初中数学 中考函数知识点
初三函数全部知识点总结
初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。
一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。
2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。
3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。
4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。
二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。
2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。
三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。
2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。
3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。
4. 对数函数对数函数是指数函数的逆运算。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。
2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。
3. 最值和零点函数在定义域内可能有最大值、最小值和零点。
4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。
五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。
2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。
3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。
中考函数必备知识点归纳
中考函数必备知识点归纳函数是中考数学中的一个重要概念,掌握好函数的知识点对于解决中考数学问题至关重要。
以下是中考必备的函数知识点归纳:1. 函数的概念:函数是一种特殊的关系,它将一个集合中的每一个元素都映射到另一个集合中的一个元素。
在数学中,我们通常用\( y =f(x) \)来表示函数,其中\( f \)是函数名,\( x \)是自变量,\( y \)是因变量。
2. 函数的三要素:定义域、值域和对应法则。
定义域是函数中自变量的所有可能取值的集合;值域是函数中因变量的所有可能取值的集合;对应法则是确定函数值的规则。
3. 函数的表示方法:列表法、图象法和解析法。
列表法通过列出自变量和对应的因变量来表示函数;图象法通过函数的图象来表示函数;解析法通过数学表达式来表示函数。
4. 函数的类型:一次函数、二次函数、反比例函数等。
一次函数的一般形式为\( y = ax + b \);二次函数的一般形式为\( y = ax^2 +bx + c \);反比例函数的一般形式为\( y = \frac{k}{x} \)。
5. 函数的图象:一次函数的图象是直线,二次函数的图象是抛物线,反比例函数的图象是双曲线。
图象的对称性、顶点、焦点等特征是中考中常考的内容。
6. 函数的增减性:函数的增减性是指函数值随自变量变化的趋势。
一次函数和反比例函数具有单调性,即要么一直增加要么一直减少;而二次函数则可能在某个区间内增加,在另一个区间内减少。
7. 函数的极值:极值是指函数在某点的局部最大值或最小值。
二次函数的极值通常出现在对称轴上。
8. 函数的复合:两个函数的复合是指先对自变量进行一个函数的运算,然后再用另一个函数进行运算。
复合函数的求解是中考中的难点。
9. 函数的解析式:解析式是函数的数学表达式,掌握如何根据已知条件求出函数的解析式是中考中的重要技能。
10. 函数的实际应用:函数在实际问题中的应用非常广泛,如速度与时间的关系、成本与产量的关系等,中考中经常会出现将函数应用到实际问题中的题目。
初中函数知识点总结(全面)
初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。
函数通常用来描述两个变量之间的依赖关系。
2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。
方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。
表格则将自变量和因变量的值以表格形式列出。
图像则以直线、曲线或者其他形状来表示函数的变化规律。
3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
定义域和值域的确定需要根据函数的实际情况来分析和判断。
4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。
线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。
二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。
5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。
对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。
6. 函数的应用函数在数学和实际生活中都有广泛的应用。
