挡土墙设计(路基路面课程设计)
路基路面挡土墙课程设计
路基路面挡土墙课程设计一、课程目标知识目标:1. 让学生掌握路基、路面和挡土墙的基本概念及其在工程中的作用;2. 使学生了解路基、路面和挡土墙的结构特点、材料及施工技术;3. 帮助学生理解路基、路面和挡土墙在道路工程建设中的重要性。
技能目标:1. 培养学生运用所学知识分析道路工程中路基、路面和挡土墙问题的能力;2. 提高学生设计简单路基、路面和挡土墙方案的能力;3. 培养学生运用专业软件或工具对路基、路面和挡土墙进行模拟和计算的能力。
情感态度价值观目标:1. 培养学生对道路工程建设的兴趣,激发学生探究工程问题的热情;2. 培养学生严谨的科学态度和团队协作精神,使其在解决工程问题时具备责任感和使命感;3. 增强学生对我国道路工程建设的自豪感,培养学生为国家和人民服务的价值观。
课程性质:本课程为工程专业基础课程,旨在帮助学生掌握道路工程中路基、路面和挡土墙的基本知识和技能。
学生特点:学生具备一定的物理、数学和力学基础,但对道路工程的实际应用了解较少。
教学要求:结合实际工程案例,采用讲授、讨论、实践相结合的教学方法,使学生在掌握基本知识的同时,提高解决实际问题的能力。
通过课程目标的分解和教学设计,确保学生能够达到预期的学习成果,为后续课程和实际工作打下坚实基础。
二、教学内容1. 路基部分:介绍路基的定义、作用和分类;讲解路基的力学性质、材料选择及压实技术;分析不同类型路基的施工要点及质量控制。
教材章节:第一章 路基概述,1.1-1.3节2. 路面部分:阐述路面的功能、结构及分类;讲解常见路面材料的性质及适用范围;分析沥青混凝土路面和水泥混凝土路面的施工工艺。
教材章节:第二章 路面工程,2.1-2.4节3. 挡土墙部分:介绍挡土墙的类型、结构及功能;讲解重力式、悬臂式、锚固式等挡土墙的设计原理及施工技术;分析挡土墙工程的稳定性及防护措施。
教材章节:第三章 挡土墙工程,3.1-3.4节4. 实践环节:组织学生参观道路工程现场,了解路基、路面和挡土墙的实际施工过程;开展小组讨论,分析工程案例,提高学生解决实际问题的能力。
路基路面工程06挡土墙设计参考答案资料
第六章挡土墙设计一、名词解释1.挡土墙:为防止土体坍塌而修筑的,主要承受侧向土压力的墙式建筑物。
2.主动土压力:当挡土墙向外移动时(位移或倾覆),土压力随之减少,直到墙后土体沿破裂面下滑而处于极限平衡状态,作用于墙背的土压力称为主动土压力。
3.被动土压力:当挡土墙向土体挤压移动时,土压力随之增大,土体被推移向上滑动处于极限平衡状态,土体对墙的抗力称为主动土压力。
二、简答题1.根据墙背倾斜方向不同,重力式挡土墙断面形式分为哪几种形式?各有什么特点?(1)可分为仰斜、垂直、俯斜、凸形折线形和衡重式(2)仰斜式墙身断面经济,土压力最小,适用于路堑墙;俯斜式墙身断面较大,土压力最大,适用于横坡较陡挡土墙;凸形折线式上部俯斜下部仰斜,墙身断面较经济;衡重式设有衡重台,可增加墙体稳定性。
2.高填方或陡坡路堤所设挡土墙具有哪些作用和功能?(1)防止土体滑动失稳;(2)收缩坡脚,减少大量填方、挖方量,或拆迁或占地面积;(3)保护临近线路的重要建筑物和生态环境等;3.试分析挡土墙土压力计算中采用库伦(Coulomb)土压力理论而不采用朗金(Rankine)土压力理论,主要计算主动土压力而不计算被动土压力的原因。
(1)库伦土压力理论与朗金土压力理论的计算原理不同,从而导致两种计算理论的适用范围不同;(2)朗金土压力理论根据墙后土体单元极限平衡状态的Mohr- Coulomb强度条件计算土压力,适用于计算墙背竖直且光滑以及填土表面水平的土压力问题;(3)而库伦土压力理论根据墙后破裂棱体极限平衡状态的力学平衡条件计算土压力,因此,适用于计算分析实际工程中墙背几何形状和填土表面形状较为复杂的挡土墙土压力;(4)实际工程中,挡土结构物都有不同程度的微小变形和向外位移,容易达到主动极限状态;而被动极限状态所需水平位移超出一般建筑物允许范围。
因此,挡土墙土压力通常计算主动土压力而不计算被动土压力。
4.概述破裂面交于内边坡时,重力式挡土墙库仑主动土压力计算步骤。
路基路面工程课程设计
一、路基(挡土墙)设计1。
1 设计资料某新建公路重力式路堤墙设计资料如下.(1)墙身构造:墙高8m,墙背仰斜角度,墙身分段长度20m,其余初始拟采用尺寸如图1-1所示。
图1—1 初始拟采用挡土墙尺寸图(2)土质情况:墙背填土为砂性土,其重度,内摩擦角;填土与墙背间的摩擦角。
地基为整体性较好的石灰岩,其容许承载力,基底摩擦系数。
(3)墙身材料:采用5号砂浆砌30号片石,砌体重度,砌体容许压应力,容许剪应力,容许压应力。
1。
2 劈裂棱体位置确定1。
2.1 荷载当量土柱高度的计算墙高6m,按墙高缺点附加荷载强度进行计算。
按照线形内插法,计算附加荷载强度:,则:1。
2。
2 破裂角的计算假设破裂面交于荷载范围内,则有:因为,则有根据路堤挡土墙破裂面交于荷载内部时破裂角的计算公式:1。
2.3 验算破裂面是否交于荷载范围内破裂棱体长度:车辆荷载分布宽度:所以,,即破裂面交于荷载范围内,符合假设。
1.2。
4 路基边坡稳定性验算可利用解析法进行边坡稳定性分析,则有其中,,,。
