2.它们都有什么共同特点?学生讨论归纳总结:像上面这样的,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项注意:同类项与相同字母的顺序无关,与单项式的系数大小无关(两无关)活动二.同类项速配先判断每一组是否同类项,若不是,为前者配一个(1)2x²y 与 -3x²y(2)2abc 与 2ab(3)-3pq 与 3qp(4)-4x²y 与 5xy²同类项的判别方法:抓住两相同,两无关(两相同:所含字母相同,相同字母的指数相同;两无关:与系数无关,与字母的顺序无关)。

活动三、使用运算律计算探究1100×2+252×2 = ()×2 = 352×2100×(-2)+ 252×(-2) = ()×(-2)= 352 ×(-2)根据分配律完成下面的运算100t + 252t = ( )×t3x² + 2x² = ( )x²3ab² - 4ab² = ( )ab²教师提问:上述运算有什么共同特点,你能从中得出什么规律?总结:多项式中的字母表示的是数,所以我们也能够使用交换律,结合律,分配律把多项式中的同类项实行合并。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章整式的加减小结
知识梳理
能够分析实际问题中的数量关系,并列出整式表示。

体会用字母表示数后,从算式到代数的进步。

1•某市对一段全长1000米的道路进行改造,原计划每天修x米,为了尽量减少
施工对城市交通造成的影响,实际施工时,每天修路比原计划的2倍还多36米,那么修这条路实际用了天。

理解并掌握单项式、多项式、整式的概

2•找出下列式子中的单项式,并写出各
单项式的系数和次数。

掌握去括号时,符号的变化规律,理解
去括号的依据。

5•去括号,合并同类项:
①5x2一[7x-(4x-3)—2x2];
②2(m n)2 -(m n) -(m n)2 3(m n)2
能正确地进行同类项的合并和去括号,进行整式的加减运算。

6.求
2 2 2 2 2
2x (-x 3xy 2y ) -2(x -xy 2y )
的值,其中(2x-1)2+ y+1 = 0.
3•指出下列多项式是几次几项式,最高次项,常数项各是什么?
⑴ a3「a2b「ab2 b3「5
⑵g
2
理解同类项的概念,掌握合并同类项的方法,理解合并同类项的依据是分配律。

4•已知-4xy n 1与|x m y4是同类项,求
2m+n的值。

知识归纳
1・对于实际问题,首先要理解题意, 找出题中的数量关系,理清运算顺序。

2・对于整式,单项式,多项式,同类项等概念要充分理解,弄清实质,特别是掌握合并同
类项的方法。

3・对于整式的加减运算,要注意先去括号再合并同类项;当求整式的值时,应先化简再代
值计算;有些题可使用整体思想对某些问题
进行整体处理较简单。

?,8a3x,-1, 3a
巩固训练
一、选择题
1.下列四个算式中,计算错误的个数是()
① 2a -a=2 ② x3 x3 = x6
③3m2 2n =5mn2
④2t2 3t2 =5t2
A、1 B 、2 C 、3 D 、4
2 .两个三次多项式相加,结果一定是()
A、六次多项式
B、次数不高于三次的整式
C、三次多项式
D、次数不低于三次的整式
3.化简(—2x+y)+ 3 (x—2y)等于
5 5
a -4 a -8
C. -------- c m
D. ------ cm
5 5
2 2
7.A = x -2x_3 , b=2x -3x 4,则
A-B等于( )
. 2 2
A. x -x-1
B. - x +x+1
C. 3 x2-5x-7
D. - x2+x-7
&小红计算整式减去ab—2bc+3ac时,误把减法看成加法,所得答案是2bc —3ac+2ab,那么正确结果应该为( )
A. —6bc+9ac
B. 6bc —9ac
C. 4bc
—6ac+ab D.3ab
二、填空题
A. —5x+ 5y
B.—5x—y
C.x —5y
D.—x —y
4.多项式一2
a —1
2
与3a —2a+ 1 的
和为(

2
A.2 a —2a
B.4—2a + 2
C.4 a2—2a —
2
2 D.2 a + 2a
5.在5a+( 2
)=5a—2a —b 中,括号内应填()
2
A.2 a + b
B.22
a —b
2
C. —2a + b
D.
2—2a —b
()6.如图1,为做一个试管架,在a cm长的木条上钻了4个圆孔,每个孔半径2cm,则x等于()
9. 单项式-x3的系数是_________________
10. 下面是一组数值转换机,写出(1)的
输出结果(写在输出的下方),找出⑵的转换步骤(填写在框内).
11•代数式一a2b3c与一a'b3的共同点

(至少写出三个)
12•一个多项式与2x2—x+2的和是
2
3x —2x+1,则这个多项式
为_______________ 。

13•单项式13 x4 y3mJ与—2 x2n 2 y5
的和仍为单项式,则m+n=
14. 规定一种新运
算:a b 二ab—a—b1 ,如3厶4 =3 4-3-4,1 ,请比较大小:一3 :4 4厶-3 (填“>”、
“=”或“ >”).
15. 一个多项式减去a2—b2等于
a2+b2+c2,则原多项式是___________________ 16. 已知某三角形的一条边长为m+n另
一条边长比这条边长大m- 3,第三条边长等于2n—m,求这个三角形的周长为
17. 七年级⑵班同学参加数学课外活动
小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学最多只能参加一项活动,则三个课外小组的人数共人。

18. 粗心的周华在做多项式a3+2a+3加一个单项式时,误做成了减法,得到结果为a3 +3,则要加的单项式
为,正确的结果应是
三•计算
2 2
19. 求多项式3 x + y —5xy与一4xy —y2 +7x2的和。

20. 计算:
2 2
9( 3a +2a+1) -(2 a +3a-5)
⑵已知A=x2—5x,B=X2—10x+5,求
A+2B的值。

23. 一列火车上原有(6a —6b)人,中途下车一半人,又上车若干人,使车上共有乘(10a —6b)人•问上车的乘客是多少人?当a=200,b=100时,上车的乘客是多少人?
21. 先化简,再求值
(1 )4(y + 1) + 4( 1 —X)—4(x + y), 其中,x= 2, y= -1。

2 2 2
(2) 4a b —[3a b —2 (3a b —1)], 其中a=—0.1 , b= 1。

24请按照下列步骤进行:①任意写一个三位数,百位数字比个位数字大2;
②交换百位数字与个位数字,得到另一个三位数;③用上述中的一个较大的三位数减去较小的一个三位数,所得差为三位数;④交换差的百位数字与个位数字之后又得到一个三位数;⑤把这两个
三位数相加;结果是多少?用不同的三位数再做几次,结果都是一样吗?你能解释其中的原因吗?
22. 史上最帅的数学老师出了一数学题
“两多项式A、B, B为x2—x —3,试求A—B」,小明因误将A—B看成A+ B, 结果求出答案是—x2+ 6x + 3,求A—B
的正确答案。

相关文档
最新文档