在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。
在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。
总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。
掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。
以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。
初三数学函数知识点归纳
初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。
列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。
图象法:用图象来表示函数关系,如一次函数的图象是一条直线。
二、一次函数1. 定义形如是常数,的函数叫做一次函数。
当时,叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。
当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。
性质当时,随的增大而增大;当时,随的增大而减小。
3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。
三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。
2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。
当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。
反比例函数图象关于原点对称,它的对称轴是直线和。
3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。
四、二次函数1. 定义形如是常数,的函数叫做二次函数。
2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。
顶点坐标:。
对称轴:直线。
性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。
初三数学的函数知识点总结
初三数学的函数知识点总结一、函数的概念1. 函数的定义:函数是一种特殊的关系,即每一个自变量对应唯一的因变量,并且每一个可能的自变量都对应一个确定的因变量。
通俗地讲,函数就是一种“输入-输出”关系。
2. 自变量和因变量:在函数中,自变量是指可以独立变化的变量,通常用x来表示;而因变量则是函数的输出,通常用y来表示。
3. 函数的表达式:函数可以用数学公式或图象表示,通常表示为y=f(x),其中f(x)是函数,表示自变量x经过函数f所得的因变量y。
4. 定义域和值域:函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
5. 奇函数和偶函数:如果f(-x)=-f(x)成立,那么函数f(x)是奇函数;如果f(-x)=f(x)成立,那么函数f(x)是偶函数。
二、函数的表示方法1. 函数的图象:函数的图象是将自变量和因变量的所有可能取值通过直角坐标系的点连起来所得的图形。
2. 函数的映射图:函数的映射图是将函数值与自变量一一对应的有序对用点表示,并由这些点组成的图。
3. 函数的解析式:函数的解析式是用公式或方程表示的函数表达式,可以直接求出给定自变量时的因变量值。
4. 函数的等价变形:函数的等价变形是对函数进行代数运算、图象变换等操作得到的新函数。
三、函数的基本性质1. 函数的有界性:如果函数f(x)在某一区间内有界,则函数在这个区间内有最大值和最小值。
2. 函数的单调性:如果函数f(x)在某一区间内的导数始终大于0或小于0,则函数在这个区间内是递增或递减的。
3. 函数的奇偶性:奇函数具有对称中心为原点的对称图象,偶函数具有对称中心为y轴的对称图象。
4. 函数的周期性:如果函数f(x)满足f(x+T)=f(x),其中T为正常数,则函数具有周期T。
5. 函数的零点和极值:函数的零点是指使函数取零值的自变量值,而极值则是函数取得最大值或最小值的点。
6. 函数的单值性和多值性:一般情况下,函数对应一个自变量只能有一个因变量,因此是单值函数;但有些函数也可以对应一个自变量有多个因变量,这就是多值函数。
初中函数中考知识点总结
初中函数中考知识点总结函数是数学中非常重要的概念,也是初中数学的重点内容之一。
学好函数,不仅有助于提高数学思维能力,还有助于理解各种实际问题,因此,了解初中函数知识点是非常重要的。
下面就对初中函数知识点进行总结。
一、函数的概念函数是指一个或多个自变量按照一定的规则得到一个确定的因变量,通俗来说就是一个“运算法则”,可以看做是一种数值关系。
函数的表示通常为f(x),其中x是自变量,f(x)是因变量。
函数的定义域和值域分别是自变量和因变量的取值范围。
二、函数的表示方法1. 公式表示法函数可以用公式来表示,例如: f(x) = 2x + 1。
这表示了一个关于x的线性函数,当给定x的取值时,就可以计算出相应的f(x)的值。
2. 函数图像表示法函数也可以通过图像来表示,通过在坐标系上绘制函数的图像来描述函数的性质和变化规律。
3. 函数表达式表示法可以通过表格的形式来列出自变量和因变量的对应关系,这种形式常用于计算机编程中。
三、常见的函数类型1. 一次函数一次函数的一般式为 y = kx + b,其中k和b是常数,k称为斜率,表示了函数图像的倾斜程度,b称为截距,表示了函数图像与y轴的交点。