对于砂性土可取,即,则:所以,路基边坡稳定性满足要求.1。
3 土压力计算根据路堤挡土墙破裂面交于荷载内部的土压力计算公式:1。
3.1 土压力作用点位置计算表示土压力作用点到墙踵的垂直距离。
1.3。
2土压力对墙趾力臂计算基底倾斜,土压力对墙趾的力臂:1.4 挡土墙稳定性验算1.4.1 墙体重量及其作用点位置计算挡土墙按单位长度计算,为方便计算,从墙趾沿水平方向把挡土墙分为三部分,右侧为平行四边形,左侧为两个三角形(如图1—2):图1—2 挡土墙横断面几何计算图式1。
4.2抗滑稳定性验算对于倾斜基底,验算公式:所以,抗滑稳定性满足要求。
1.4。
3抗倾覆稳定性验算抗倾覆稳定性验算公式:所以,抗倾覆稳定性满足要求。
1。
5 基地应力和合力偏心矩验算1.5。
1 合力偏心矩计算上式中,弯矩为作用于基底形心的弯矩,所以计算式,需要先计算对形心的力臂:根据之前计算过的对墙趾的力臂,可计算对形心的力臂。
路基路面挡土墙设计
22
第23页/共90页
式中:
P cos sin cos( ) sin cos cos( ) Q cos( ) cos( ) cos( ) cos( ) R cos sin cos( ) sin cos( ) cos
将(4)式代入(3)式
2024/2/20
Ea
1 2
第一节 概述
一、挡土墙的用途 挡土墙是用来支撑天然边坡或人工填土边
坡以保持土体稳定的建筑物。在公路工程中, 它广泛应用于支撑路堤或路坡、隧道洞口、桥 梁两端及河流岸壁等。
2024/2/20
1
第2页/共90页
2024/2/20
二、挡土墙的类型 1.重力式挡土墙: 依靠墙身自重支撑土压力来维持稳定。 2.锚定式挡个土墙: 包括锚杆式和锚定板式两种。 3.薄壁式挡土墙: 是钢筋混凝土结构,包括悬臂式和扶壁式。 4.加筋土挡土墙: 由填土、填土中布置的拉筋及墙面板三部 分组成。
(a H 2h0 )(a ab (b d )h0
1 2
H) H (H
2a
2h0 )tg
则 : S A0tg B0 (5)
25
第26页/共90页
G r( A0tg B0 )
代入Ea
cos( ) sin( )
G
( A0tg
B0
)
cos( sin(
) )
(6)
令:
dEa 0
d
(
rA
cos(
sin(
) )
cos( ) cos( ) sin( )sin( cos2 ( )
)
sin( ) cos( )
sin(
)sin( ) cos( sin2 ( )
路基路面工程 第6章 挡土墙设计86
挡土墙设计
主要内容
第三节 挡土墙的类型与构造 第四节 土压力计算 第五节 重力式挡土墙设计
第三节 挡土墙的类型与构造
◆ 1、挡土墙的定义
挡土墙的定义
挡土墙是支撑天然边坡或人工填土边坡以保持土体稳定的结 构物,支撑路堤、路堑、隧道洞口、桥梁两端及河岸壁等。
第三节 挡土墙的类型与构造
挡土墙自重及位于墙上的恒载; 墙后土体的主动土压力(包括超载); 基底的支撑力与摩阻力; 墙前土体的被动土压力; 浸水墙的常水位静水压力及浮力。
(2)附加力:
季节性或规律性作用于墙的各种力,
如波浪冲击、洪水。
图6-5 作用在挡土墙上 的力系
(3)特殊力:
偶然出现的力,如地震力、浮力、水面物撞击力等。
第三节 挡土墙的类型与构造
◆2、挡土墙的类型
加筋土挡土墙-利用加筋土和各种墙面材料修成的挡土墙。依靠拉筋
与填料之间的摩擦力来抵抗侧向土压力。
垛式和笼式挡土墙-依靠杆件(或笼)
的侧限作用使墙形成一整体, 以抵御墙后土土墙的作用
1.降低挖方边坡高度,减少挖方数量,避免山体失
第三节 挡土墙的类型与构造
◆6、挡土墙布置
①横向布置
主要是在路基横断面图上选定挡土墙的位置,确定是路堑墙、路肩墙、路堤 墙还是浸水挡墙?并确定断面形式及初步尺寸。
②纵向布置
在墙趾纵断面图上进行墙的纵向布置,布置后绘成挡土墙正面图。包括:
1)分段,设伸缩缝与沉降缝; 2)考虑始、末位置在路基及
其它结构处的衔接; 3)基础的纵向布置; 4)泄水孔布置。
(1)设置地面排水沟,截引地表水;
(2)夯实回填土顶面和地表松土,防止雨水和地面水下渗,必要 时可设铺砌层;
路基路面课程设计挡土墙设计与验算样本
3 挡土墙设计与验算3.1 设计资料3.1.1 墙身构造本设计任务段中K67+650~K67+670的横断面左侧坡度较陡, 为了减少填方量, 收缩边坡, 增强路基的稳定性, 拟在本段设置一段重力式路堤挡土墙, 其尺寸见挡土墙设计图。
拟采用浆砌片石仰斜式路堤挡土墙, 墙高H=8m, 墙顶填土高度为m a 2=, 顶宽m 2, 底宽m 25.2, 墙背仰斜,坡度为-0.25:1, (α=-14.04°), 基底倾斜, 坡度为5:1, (0α=11.18°), 墙身分段长度为10m 。
3.1.2 车辆荷载根据《路基设计规范(JTG )》, 车辆荷载为计算的方便, 可简化换算为路基填土的均布土层, 并采用全断面布载。
换算土层厚 694.0185.120===γqh 其中: 根据规范和查表m KN q /5.12102101020)810(=+--⨯-= γ为墙后填土容重318m KN=γ 3.1.3 土壤地质情况 填土为粘土, 土的粘聚力Kpa C 23=, 内摩擦角︒34=φ, 墙背与填土间的摩擦角︒==172/φδ,容重为318m KN =γ粘性土地基, 容许承载力为[]Kpa 3500=σ, 基底摩擦系数μ取0.38。
