2020年高考数学空间几何高考真题
2020年高考数学全国Ⅲ卷(理)试卷+解析
附:K2=
P(K2≥k) 0.050
0.010
n ad bc2
,
a bc d)a cb d
0.001
k
3.841
10.828
6.635 .
19.(12 分) 如图,在长方体 ABCD A1B1C1D1 中,点 E, F 分别在棱 DD1, BB1 上,且 2DE ED1 , BF 2FB1 . (1)证明:点 C1 在平面 AEF 内; (2)若 AB 2 , AD 1, AA1 3 ,求二面角 A EF A1
故选:C.
【小结】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.
2.复数 1 的虚部是( 1 3i
A. 3 10
【答案】D
)
B. 1 10
1
C.
10
3
D.
10
【解析】
【分析】
利用复数的除法运算求出 z 即可.
【详解】因为 z 1 1 3i 1 3 i , 1 3i (1 3i)(1 3i) 10 10
设数列{an}满足 a1=3, an1 3an 4n . (1)计算 a2,a3,猜想{an}的通项公式并加以证明; (2)求数列{2nan}的前 n 项和 Sn.
18.(12 分)
某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天到某公园锻炼的
人次,整理数据得到下表(单位:天):
1.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第
一题计分。
22.[选修 4—4:坐标系与参数方程](10 分)
在直角坐标系
xOy
中,曲线
C
的参数方程为
2020年高考数学真题分类汇编:平面解析几何
2020年高考数学真题分类汇编:平面解析几何一、单选题(共15题;共30分)1.(2分)(2020·新课标Ⅲ·文)点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( )A .1B .√2C .√3D .2【答案】B【解析】【解答】由 y =k(x +1) 可知直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点 A 到直线 y =k(x +1) 距离最大, 即为 |AP|=√2 . 故答案为:B.【分析】首先根据直线方程判断出直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点A 到直线 y =k(x +1) 距离最大,即可求得结果.2.(2分)(2020·新课标Ⅲ·文)在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线【答案】A【解析】【解答】设 AB =2a(a >0) ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: A(−a,0),B(a,0) ,设 C(x,y) ,可得: AC →=(x +a,y),BC →=(x −a,y) , 从而: AC →⋅BC →=(x +a)(x −a)+y 2 , 结合题意可得: (x +a)(x −a)+y 2=1 , 整理可得: x 2+y 2=a 2+1 ,即点C 的轨迹是以AB 中点为圆心, √a 2+1 为半径的圆. 故答案为:A.【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.3.(2分)(2020·新课标Ⅲ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P⊥F2P.若⊥PF1F2的面积为4,则a=()A.1B.2C.4D.8【答案】A【解析】【解答】∵ca=√5,∴c=√5a,根据双曲线的定义可得||PF1|−|PF2||=2a,S△PF1F2=12|PF1|⋅|PF2|=4,即|PF1|⋅|PF2|=8,∵F1P⊥F2P,∴|PF1|2+|PF2|2=(2c)2,∴(|PF1|−|PF2|)2+2|PF1|⋅|PF2|=4c2,即a2−5a2+4=0,解得a=1,故答案为:A.【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 4.(2分)(2020·新课标Ⅲ·理)若直线l与曲线y= √x和x2+y2= 15都相切,则l的方程为()A.y=2x+1B.y=2x+ 12C.y= 12x+1D.y= 12x+ 12【答案】D【解析】【解答】设直线l在曲线y=√x上的切点为(x0,√x0),则x0>0,函数y=√x的导数为y′=2√x ,则直线l的斜率k=2√x,设直线l的方程为y−√x0=12√x−x0),即x−2√x0y+x0=0,由于直线l与圆x2+y2=15相切,则√1+4x0=1√5,两边平方并整理得5x02−4x0−1=0,解得x0=1,x0=−15(舍),则直线l的方程为x−2y+1=0,即y=12x+12.故答案为:D.【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案. 5.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)【答案】B【解析】【解答】因为直线x=2与抛物线y2=2px(p>0)交于C,D两点,且OD⊥OE,根据抛物线的对称性可以确定 ∠DOx =∠COx =π4 ,所以 C(2,2) , 代入抛物线方程 4=4p ,求得 p =1 ,所以其焦点坐标为 (12,0) ,故答案为:B.【分析】根据题中所给的条件 OD ⊥OE ,结合抛物线的对称性,可知 ∠COx =∠COx =π4 ,从而可以确定出点D 的坐标,代入方程求得P 的值,进而求得其焦点坐标,得到结果.6.(2分)(2020·新课标Ⅲ·文)设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( ) A .72B .3C .52D .2【答案】B【解析】【解答】由已知,不妨设 F 1(−2,0),F 2(2,0) , 则 a =1,c =2 ,因为 |OP|=2=12|F 1F 2| ,所以点 P 在以 F 1F 2 为直径的圆上, 即 △F 1F 2P 是以P 为直角顶点的直角三角形, 故 |PF 1|2+|PF 2|2=|F 1F 2|2 ,即 |PF 1|2+|PF 2|2=16 ,又 ||PF 1|−|PF 2||=2a =2 ,所以 4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−2|PF 1||PF 2| ,解得 |PF 1||PF 2|=6 ,所以 S △F 1F 2P =12|PF 1||PF 2|=3故答案为:B【分析】由 △F 1F 2P 是以P 为直角直角三角形得到 |PF 1|2+|PF 2|2=16 ,再利用双曲线的定义得到 ||PF 1|−|PF 2||=2 ,联立即可得到 |PF 1||PF 2| ,代入 S △F 1F 2P =12|PF 1||PF 2| 中计算即可.7.(2分)(2020·新课标Ⅲ·文)已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .4【答案】B【解析】【解答】圆 x 2+y 2−6x =0 化为 (x −3)2+y 2=9 ,所以圆心 C 坐标为 C(3,0) ,半径为 3 ,设 P(1,2) ,当过点 P 的直线和直线 CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2 .故答案为:B.【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.8.