2. 二次函数二次函数的一般式为 y = ax^2 + bx + c,其中a、b、c是常数且a不等于0。
二次函数的图像为抛物线,而a的正负决定了抛物线的开口方向。
3. 幂函数幂函数的一般式为y = x^n,其中n是任意实数。
幂函数的图像形状主要由n的取值决定。
4. 指数函数指数函数的一般式为 y = a^x,其中a是一个正实数且a不等于1。
指数函数的图像呈现出指数增长或指数衰减的特点。
5. 对数函数对数函数的一般式为 y = loga(x),其中a是一个大于0且不等于1的数字,x是大于0的数。
对数函数和指数函数是互为反函数的关系。
四、函数的性质1. 奇偶性若对于定义域内的任意x,有f(-x) = f(x),则函数f(x)是偶函数;若对于定义域内的任意x,有f(-x) = -f(x),则函数f(x)是奇函数。
中考函数知识点总复习
中考函数知识点总复习函数是数学中的重要概念,也是中学数学中的难点内容之一、在中考中,函数是常常出现的题型,掌握函数的基本概念和相关的知识点对于取得好成绩至关重要。
下面是对中考函数知识点的总复习。
一、函数的定义和性质1.函数的定义:函数是一种对应关系,每个自变量都有唯一的函数值。
记作f(x)=y。
其中,x为自变量,y为函数值。
2.定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
3.函数图像:函数图像是函数在坐标系中平面上的表示,通常用关联图、曲线图或者折线图表示。
4.单调性:函数的单调性是指函数在区间上是单调递增或者单调递减。
根据函数的单调性,可以对函数的增减区间和极值进行判断。
二、常见函数类型1. 线性函数:线性函数是一次函数,函数的图像是一条直线。
一般形式为y = kx + b,其中k为直线的斜率,b为直线的截距。
2.幂函数:幂函数是一类函数,函数的形式为y=x^n,其中n为常数。
3.指数函数:指数函数是以常数e为底的幂函数,函数的形式为y=a^x,其中a为底数。
4. 对数函数:对数函数是指数函数的反函数,函数的形式为y =loga(x),其中a为底数。
5.三角函数:三角函数是以圆单位长度为自变量的函数,包括正弦函数、余弦函数和正切函数等。
6.反比例函数:反比例函数是一类函数,函数的形式为y=k/x,其中k为常数。
三、函数图像和函数性质的分析1.函数图像的性质:通过函数的图像可以判断函数的单调性、增减区间和极值等。
2.函数解析式分析:通过函数的解析式可以判断函数的类型、定义域和值域等。
3.函数的对称性:函数的对称性包括奇偶性和轴对称性。
四、函数的运算1.函数的加减运算:给定两个函数y1=f1(x)和y2=f2(x),它们的和函数为y=f1(x)+f2(x);差函数为y=f1(x)-f2(x)。
2.函数的乘法运算:给定两个函数y1=f1(x)和y2=f2(x),它们的积函数为y=f1(x)×f2(x)。
初中函数总结数学知识点
初中函数总结数学知识点初中数学中的函数知识是数学学习的重要组成部分,它涉及到变量、表达式、方程以及图形等多个概念。
函数是初中数学向高中数学过渡的关键桥梁,因此对函数的理解和掌握至关重要。
以下是初中数学中函数知识点的总结。
# 1. 变量与常数- 变量:在变化过程中可以取不同数值的量。
在初中数学中,通常用字母如x、y来表示。
- 常数:其值在变化过程中保持不变的数。
常数可以是任何实数。
# 2. 函数的概念- 函数:是一种特殊的关系,其中一个变量的值依赖于另一个变量的值。
这种依赖关系通常用函数表达式来表示。
- 函数表达式:表示函数关系的数学式子,如y = f(x)。
- 自变量:函数中可以自由变化的变量,通常在x的位置。
- 因变量:函数中随着自变量变化而变化的变量,通常在y的位置。
# 3. 函数的表示方法- 解析法:用数学表达式表示函数,如y = 2x + 3。
- 列表法:列出自变量和因变量的对应值,如\((x, y)\):\((1, 5)\),\((2, 7)\),\((3, 9)\)。
- 图形法:在坐标平面上画出函数的图形,通常为一条直线或曲线。
# 4. 函数的性质- 定义域:函数中自变量的取值范围。
- 值域:函数中因变量的取值范围。
- 单调性:函数在某个区间内值的增减趋势。
分为单调递增和单调递减。
- 奇偶性:函数的对称性质。
偶函数关于y轴对称,奇函数关于原点对称。
# 5. 基本函数类型- 线性函数:形如y = kx + b的函数,其中k和b是常数,k为斜率,b为截距。
- 二次函数:形如y = ax^2 + bx + c的函数,其中a、b、c是常数,a决定开口方向和宽度。
- 一次函数:是线性函数的特例,形如y = kx,斜率为k。
- 反比例函数:形如y = \frac{k}{x}的函数,k为常数,表示x和y的乘积为常数。
# 6. 函数的运算- 加法:两个函数相加,得到新的函数,如f(x) + g(x)。
函数知识点总结初三
函数知识点总结初三本文意在总结初三阶段学习的函数知识点,包括函数的概念、函数的性质、函数的图像和函数的应用等内容。
一、函数的概念函数是数学中非常重要的一个概念,它描述了一种特定的对应关系。
在代数中,函数常表示为f(x),其中x是自变量,而f(x)是与x对应的因变量。
简单来说,函数就是一个对应关系,它使得每一个自变量对应且唯一地确定一个因变量。
比如,y=x^2就是一个函数,它表示了自变量x和因变量y之间的对应关系。
二、函数的性质1. 定义域和值域函数的定义域是指自变量可以取的值的范围,而值域则是函数的所有可能的输出值。
以y=x^2为例,它的定义域是实数集R,而值域是非负实数集[0,+∞)。
2. 奇函数和偶函数当函数满足f(-x)=-f(x),即对于任意x都有f(-x)=-f(x)时,该函数被称为奇函数。