3.1.4 墙身材料采用7.5号砂浆, 25号片石,砌体容重为323m KN =γ3; 按规范:砌体容许压应力为[]Kpa a 900=σ, 容许剪应力为[]Kpa 180=τ, 容许拉应力为[]Kpa l 90=ωσ。
3.2 墙背土压力计算对于墙趾前土体的被动土压力, 在挡土墙基础一般埋深的情况下, 考虑到各种自然力和人畜活动的作用, 以偏于安全, 一般均不计被动土压力,只计算主动土压力。
本设计任务段的路堤挡土墙, 采用二级台阶,分析方法采用”力多边形法”, 按粘性土的公式来计算土压力; 边坡坡度为5.1:1其计算如下:图4.1 挡土墙设计图3.2.1 破裂面计算假设破裂面交于荷载中部, 则:= (2+8+2×0.694) ×(2+8)/2=56.94αtg h a H H h d b ab B )22(5.0)(2/000++-++==2×3/2+(3+0.75)×0.694+0.5×8×(8+2×2.0+2×0.694) ×0.249=18.937986.007655.1)7526.0104826(7526.0/00=⨯++-=)+(⨯)+(+-=A B tg tg ctg tg tg ψψφψθ其中: '3038341702.14︒=︒+︒+︒-=++=φδψa破裂角: '3638︒=θ3.2.2 验算破裂面是否交于荷载内:破裂面至墙踵(H+a)tg θ=(8+2)×tg38°36′=7.99m荷载内缘至墙踵-H tg α+b+d=8×0.249+3+0=4.99m荷载外缘至墙踵-H tg α+b+d +lo=8×0.249+3+0+7.5=12.492m∴4.99<7.99<12.49 假设满足要求。
路基路面课程设计任务书
《路基路面工程》课程设计任务书题目: A重力式挡土墙设计B 沥青路面设计C 水泥混凝土路面设计1. 课程设计教学条件规定制图教室2. 课程设计任务(1)理解设计任务,确定工作计划,查阅资料。
(2)按《公路路基设计规范》(JTG D30-2023)“5.4 挡土墙”一节,采用极限状态设计法进行重力式挡土墙设计;(3)按《公路沥青路面设计规范 JIG D50-2023》旳内容和规定进行沥青路面构造设计;(4)按《公路水泥混凝土路面设计规范 JTG D40-2023》旳内容和规定进行水泥混凝土路面构造设计;(5)根据指导教师旳规定,采用指定旳初始条件进行设计:重力式挡土墙、水泥混凝土路面和沥青路面旳设计计算按所选方案手算;在设计阐明书(设计汇报书)中应画计算图,采用A4纸打印设计汇报书。
(6)出图:重力式挡土墙、沥青路面设计不出图(留待毕业设计时训练出图);水泥混凝土路面设计,绘制面板接缝构造和钢筋布置图,A3图纸1页。
3. 课程设计汇报书重要内容A重力式挡土墙设计(一)初始条件:(1)浆砌片石重力式仰斜路堤墙,墙顶填土边坡1:1.5,墙身纵向分段长度为10m ;路基宽度26m ,路肩宽度3.0m ;(2)基底倾斜角0α:tan 0α=0.190,取汽车荷载边缘距路肩边缘d =0.5m ; (3)设计车辆荷载原则值按公路-I 级汽车荷载采用,即相称于汽车−超20级、挂车−120(验算荷载);(4)墙后填料砂性土容重γ=183/m kN ,填料与墙背旳外摩擦角τ=0.5φ;粘性土地基与浆砌片石基底旳摩擦系数μ=0.30,地基容许承载力[0σ]=250a kP ;(5)墙身采用 2.5号砂浆砌25号片石,圬工容重k γ=223/m kN ,容许压应力a a kP 600][=σ,容许剪应力a j kP 100][][==στ,容许拉应力a L kP 60][=σ;(6) 如下设计参数区别为每人一题,详细见下表:(二)规定完毕旳重要任务:按《公路路基设计规范》(JTG D30-2023)“5.4 挡土墙”一节,采用极限状态设计法进行设计:(1)车辆荷载换算;E和其作用点位置;(2)计算墙后积极土压力a(3)设计挡土墙截面,墙顶宽度和基础埋置深度应符合规范规定。
路基路面课程设计- 28
路面竣工后第一年日平均当量轴次: 4801
设计年限内一个车道上累计当量轴次: 1.343737E+07
2、沥青路面设计
2.1轴载分析
路面设计以双轮组单轴载100kN为标准轴载。
1)根据设计题目计算各车型日平均当量轴次数N 。
轴载换算结果表(弯沉)
车型
P /kN
C
C
N
解放CA-10B
后
前
60.0
20.25
1
1
1
6.4
668
黄河JN-150
前
49.0
1
6.4
828
后
101.6
1
1
太脱拉138
前
51.4
1
**************************
轴载换算及设计弯沉值和容许拉应力计算
序号车型名称前轴重(kN)后轴重(kN)后轴数后轴轮组数后轴距(m)交通量
1黄河JN150 49 101.6 1双轮组828
2解放CA10B 19.4 60.85 1双轮组668
3东风EQ140 23.7 69.2 1双轮组988
4太脱拉138 51.4 80 2双轮组<3 378
5东风SP9250 50.7 113.3 3双轮组>3 428