相对地,当函数满足f(-x)=f(x),即对于任意x都有f(-x)=f(x)时,该函数被称为偶函数。
比如,y=x^3是一个奇函数,而y=x^2是一个偶函数。
3. 单调性函数的单调性描述了函数图像上的点按照某一方向排列的趋势。
当函数在定义域上具有单调性时,它可以是严格单调递增或严格单调递减。
比如,y=x^2在定义域(0,+∞)上是严格单调递增的。
4. 增减性函数的增减性描述了函数的增长或减小的趋势。
当函数的一阶导数大于0时,函数在该区间上是增函数;而当函数的一阶导数小于0时,函数在该区间上是减函数。
三、函数的图像函数的图像是函数对应关系在平面坐标系上的表现。
对于一元函数f(x),函数的图像可以用平面直角坐标系上的曲线来表示。
根据函数的性质,我们可以通过函数的图像了解函数的定义域和值域,奇偶性,单调性和增减性等。
四、函数的应用1. 函数的应用很广泛,在自然科学和社会科学中都有着重要的地位。
例如,横抛运动的轨迹方程就是一个函数,它描述了抛体运动的轨迹;又比如,经济学中的需求函数描述了产品需求量与价格之间的关系。
中考函数必备知识点总结
中考函数必备知识点总结一、函数的基本概念1. 函数的定义:函数是一种对应关系,对于每一个自变量(输入),都有且只有一个因变量(输出)与之对应。
2. 自变量和因变量:在函数中,自变量是函数的输入,通常用x表示;因变量是函数的输出,通常用y表示。
3. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
4. 函数的图象:函数的图象是自变量和因变量的对应关系在坐标系中的展示,通常是一条曲线或者一组点。
二、函数的表示与表达1. 函数的表示方法:函数可以用等式、表格、图象和文字描述等方式表达。
2. 函数的公式:函数常常用公式来表示,常见的函数公式包括线性函数、二次函数、指数函数、对数函数等。
3. 函数的计算:可以通过函数的公式来计算函数在特定自变量取值下的因变量的取值。
三、函数的性质和运算1. 函数的奇偶性:通过函数的图象或者公式可以判断一个函数的奇偶性,常见的有奇函数和偶函数。
2. 函数的单调性:函数的单调性指的是在定义域内,函数的增减性质。
3. 函数的对称性:函数的对称性通常指的是基于对称中心对称、对称轴对称或者周期对称等性质。
4. 函数的运算:函数之间可以进行加减乘除运算,也可以进行复合运算。
四、函数的应用1. 函数的应用范围非常广泛,例如在数学、物理、经济等多个领域都有函数的应用。
2. 函数的实际问题:函数可以用来描述和解决实际问题,例如速度、加速度、成本、收入等各种实际问题都可以通过函数来描述。
本文总结了中考函数的必备知识点,包括了函数的基本概念、函数的表示与表达、函数的性质与运算、函数的应用等方面。
学生在备考中考数学时,应该重点掌握这些知识点,通过练习和应用来提高自己的函数应用能力,从而取得更好的考试成绩。
中考数学函数的知识点总结
中考数学函数的知识点总结一、函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值。
数学上通常用f(x)来表示函数,其中x是自变量,f(x)是因变量。
函数可以用图像、表格或者公式来表示。
在中考数学中,通常会涉及到函数的定义、定义域、值域、自变量、因变量等概念。
学生需要了解这些概念的含义和相互关系,并能够运用到实际问题中去。
二、一次函数一次函数是函数的一种特殊形式,它的表达式通常为f(x) = kx + b,其中k和b是常数。
一次函数的图像是一条直线,它的特点是斜率k和截距b。
在中考数学中,学生需要掌握一次函数的性质、图像和应用。
比如,如何根据函数的表达式确定它的斜率和截距,如何根据函数的图像求解实际问题等。
三、二次函数二次函数是函数的另一种特殊形式,它的表达式通常为f(x) = ax² + bx + c,其中a、b和c是常数且a≠0。
二次函数的图像是一条抛物线,它的特点是开口方向和顶点位置。
在中考数学中,学生需要掌握二次函数的性质、图像和应用。
比如,如何根据函数的表达式确定它的开口方向和顶点位置,如何根据函数的图像求解实际问题等。
四、复合函数复合函数是由多个函数组合而成的新函数。
它的表达式通常为h(x) = f(g(x)),其中g(x)和f(x)都是函数。
复合函数的运算需要遵循一定的顺序,通常是先计算内层函数再计算外层函数。
在中考数学中,学生需要掌握复合函数的概念和运算。
比如,如何根据给定的函数求解复合函数,如何根据复合函数的表达式求解函数值等。
五、函数的性质函数的性质是学生在中考数学中需要掌握的重点之一。
其中包括奇偶性、周期性、单调性、零点、极值点等性质。
学生需要能够根据函数的性质来分析函数的图像和应用问题。
六、函数的应用函数的应用是中考数学中常见的题型,通常涉及到实际问题的建模和求解。
比如,根据已知函数的表达式求解实际问题,或者根据实际问题建立函数并求解等。
在中考数学中,通常会涉及到生活中的各种实际问题,学生需要能够根据所学的函数知识来解决这些实际问题。
初中数学函数知识点
初中数学函数知识点初中数学函数知识点(一)一、函数的基本概念1. 函数的定义与表达式:函数是一种具有确定性的关系,将一个数(自变量)唯一地对应到另一个数(因变量)。
函数通常用符号表示,如f(x)、g(x)等。
2. 自变量与因变量:自变量是指函数中输入的数,通常用x表示;因变量是指自变量通过函数转化所得到的输出数,通常用y表示。
3. 定义域和值域:函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
4. 函数的图象:函数的图象是自变量与因变量的对应关系在平面直角坐标系上的图形表示。