6江淮AL6600 17 26.5 1双轮组1128
设计年限15车道系数.35
序号分段时间(年)交通量年增长率
1 5 4.2%
2 10 6%
当以设计弯沉值为指标及沥青层层底拉应力验算时:
路面设计层层位: 5
设计层最小厚度: 15 (cm)
层位结构层材料名称厚度(cm)抗压模量(MPa)抗压模量(MPa)容许应力(MPa)
课程设计--路基路面工程
《路基路面工程》课程设计驻马店市(Ⅳ2)某一级公路桩号 K23+152-K23+178系院:建筑工程学院学生姓名:姚增峰学号:0937110245专业:土木工程年级:09级完成日期:2011.12.21指导教师:王明《路基路面工程》课程设计任务书一、驻马店市(Ⅳ2)某一级公路在桩号 K23+152~K23+178 段。
设计资料:1、路基:填土为密实粘性土,容许承载力 [σ]=250KPa,f=0.40。
2、墙后填料:粘土,φ=23,γ=17.64 KN/m,C=18.72KPa。
3、挡土墙墙身材料:5号砂浆砌片石,γa=22.3KN/m,δ= φ/2,[σ]=2450 KMpa。
4、设计荷载:汽车 -20 级,挂车 -100。
5、路基宽度自拟,边坡坡度自拟。
6、路槽地面距地下水位1.3m,地面地下水位为0.9m。
二路状调查资料:1 交通调查在不利季节调查的双向四车道平均日交通量:预计未来使用期内,交通量年平均增长率为 4-6% ,。
2 材料调查沿线可采集各种砂、石料;附近有矿渣、炉渣可利用;水泥、石灰、沥青等材料当地可供应。
三要求1所有参加课程设计的同学共分六组,每组排列序号;以上交通量是第6号同学的基准交通量。
其他同学,序号每增加或者减收1,相应的每种交通量增加或者减少值为5。
2交通年增长率自己拟定。
3每个学生设计3个路面结构方案比选,选出各项指标最优者。
(1)路基 E0(2)路基 E0(3)路基 E0 (4)路基 E0 (5)路基 E0(6)路基 E0以上路面类型所涉及的各个参数,每个人自己拟定,第一组选(1),第二组选(2),以下类推。
沥青混凝土c=0.2~0.3Mpa,内摩擦角为20~35°。
四设计内容及步骤:(一)沥青混凝土路面1交通量计算;2设计弯沉值;3确定路面结构组合,选择计算层,确定已知各个结构层适宜厚度;4确定土基回弹模量;5确定路面格结构层的抗压强度、劈裂强度;6根据弯沉值,计算未知结构层厚度;7根据确定的各个结构层,进行结构层的换算;8进行各个结构层的弯拉应力计算与验算;9进行结构层的剪应力验算;10各项设计参数都验算合格,进行设计参数汇总,确定设计方案。
路基路面课程设计
《路基路面工程》课程设计计算书1.重力式挡土墙设计2.边坡稳定性设计3.沥青混凝土路面设计4、水泥混凝土路面设计学生姓名:学号:指导教师:日期:目录一、重力式挡土墙设计 (4)设计参数 (4)车辆荷载换算 (4)土压力计算 (4)挡土墙计算 (6)二、边坡稳定性设计 (8)初始条件 (8)表格数据 (9)三、沥青混凝土路面设计 (12)轴载分析 (12)构组合与材料选取 (14)结各层材料的抗压模量和和劈裂强度 (15)土基回弹模量的确定 (15)设计指标的确定 (15)设计资料总结 (16)四、水泥混凝土路面设计 (19)交通分析 (19)初拟路面结构 (19)路面材料参数确定 (20)混凝土板应力分析及厚度计算 (20)计算荷载疲劳应力 (21)接缝设置 (22)路肩及路面排水设施 (22)一、重力式挡土设计1 设计参数1.1几何参数:挡土墙墙高H=4m, 取基础埋置深度D=1.5m, 挡土墙纵向分段长度取L=10m ; 墙面与墙背平行, 墙背仰斜, 仰斜坡度1:0.25, =-14.04, 墙底(基底)倾斜度, 倾斜角;墙顶填土高度=2m, 填土边坡坡度1:1.5, , 汽车荷载边缘距路肩边缘; 1.2力学参数:墙后填土砂性土内摩擦角, 填土与墙背外摩擦角, 填土容重;墙身采用2.5号砂浆砌25号片石, 墙身砌体容重,砌体容许压应力,砌体容许剪应力,砌体容许拉应力;地基容许承载力[0σ]=250kPa 。
2 车辆荷载换算按教材公式, 把车辆荷载换算为等代均布土层厚度。
3 主动土压力计算 3.1 计算破裂角θ直线形仰斜墙背, 且墙背倾角较小, 不会出现第二破裂0000=+-=35+17.5-14.04=38.34ψϕδα22011(a )(24)1822A H =+=+=,001111ab (2)tan =224+62222B H a H α=++⨯⨯+⨯⨯⨯=(224)tan14.040tan tan tan 38.340.79-2.37θψ=-=-=或(舍)038.31θ=3.2 计算主动土压力a E 及其作用点位置3.2.1计算主动土压力a E 计算a E 及其水平分量x E 、竖直分量y Ea 000cos()(tan )sin()cos(38.3135)18(18tan 38.316)sin(38.3138.34)43.68k E A B Nθϕγθθψ+=-++=⨯-⨯+= 00cos()43.68cos(17.514.04)43.60x a E E kN δα=-=⨯-=00sin()43.68sin(17.514.04) 2.64y a E E kN δα=-=⨯-=3.2.2计算主动土压力的合力作用点位置100tan 32tan 38.31 2.63tan tan tan 38.31tan14.04b a h m θθα--===--214 2.63 1.37h H h m =-=-=经试算取1 1.20b m =00110tan tan 1.20 1.20tan14.04tan10.76 1.26B b b m αα=+=+=32211213222(33)3(2)42(343 2.634 2.63)342(24 2.63)1.38x H a H h H h Z H a H h m+-+=⎡⎤+-⎣⎦+⨯⨯-⨯⨯+=⎡⎤⨯+⨯⨯-⎣⎦= 0tan 1.26 1.38tan14.04 1.61m y x Z B Z α=+=+=因墙底(基底)倾斜, 需把求得的、修正为、, 取进行修正:0110tan 1.38 1.20tan10.76 1.15x x Z Z b m α=-=-= 11tan 1.20 1.15tan14.040.91y x Z b Z mα=-=-=3.3 被动土压力墙前的被动土压力忽略不计。
路基路面工程挡土墙设计
当挡土墙处于地质不良地段,地基土内可能产生滑动面时, 应进行抗滑稳定性分析,将基础底面埋置在滑动面下列, 或采用其他措施,预防挡土墙滑动。
排水设施:
目旳:梳干填料中旳水分、预防地表水下渗造成积水、消 除粘性土因为含水量变化造成旳膨胀压力,减小冻胀压力。
排水措施:设置地面排水沟,引排地面水;扎实回填土顶 面和地面松土,预防雨水及地面水下渗,必要时可加设铺 砌;对路堑挡墙墙趾前旳边沟应予以铺砌加固,以防边沟 水渗人基础;设置墙身泄水孔,排除墙后水。
衡重式墙背上墙墙背坡度一般为1:0.25到1:0.45,下 墙一般为1:0.25,上下墙旳墙高比一般采用2:3。
墙面:一般基础以上均为平面,本地面横坡比较陡时,墙 面可直立或外斜1:0.05到1:0.2,以减小墙高,本地面 横坡平缓时,墙面可放缓,一般能够采用1:0.2到1: 0.35较为经济,但不宜缓于1:0.4,以免过多增长墙高。
个别复杂旳挡土墙,如高、长旳沿河曲线挡土墙,应作平 面布置,绘制平面图,标明挡土墙与路线旳平面位置及附 近地貌与地物等情况,尤其是与挡土墙有干扰旳建筑物旳 情况。沿河挡土墙还应绘出河道及水流方向,防护与加固 工程等。
问题:
• 挡土墙设计主要考虑哪些力? • 什么是主动土压力?什么是被动土压力? • 路基挡土墙受到最大土压力旳破裂面怎样拟定? • 挡土墙旳设计旳荷载组合怎样拟定? • 挡土墙旳稳定性验算涉及哪些内容? • 增强挡土墙稳定性旳措施有哪些?
行,布置后绘成挡土墙正面图 1)拟定挡土墙旳起迄点和墙长,选择挡土墙与路基或其 他构造物旳衔接方式; 2)按地基及地形情况进行分段,拟定伸缩缝与沉降缝旳 位置; 3)布置各段挡土墙旳基础; 4)布置泄水孔旳位置,涉及数量、间隔和尺寸等;
路线纵坡 泄水孔
(完整word版)挡土墙与路基路面课程设计
3.横断面原地面实测值及路基设计标高如表1所示。
表1 横断面原地面实测值及路基设计标高
左侧
桩号
右侧
中桩标高(m)
路基设计标高(m)
8(-2.6)4(-3)
K2+940
4(2) 6(4.5)
631.45
630.57
基底应力由下式求得:
基底应力满足要求:
6墙身截面验算
取基顶截面(即Ⅰ-Ⅰ截面)为验算截面
6-1
由前面的主动土压力计算结果可知:
Ⅰ-Ⅰ截面宽度 ,Ⅰ-Ⅰ截面计算墙高为
土压力为:
土压力的水平力和竖向分力分别为:
水平土压力的作用点至Ⅰ-Ⅰ截面趾点( )的力臂:
竖向土压力的作用点至I-I截面趾点( )的力臂:
设计任务书
请你为某新建公路进行沥青路面结构设计。
1.
(1)新建公路的所处地理位置可自选为你熟悉的地区,调查当地地质水文条件,选定设计需要参数;
(2)新建公路等级请结合选定地区公路建设需求设计为高速、一级或二级公路,并根据确定的公路等级,参考表1提供的车型技术参数,拟定初期交通量(XXX辆/日)及交通组成(参照表2),交通量年平均增长率为前5年8%、5年以后6%。
(5)根据《公路沥青路面设计规范》验算拟定的路面结构。
4.
(1)结合设计规范要求、国外的路面结构、国内的路面结构、选定地区常用路面结构组合型式,进行路面结构组合设计,要求拟定至少2种方案,论证方案的可行性,并对2种方案进行经济技术比较(仅考虑初期修建费用),确定最终方案。
(2)设计成果包括设计说明书和路面结构图。
设计说明书
长大路基路面之第六章-挡土墙设计
一般条件下库伦主动土压力计算
库伦主动土压力计算 主动土压力计算 极限状态判断及土压力计算:通过求解微分方程,获得产生土压力的相应破裂角,得到土压力的具体表达式。
一般条件下库伦主动土压力计算
2. 库伦主动土压力计算 主动土压力计算 注意事项:地表及顶部荷载的不规则变化,可能使 在某处不可导,因此对于复杂边界条件下的土压力计算,因破裂面与顶部表面的交点不同,会有若干表达式。具体计算时,求出θ值后应复核边界条件
简约风年终工作总结
CLICK HERE TO ADD A TITLE
挡土墙设计
演讲人姓名
第一节 概述
添加标题
Part 02.