二、一次函数1. 一次函数的形式:一次函数是指函数的表达式中只有一次幂的项,通常表示为f(x) = kx + b,其中k、b为常数。
2. 一次函数的图象:一次函数的图象是一条直线,其斜率k表示该直线的倾斜程度,截距b表示该直线与y轴的交点。
3. 一次函数的特点:当斜率k>0时,函数单调递增;当斜率k<0时,函数单调递减;当斜率k=0时,函数为常值函数。
三、二次函数1. 二次函数的形式:二次函数是指函数的表达式中含有x的二次幂的项,通常表示为f(x) = ax^2 + bx + c,其中a、b、c为常数且a≠0。
2. 二次函数的图象:二次函数的图象是一条抛物线,其开口方向由二次项的系数a的正负决定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点:二次函数的图象上最高(或最低)的点称为顶点,其横坐标为 x = -b / (2a),纵坐标为 f(-b / (2a))。
4. 二次函数的轴对称性:二次函数的图象以顶点为对称轴关于y轴对称。
四、绝对值函数1. 绝对值函数的形式:绝对值函数是指函数的表达式中含有绝对值运算符| |,通常表示为f(x) = |x|。
2. 绝对值函数的图象:绝对值函数的图象是一条以原点为中心的V字形曲线,其左右两段的斜率大小相等。
3. 绝对值函数的特点:当自变量为正数时,函数的值与自变量相等;当自变量为负数时,函数的值为自变量取相反数。
初三数学函数知识点
初三数学函数知识点初三数学函数知识点大全变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数②当b=0时,称y是x的正比例函数。
一次函数的图象:①把y=kx+b个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数y=kx的图象是经过原点的一条直线。
③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。
④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。
二次函数;①自变量x和因变量y之间关系可表示成y=ax^2+bx+c,则称a是y的二次函数。
二次函数的图象:①如果二次项系数是正,那么开口向上,y的范围为y=k②如果二次项系数是负,那么开口向下,y的范围为y=k③当a0时,二次函数图象向上开口;当a0时,抛物线向下开口。
④当|a|越大,则二次函数图像的开口越小。
一次函数的解析式①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);②两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),③截距式:x/a+y/b=1(a、b分别为直线在x、y轴上的截距)。
解析式表达的局限__:①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);③不能表达没有斜率的直线(即垂直于x轴的直线;注意没有斜率的直线平行于y轴表述不准,因为x=0与y轴重合);④不能表达平行于坐标轴的直线和过原点的直线。
x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。
初中所有函数知识点归纳
初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。
在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。
一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。
3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。
4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。
二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。
2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。
3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。
4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。
三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。
2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。
3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。
四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。
2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。
3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。
五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。
初中基本函数知识点总结
初中基本函数知识点总结一、函数的基本概念1. 函数的定义:函数是一个对应关系,它把一个数集中的每一个数映射成另一个数集中的唯一一个数。
2. 自变量和因变量:在函数中,自变量是输入的值,因变量是输出的值。
3. 函数的表示:一般来说,函数可以用表格、图像、公式或者文字描述。
4. 定义域和值域:在函数中,定义域是自变量的取值范围,值域是因变量的取值范围。
二、函数的图像和性质1. 函数的图像:函数的图像是自变量和因变量之间的关系的几何表示。
2. 函数的性质:函数的性质包括奇偶性、单调性、周期性等。
三、基本初等函数1. 常数函数:常数函数的表达式是f(x) = C (C为常数),它的图像是一条水平的直线。
2. 一次函数:一次函数的表达式是f(x) = kx + b (k和b为常数,k≠0),它的图像是一条斜线。
3. 二次函数:二次函数的表达式是f(x) = ax² + bx + c (a、b、c为常数,且a≠0),它的图像是一条开口向上或向下的抛物线。
4. 幂函数:幂函数的表达式是f(x) = xᵐ (m为常数),它的图像是经过原点的曲线。
5. 指数函数:指数函数的表达式是f(x) = aˣ (a为正实数,且a≠1),它的图像是逐渐上升或逐渐下降的曲线。
6. 对数函数:对数函数的表达式是f(x) = logₐx (a为正实数,且a≠1),它的图像是一条拐点在(1,0)处的曲线。
四、函数的运算1. 函数的和、差、积、商:函数的和、差、积、商分别对应于两个函数的和、差、积、商。
2. 复合函数:复合函数是指一个函数的自变量被另一个函数的因变量代替。
3. 反函数:若函数y=f(x)的定义域为D,值域为R,则对于D中的任意一个数x,能使f(x) = y成立的y是唯一的,那么函数y=f(x)的反函数是一个函数,其定义域为R,值域为D。
五、函数的应用1. 函数的应用:在实际生活中,函数的运用十分广泛,包括表示物体的运动规律、生活中的购物花费、投资收益等。
初三函数知识点归纳总结
初三函数知识点归纳总结函数是数学中的重要概念,也是初中数学中的一个重要内容。
在初三的数学学习中,我们学习了许多关于函数的知识。
在本文中,我将对初三函数的知识点进行归纳总结,并对每个知识点进行详细解释,帮助大家加深对函数的理解。
一、函数的定义及表示方式函数是一种特殊的关系,它把一个确定的自变量与一个确定的因变量对应起来。
函数可以用四种方式表示:自然语言描述、文字描述、函数图像和函数表达式。
例如,我们可以用“y是x的平方”的自然语言描述来表示函数y=x²,或者用图像y=x²来表示函数。
二、函数的定义域和值域函数的定义域是自变量所有可能取值的集合,而值域则是因变量所有可能取值的集合。
在定义函数时,我们通常需要明确定义域和值域的范围。
例如,对于函数y=x²,其定义域是所有实数集合R,而值域是非负实数集合[0,+∞)。
三、函数的性质1. 奇偶性:如果对于函数f(x),对于任意x有f(-x)=-f(x),则函数具有奇性;如果对于任意x有f(-x)=f(x),则函数具有偶性。
2. 单调性:如果函数f(x)在定义域上对于任意x₁、x₂(x₁<x₂)有f(x₁)≤f(x₂),则函数为递增函数;如果对于任意x₁、x₂(x₁<x₂)有f(x₁)≥f(x₂),则函数为递减函数。
3. 周期性:如果对于函数f(x)存在一个正数T,使得对于任意x有f(x+T)=f(x),则函数具有周期性。
4. 增减性:在函数曲线上,如果对于某一点x,函数的斜率大于0,则函数在该点处增加;如果斜率小于0,则函数在该点处减小。
四、函数的图像与性质函数的图像是将函数的自变量与因变量的对应关系用图形的形式表示出来。
通过观察函数的图像,我们可以了解到函数的各种性质,如极值、拐点等。
常见的函数图像包括线性函数、二次函数、反比例函数等。
五、数学中常见函数1. 线性函数:线性函数是一次函数的特殊形式,其函数表达式为f(x)=kx+b,其中k、b为常数。
初中数学函数知识点总结归纳
初中数学函数知识点总结归纳数学函数知识点总结归纳:1. 函数的概念:函数是一种特殊的关系,它将每个自变量映射到唯一的因变量。
函数可以用符号表示为y=f(x),其中x为自变量,y为因变量。
2. 函数的性质:函数具有唯一性、定义域、值域、奇偶性、周期性、单调性等性质。
3. 函数的表示形式:- 显式函数:将自变量直接代入表达式中求得因变量,例如y=2x+3。
- 隐式函数:将自变量和因变量同时含于方程中,无法直接解出因变量,例如x^2+y^2=1。
- 函数关系式:用一般的代数式表示函数关系,例如f(x) = ax^2+bx+c。
- 图像表达:用图像表示函数关系。
4. 基本函数:- 常数函数:f(x)=C,C为常数,其图像为一条平行于x轴的直线。
- 一次函数:f(x) = ax+b,a≠0,其中a为斜率,b为截距,其图像为一条斜率为a 的直线。
- 平方函数:f(x) = ax^2,a≠0,a为开口方向和变化速度,其图像为抛物线。
- 绝对值函数:f(x) = |x|,它的图像为一条以原点为对称中心的V字形线段。
5. 图像变换:- 上下平移:f(x)+c表示将图像上下平移c个单位。
- 左右平移:f(x+c)表示将图像左右平移c个单位。
- 垂直伸缩:af(x)表示将图像在y轴方向上伸缩a倍。
- 水平伸缩:f(ax)表示将图像在x轴方向上伸缩a倍。
- 翻折变换:-f(x)表示将图像关于x轴翻折。
- 翻转变换:f(-x)表示将图像关于y轴翻转。
6. 复合函数:将一个函数的输出作为另一个函数的输入,构成一个新的函数。
7. 反函数:若函数f的定义域为A,值域为B,当f(x) = y时,存在一个唯一的x使得f(x) = y,此时称f的反函数为f^-1(y) = x。
8. 函数的求值:- 函数方程的求值:将自变量代入函数方程中计算出因变量的值。
- 函数关系式的求值:将自变量代入函数关系式中计算出因变量的值。
- 函数图像的求值:根据图像的坐标轴读取函数图像上对应点的因变量值。
初中函数知识点全面总结