添加标题
第六章 挡土墙设计
第一节 概述
A
挡土墙的用途
挡土墙的类型
B
用 途
目 的
1
用于陡坡路段,坍、滑路段
防止土体坍塌、滑动,稳定路基或山坡
2
用于沿河浸挡土墙上的作用(或荷载)一般分为永久作用(或荷载)、可变作用及偶然作用(或荷载)。
作用在挡土墙上的力系
荷载分类
永久作用(或荷载)
挡土墙的结构重力和填土重力
计算水位和浮力及静水压力
填土侧压力
预加应力
墙顶上的有效永久荷载
混凝土收缩及徐变
墙背与第二破裂面之间的有效荷载
基础变位影响力
挡土墙的布置
平面布置 在复杂情形下,挡土墙要求做平面布置,解决挡土墙与地形、地物、人工构造物等的关系问题。 对于高而长、纵向曲折、邻近有建筑物、沿河、与旧墙结合等等复杂情况下的挡土墙,可绘制平面布置图,细致调整设计方案。
第三节 挡土墙土压力计算
作用在挡土墙上的力系
一般条件下库伦土压力计算
路基路面工程-重力式挡土墙和沥青路面课程设计
路基路面工程-重力式挡土墙和沥青路面课程设计一、背景及课程目的路基路面工程是土木工程领域中一个非常重要的分支,其工程项目涉及到公路、铁路、机场、港口等等建筑工程项目。
本课程旨在让学生掌握重力式挡土墙和沥青路面工程的设计方法和相关知识,让学生了解路基路面工程的基本原理,使其能够在未来的实践中做好相关的设计和工作。
二、课程内容概述1.重力式挡土墙重力式挡土墙是一种结构简单、施工方便、经济实用的挡土结构。
本课程将介绍重力式挡土墙的优点和缺点,防渗条件的确定方法,以及基础的设计方法。
学习重力式挡土墙的设计,可培养学生系统化思考和分析能力。
2.沥青路面沥青路面是公路、机场等基础设施的重要组成部分,具有耐久性好、施工方便、提高行车舒适性等优点。
本课程将介绍沥青路面的组成、性能、结构和施工技术,并让学生掌握相关的计算方法和技术标准,以便在实践中协助设计师和工程师处理相关工作。
三、课程大纲1.重力式挡土墙1.1 重力式挡土墙的定义和分类•重力式挡土墙定义•重力式挡土墙分类1.2 重力式挡土墙的优点和缺点•重力式挡土墙的优点•重力式挡土墙的缺点1.3 防渗条件的确定方法•地下水位的测定方法•坡度和埋深的计算方法1.4 基础的设计方法•基础的选择方法•基础的稳定性计算方法•基础的加固方法2.沥青路面2.1 沥青路面的组成和性能•沥青路面的组成•沥青路面的性能2.2 沥青路面的结构和施工技术•沥青路面结构的设计方法•沥青路面施工技术2.3 相关的计算方法和技术标准•沥青路面的设计计算方法•沥青路面的技术标准四、课程要求和考核方式本课程为选修课,主要面向土木工程专业的本科生和研究生。
学生需要预先学习有关的课程,掌握相关的理论知识和实践经验,方可顺利完成本课程的学习和考核。
本课程的考核方式将采取以下几种形式:•平时成绩、课堂参与度、课堂测验、小组讨论等•期末考试或大作业五、本课程旨在为学生提供关于重力式挡土墙和沥青路面工程的相关知识和技能,使其能够在未来的工作中更好地应用理论知识,达到服务社会、促进发展的目的。
路基路面工程课件——挡土墙设计
拉筋
路
填土
基
面板
路
面
工
程
9
锚定式挡土墙
锚杆式
构成:预制的钢筋混凝
土立柱、挡土板构成墙
面,水平或倾斜的钢锚
杆。
锚杆
受力特点:由锚杆与稳 立柱 定岩层或土层之间的锚
固力,使墙获得稳定。
路 基 路 面
适用范围:墙高较大的 岩质路堑地段,可用作 抗 滑挡土墙。
一、挡土墙的构造 墙身构造
墙背
路 基 路 面 a) 仰斜式 b) 垂直式 工 程
c) 俯斜式 d) 凸斜式 e) 衡重式
14
墙面 墙顶 护栏
基础
基础类型(如下图)
基础埋置深度
路 基
无冲刷时,应在天然地面以下至少1m;
路
有冲刷时,应在冲刷线以下至少1m;
面
受冻胀影响时,应在冻结线以下不少于0.25m。
棱体L的荷载,简称超载); 基底的法向反力N及摩擦力T; 墙前土体的被动土压力Up。
路
基
路
面
工
程
19
三、土压力计算
土压力
静止土压力
主动土压力
被动土压力
路
基
路
面
工
程
20
静止土压力
挡土墙在压力作用下不发生任何变形和 位移,墙后填土处于弹性平衡状态时,作用 在挡土墙背的土压力。
路
Eo
基
路
面
工
程
21
路堑墙
设置在路堑坡底部,主要用于支撑开挖后不能自行稳 定的边坡,同时可减少挖方数量,降低挖方边坡的高 度。
路肩墙
路
路基路面工程课程设计
路基路面工程课程设计挡土墙设计1.墙身构造:墙高8m ,墙背仰斜坡度为1:0.25(='0214),墙身分段为2.车辆荷载换算(1)破裂面确定:假设破裂面交于路基面的荷载内侧, '283835'3017'0214 =++-=++=ϕδαψ挡土墙为仰斜式()()2220m 50822121=+⨯=+=H a A ()()()20m 997.14'0214tan 2288213221tan 22121=-⨯+⨯⨯-⨯⨯=+-= αa H H ab B ()()765.0'2838tan 50997.14'2838tan 35cot '2838tan tan tan cot tan tan 00=⎪⎭⎫ ⎝⎛+++-=⎪⎪⎭⎫⎝⎛+++-= ψψϕψθA B "19'2537 =θ验算破裂面是否交于路基面荷载内侧:破裂楔体长度:()()m 05.425.0765.08tan tan 0=-⨯=+=αθH L车辆荷载分布宽度:()m 5.36.03.118.121=+⨯+⨯=+-+=d m N Nb L m 5.225.38'=-=d m 3m 05.4m 5.55.23'0=>=>=+=+b L d b所以破裂面交于路基面荷载内侧,符合假设。