初中函数知识点全面总结一、函数的基本概念1.1 函数的引入在日常生活和数学问题中,我们经常遇到一些问题,例如:已知椭圆的长轴、短轴的长度,我们可以求椭圆的面积;已知一个正方体的边长,我们可以求它的体积,这些问题都是函数的具体例子。
函数研究的对象是一对对象之间的依赖关系。
1.2 函数的定义函数是一个变量间的依赖关系。
如果对于每一个自变量x,都有唯一的因变量y和它对应,那么这个变量x和它所对应的y就构成函数。
通常记作y=f(x)。
1.3 自变量、因变量和函数符号在函数f(x)中,x称为自变量,y称为因变量,而f(x)则是函数的符号表示。
1.4 自变量和因变量的关系自变量和因变量之间存在着一一对应的关系。
当自变量x取不同的值时,因变量y也会随之变化。
这种变化规律可以用图象或公式来表示。
1.5 函数的图象对于函数y=f(x),其图象是平面直角坐标系内一条曲线。
曲线上的每一个点(x,y)都满足方程y=f(x)。
1.6 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
例如,对于函数f(x)=x^2,其定义域是实数集R,值域是非负实数集[0,+∞)。
二、函数的表示方法2.1 列表法通过若干对自变量和因变量对照,列出所有自变量和因变量的对应关系,就是列表法表示函数。
2.2 公式法用一个能够表示自变量与因变量之间的对应关系的等式来表示函数。
2.3 函数关系图象法可以通过函数的图象来表达函数。
三、函数的性质3.1 函数的奇偶性当自变量为-x时,若f(x)=-f(-x),则函数f(x)为奇函数;当自变量为-x时,若f(x)=f(-x),则函数f(x)为偶函数。
3.2 增减性与极值若在自变量的某一邻域内,函数值随着自变量的增大而增大,则称此函数在此邻域内是增函数;反之,则是减函数。
当函数在某一点上取得最大值或最小值时,称这个函数在这一点有极值。
3.3 奇偶性与周期性若f(x+T)=f(x)对于一切x都成立,则称T为函数f(x)的周期。
初三数学函数知识归纳总结
初三数学函数知识归纳总结函数是数学中非常重要的一个概念,是数理统计、物理学、经济学等多个学科的基础。
在初三的数学课程中,函数是一个重要的内容,学好函数对于日后的学习及解题能力的提升至关重要。
下面对初三数学函数知识进行归纳总结。
一、函数的概念与表示函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用符号表示,常见的表示方式有函数图像、解析式以及函数关系式等。
1.1 函数的基本定义函数是自变量与因变量之间的一种特殊关系,其中自变量的值确定时,因变量的值也随之确定。
1.2 函数的表示方式函数可以通过以下方式表示:- 函数图像:图像可以将自变量和因变量的关系以图像的形式展现出来,有助于直观了解函数特性。
- 解析式:使用数学表达式来表示函数,通常形如 f(x) = 表达式。
- 函数关系式:使用自变量和因变量之间的关系式来表示函数,如 y = 2x + 3。
二、函数的性质函数作为数学中的一个重要概念,具有一些常见的性质,了解这些性质有助于更好地理解和使用函数。
2.1 定义域与值域- 定义域:函数中自变量的所有取值范围构成的集合。
- 值域:函数中因变量的所有可能取值组成的集合。
2.2 奇偶性- 奇函数:当函数满足 f(-x) = -f(x),即函数关于原点对称时,称该函数为奇函数。
- 偶函数:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称该函数为偶函数。
2.3 单调性- 单调递增:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递增关系。
- 单调递减:当函数中的任意两个不同的自变量取值时,对应的因变量值满足递减关系。
2.4 对称性- 函数关于y轴对称:当函数满足 f(-x) = f(x),即函数关于y轴对称时,称函数具有关于y轴的对称性。
- 函数关于x轴对称:当函数满足 f(x) = -f(x),即函数关于x轴对称时,称函数具有关于x轴的对称性。
三、常见函数类型初三数学课程中,我们遇到了很多常见的函数类型,每种类型的函数都有其特定的特性和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。
6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。
第二、四象限角平分线上的点横、纵坐标互为相反数。
7、点P(x,y)的几何意义:点P(x,y)到x轴的距离为 |y|,点P(x,y)到y轴的距离为 |x|。
点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。
注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 3、定义域和值域:定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7:增减性(单调性):增减性又叫单调性,分两种情况:单调增、单调减单调增:y随x的增大而增大单调减:y随x的增大而减小口诀:“同增异减”,注意:单调性只适用于单调区间,即有一个X只有唯一确定的y与之对应时。
8、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
9、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
一次函数图象和性质【知识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数当b=0时,y=kx +b 即y=kx ,称为正比倒函数,所以说正比例函数是一种特殊的一次函数. 一次函数的一般形式: y=kx+b (k≠0)说明: ① k 不为零 ②x 指数为1 ③ b 取任意实数2、解析式:y=kx+b(k 、b 是常数,k ≠0)3、图像:一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,4、增减性(单调性): k>0,y 随x 的增大而增大(单调增);k<0,y 随x 而增大而减小(单调减)5、必过点:(0,b )和(-kb,0):理由如下:y=kx+b 中, ⑴当x=o,时,y=所以,该函数经过( , )点⑵当y=o,时,x=所以,该函数经过( , )点所以,一次函数y kx b =+的图象是必经过(kb-,0)和(0,b )两点的一条直线.,注:两点确定一条直线。
画图时,可通过这两点来确定直线。
6、一次函数图像的画法:两点法① 计算必过点(0,b )和(-kb,0)② 描点(有小到大的顺序) ③ 连线(从左到右光滑的直线)7、增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.8、倾斜度(只与k 相关):|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.9、截点(与b 有关):(直线与y 轴的交点,该点到原点的距离叫做截距) ①当b>0时直线与y 轴交于原点上方(即y 轴的正半轴);②当b<0时,直线与y 轴交于原点的下方。
(即y 轴的负半轴) 10、图像的上下平移(只与b 相关):直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时,将直线y=kx 的图象向上平移b 个单位;口诀“正上” 当b<0时,将直线y=kx 的图象向下平移b 个单位. 口诀“负下”例如:y=2x+3, 将直线 y=2x 的图象向 上 平移 3 个单位 y=2x-3, 将直线 y=2x 的图象向 下 平移 3 个单位 练习:y=5x-6,将直线 y=5x 的图象向 下 平移 6 个单位注:一次函数y=kx+b 图像的平移,只与b 有关,将y=kx 的图像平移,平移方向: b 正上移,b 负下移 11、一次函数y kx b =+的图象与性质12、两直线之间的位置关系(平行或相交):()若直线::3111222l y k x b l y k x b =+=+①平行:当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//() ②相交:将两直线方程联立成一个方程组,1122{y k b y k b =+=+ ,解得结果,即为交点。
13、二元一次方程组与一次函数的关系:两元一次函数图象的交点的坐标即为所对应方程组的解。
14、 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
15、【思想方法】数形结合 。
巩固练习:试试画出y=x, y=x+1, y=-x, y=-x+1的图像反比例函数图象和性质【知识梳理】一、反比例函数的基础知识b>0b<0b=0(正比例函数)k>0经过:第一、二、三象限 不经过:第四象限经过:第一、三、四象限不经过:第二象限经过:第一、三象限 不经过:第二、四象限增减性(单调性):图象从左到右上升,y 随x 的增大而增大,单调增 k<0经过第一、二、四象限 不经过:第三象限经过第二、三、四象限 不经过:第一象限经过第二、四象限 不经过:第一、三象限增减性(单调性):图象从左到右下降,y 随x 的增大而减小,单调减必过点:经过(kb-,0)和(0,b )两点,正比例函数即是经过原点(0,0)1、定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数。
xky =还可以写成kx y =1- 2、解析式:xky =(k 为常数,) 注:反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ②比例系数0≠k③自变量x 的取值为一切非零实数。
(反比例函数有意义的条件:分母≠0) ④函数y 的取值是一切非零实数。
3、增减性(单调性): k>0,y 随x 的增大而减小(单调减);k<0,y 随x 增大而增大(单调增)4、反比例函数的图象:双曲线(1)图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线)()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x==-⎧⎨⎪⎩⎪(3)反比例函数xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支(称为左、右支),延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
)时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)比例系数k 的几何含义(右图):反比例函数y =kx(k≠0)中比例系数k 的 几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分 别为A 、B ,则所得矩形OAPB 的面积(阴影面积)为 k .(由y =kx变形可得:k=xy 因为面积为正数,所以k 取绝对值。
) 5、反比例函数性质如下表:6、【思想方法】:数形结合7、3.应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P F S u S t==⎧⎨⎪⎪⎪⎩⎪⎪⎪二次函数图象和性质【知识梳理】一、二次函数的基础知识:1.定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。