(2)荷载换算成当量土柱高度挡墙的分布荷载:()2kN/m 5.12108102101020=+-⨯--=q 荷载换算成当量土柱高度:m 694.0185.120===γq h 3.土压力计算 ()()()()()()kN 34.130'2838"19'2537sin 35"19'2537cos 997.14765.05018sin cos tan 00=++⨯-⨯⨯=++-=ψθϕθθγB A E a()()kN 10.130'3017'0214cos 34.130cos =+-⨯=+= δαa x E E ()()kN 24.0'3017'0214sin 34.130sin =+-⨯=+= δαa y E E4.稳定性计算(1)墙体重量及其作用点 每延米挡土墙体积为: 262.15221821221160m S =⨯⨯+⨯= 每延米挡土墙重量为:kN 62.34362.1522=⨯==V G a γ(2)抗滑稳定性验算()()kN 13.105045.024.04.120.2599.0tan 9.09.001=+⨯⨯+⨯=++αμγG E G y Q。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
挡土墙设计一.设计资料某平原微丘建一级汽车专用公路,路基宽度为24.5m,桩号K20+456.00~K20+518.40位于半径R=1000m的圆曲线段,曲线为左偏,超高值采用4.0%,设计纵坡为3.0%,各桩号地面高程与设计高程资料见表1,横断面资料见表2。
现因路基右侧与其它结构物干扰,需压缩占地宽度,拟建路肩挡土墙。
车辆荷载:按墙高确定的附加荷载强度换算。
填料容重γ=18.0kN/m3,φ=35°,δ=φ/2,基底摩擦系数μ=0.3,地基承载力抗力值(修正后)f=510kPa,墙身材料容重γa=22.0kN/m3。
挡土墙采用M7.5砂浆砌筑,材料极限抗压强度RK=650kPa,截面抗剪极限强度Rj=90kPa 。
表1地面高程、设计高程资料表2原地面横断面资料二.设计要求1.1设计说明书1.挡土墙截面型式的选定2.基础埋置深度及宽度的选定3. 挡土墙土压力计算 4. 挡土墙稳定性验算5. 挡土墙基底应力及合力偏心距验算 6. 墙身截面强度验算 1.2设计图纸1.2.1挡土墙正面图(1) 确定挡土墙的起讫点和墙长,选择挡土墙与路基或其它结构物的连接方式。
(2) 按地基及地形情况进行分段,确定沉降缝及伸缩缝位置。
(3) 布置各段挡土墙的基础。
(4) 确定泄水孔的位置,包括数量、间距和尺寸等。
(5) 在布置图上应注明各特征点桩号,墙顶基础顶面、基底、冲刷线、冰冻线、常水位或设计洪水位的标高等。
1.2.2横断面图绘制起讫点、墙高最大处、墙身断面和基础形式变异处以及其它必须桩号的挡土墙横断面图。
图上,按计算结果布置墙身断面,确定基础形式和埋置深度,布设排水设施,指定墙身填料的类别等。
1.2.3设计说明(1)所需的工程材料数量;(2)其它有关材料及施工的要求和注意事项等。
三.挡土墙截面型式的选定K20+520处,为挡土墙设计最不利处。
墙体高为H=8m ,埋深1.22m ,墙面,墙背仰斜坡度1:0.25(=2014' ) ,墙身纵向分段长度为L=10m 与19.97m ;墙面与墙背平行,基顶宽2m 。
四.挡土墙土压力计算4.1破裂棱体位置确定(1)破裂角(θ)的计算假设破裂面交于荷载范围内,则有: 8238350317214-'=+'+'=++= ϕδαψ因为 90<ω)2(21))(2(21000h H H H a h h a A +=+++=ααtan )2(21)00(0tan )22(21)(210000h H H h a H H h d b ab B +-++=++-++= =αtan )2(21-0h H H +)tan )(tan (cot tan tan 0ψψϕψθ+++-=A B )tan )(tan tan (cot tan αψψϕψ-++-=)2014tan 2838)(tan 8238tan 35(cot 8238tan '-'++'-==0.7291 44536'''= θ(2)验算破裂面是否交于荷载范围内破裂棱体长度:m H L 8.3)25.07291.0(8)tan (tan 0=-⨯=+=αθ 车辆荷载分布宽度:m 5.56.03.18.12)1(=++⨯=+-+=d m N Nb L 所以L L <0,即破裂面交于荷载范围内,符合假设。
4.2荷载当量土柱高度计算墙高8m ,按墙高确定附加荷载强度进行计算。
按照线性内插法,计算附加荷载强度:2/125.13m KN q =,则:m q h 7.018125.130===γ4.3土压力计算6.37807.028021))(2(2100=+⨯⨯++⨯=+++=)()(H a h h a A4.9)214tan(7.0208821)00(0tan )22(21)(21000='-⨯⨯++⨯⨯-++=++-++=)(αh a H H h d b ab B根据路堤挡土墙破裂面交于荷载内部的土压力计算公式:()kNB A E a 37.90)823844536sin()3544536cos()4.97291.038.33(18sin )cos()tan (00='+'''+'''-⨯⨯=++-= ψθϕθθγ kN E E a x 2.90)0317214cos(37.90)cos(='+'-⨯=+= δαkN E E a y 46.5)0317214sin(37.90)sin(='+'-⨯=+= δα 4.4土压力作用点计算175.187.0212101=⨯+=+=H h K m K h H Z x 87.2175.137.038)3(3101=⨯+=+=1x Z 表示压力作用点到墙踵的垂直距离。
4.5土压力对墙趾力臂计算基底倾斜,土压力对墙趾的力臂:m h Z Z x x 5.237.087.211=-=-=m Z b Z x y 58.2025.032.22tan 1==⨯+=-=α五.稳定性验算5.1墙体重量及其作用点位置计算挡土墙按单位长度计算,为方便计算,从墙趾处沿水平方向把挡土墙分为两部分,上部分为四边形,下部分为三角形:211124.1412.72m H b V =⨯=⨯= kN V G a 28.3132224.1411=⨯=⨯=γm 89.1)tan (21111=+=b H Z G α211238.038.025.021m h b V =⨯⨯=⨯⨯= kN V G a 36.82238.022=⨯=⨯=γm 30.1651.012=⨯=b Z G5.2抗滑稳定性验算倾斜基底0.2:1(6381110'''= α) 5.2.1验算抗滑稳定方程()[]0tan )1.1(tan tan 1.121010201>+-++-++p Q x Q y Q p Q x yQ E E E G E E EG γγαγμαγαγ[]061.964.1198.0)85.54.164.3211.1(3.00198.061.9685.54.164.3211.1+⨯-⨯⨯+⨯+⨯-⨯+⨯+⨯)( =()[]()25.135198.019.880.3533.013.1985.54.180.353-⨯++⨯+⨯+=53.01>0所以抗滑稳定性满足要求 5.2.2验算抗滑稳定系数c KkN E G N y 49.32785.564.321=+=+=()[][]198.049.32761.9603.0198.0)061.96(49.327tan tan 00⨯-+⨯⨯-+=-'+'-+=αμαN E E E EN K x p p xc=3.27>1.4所以抗滑稳定系数c K 符合要求 5.3抗倾覆稳定性验算5.3.1验算抗倾覆稳定方程0)(8.011>+-+p p Q y x x y Q G Z E Z E Z E GZ γγ058.261.9632.285.54.130.136.889.128.3138.0+⨯-⨯⨯+⨯+⨯⨯)()(=152.42>0 所以抗倾覆稳定性满足要求 5.3.2验算抗倾覆稳定系数0K5.147.258.261.9632.285.5)30.136.889.128.313(0>=⨯⨯+⨯+⨯='++=yx pp x y G Z E Z E Z E GZ K所以抗倾覆稳定系数0K 符合要求六.基底应力和合力偏心矩验算6.1合力偏心矩计算1011sin cos )(2.14.1αγαγγx Q y Q G G E E W E G M M N Me +-++==上式中,弯矩为作用于基底形心的弯矩,所以计算时,先要计算对形心的力臂:根据前面计算过的对墙趾的力臂,可以计算对形心的力臂。
m BZ Z G G89.0189.1211=-=-=' m BZ Z G G30.0130.1222=-=-=' m BZ Z x x52.2198.0132.2tan 20=⨯+=+='α m BZ Z yy 58.1158.22=-=-=' 01011sin cos )(2.14.1αγαγγx Q y Q G G E E W E G M M N Me +-++===()01012211sin cos )(2.14.1αγαγγx Q y Q G G G x x y y E W E G Z G Z G Z E Z E +-+'+'⨯+'-'⨯)(=19.061.964.198.0085.54.12.164.32130.036.889.028.3132.152.261.9658.185.54.1⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯⨯)()()(=0.026m<m B5.041=所以基底合力偏心矩符合要求 6.2基底应力验算6B e ≤)(2024.061297.411)61(N P 1⨯±=±=B e A Pa 22.221max k P = Pa 12.190in k P m =[]KPa kPa P 51022.221max =<=σ所以基底应力满足要求七.强身截面强度验算墙面强背平行,截面最大应力出现在接近基底处。
以基底截面验算7.1强度计算kkk j R AN γα≤按每延米墙长计算kN G N G 21.31598.064.321cos 0=⨯==αkN E E N x y Q 09.2419.061.9698.085.5sin cos 001=⨯+⨯=+=αα)(110∑++=Qi Ci Qi Q Q G G j N N N N ψγγγγkN 58.432009.244.121.3152.105.1=+⨯+⨯⨯=)(998.0)2024.0(121)2024.0(2561)(121256128280=+-=+⎪⎭⎫⎝⎛-=B e B e k α kN R Akkk 65.56131.26502998.0=⨯⨯=γα kN R AkN N kkk j 65.56158.432=≤=γα墙身强度符合要求 7.2稳定计算kkk j R AN γαψk ≤因为1075.328<=B H ,为矮墙,所以1=k ψ 所以由强度计算知,稳定计算符合要求 7.3正截面直接受剪时验算kN E Q x G j 25.13561.964.1=⨯==γkN N f R A kN Q m kjj j 55.25142.097.41131.290225.1351=⨯+⨯=+≤=γ 墙身抗剪能力符合要求。