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【解答】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±ba x∵直线x=a与双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=b a x,解得{x=ay=b故D(a,b)联立{x=ay=−b a x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x 2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故答案为:B.【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±ba x,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.9.(2分)(2020·新课标Ⅲ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】【解答】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.10.(2分)(2020·新课标Ⅲ·理)已知⊥M:x2+y2−2x−2y−2=0,直线l:2x+y+2= 0,P为l上的动点,过点P作⊥M的切线PA,PB,切点为A,B,当|PM|⋅|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=0【答案】D【解析】【解答】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√2+1=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=2S△PAM=2×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|min=√5,|PA|min=1,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=2S△PAM=2|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.11.(2分)(2020·新课标Ⅲ·理)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】【解答】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故答案为:C.【分析】利用抛物线的定义建立方程即可得到答案.12.(2分)(2020·天津)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.x24−y2=1D.x2−y2=1【答案】D【解析】【解答】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±b a x,所以−b=−b a,−b×b a=−1,因为a>0,b>0,解得a=1,b=1.故答案为:D.【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为-b,再根据双曲线的渐近线的方程为y=±b a x,可得−b=−b a,−b×b a=−1即可求出a,b,得到双曲线的方程.13.(2分)(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】【解答】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故答案为:B.【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.14.(2分)(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】【解答】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C 在线段 OM 上时取得等号, 故答案为:A.【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.15.(2分)(2020·浙江)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( ) A .√222B .4√105C .√7D .√10【答案】D【解析】【解答】解:点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,可知P 的轨迹是双曲线 x 21−y 23=1 的右支上的点,P 为函数y =3 √4−x 2 图象上的点,即 y 236+x 24=1 在第一象限的点,联立两个方程,解得P ( √132 , 3√32),所以|OP|= √134+274 = √10 .故答案为:D .【分析】求出P 满足的轨迹方程,求出P 的坐标,即可求解|OP|.二、多选题(共1题;共3分)16.(3分)(2020·新高考Ⅲ)已知曲线 C:mx 2+ny 2=1 .( )A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则C 是圆,其半径为 √nC .若mn<0,则C 是双曲线,其渐近线方程为 y =±√−m n xD .若m=0,n>0,则C 是两条直线【答案】A,C,D【解析】【解答】对于A ,若 m >n >0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,因为 m >n >0 ,所以1m <1n,即曲线 C 表示焦点在 y 轴上的椭圆,A 符合题意;对于B ,若 m =n >0 ,则 mx 2+ny 2=1 可化为 x 2+y 2=1n ,此时曲线 C 表示圆心在原点,半径为 √n n 的圆,B 不正确;对于C ,若 mn <0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,此时曲线 C 表示双曲线, 由 mx 2+ny 2=0 可得 y =±√−mnx ,C 符合题意; 对于D ,若 m =0,n >0 ,则 mx 2+ny 2=1 可化为 y 2=1n,y =±√nn ,此时曲线 C 表示平行于 x 轴的两条直线,D 符合题意;故答案为:ACD.【分析】结合选项进行逐项分析求解, m >n >0 时表示椭圆, m =n >0 时表示圆, mn <0 时表示双曲线, m =0,n >0 时表示两条直线.三、填空题(共10题;共12分)17.(1分)(2020·新课标Ⅲ·文)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的一条渐近线为y= √2 x ,则C 的离心率为 .【答案】√3【解析】【解答】由双曲线方程 x 2a 2−y 2b2=1 可得其焦点在 x 轴上, 因为其一条渐近线为 y =√2x , 所以 b a =√2 , e =c a =√1+b 2a 2=√3 .故答案为: √3【分析】根据已知可得 b a=√2 ,结合双曲线中 a,b,c 的关系,即可求解.18.(1分)(2020·新课标Ⅲ·理)已知F 为双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】【解答】依题可得, |BF||AF|=3 ,而 |BF|=b 2a , |AF|=c −a ,即 b 2ac−a=3 ,变形得 c 2−a 2=3ac −3a 2 ,化简可得, e 2−3e +2=0 ,解得 e =2 或 e =1 (舍去). 故答案为: 2 .【分析】根据双曲线的几何性质可知, |BF|=b 2a , |AF|=c −a ,即可根据斜率列出等式求解即可.19.(1分)(2020·新高考Ⅲ)斜率为 √3 的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则 |AB| = .【答案】163【解析】【解答】∵抛物线的方程为 y 2=4x ,∴抛物线的焦点F 坐标为 F(1,0) ,又∵直线AB 过焦点F 且斜率为 √3 ,∴直线AB 的方程为: y =√3(x −1) 代入抛物线方程消去y 并化简得 3x 2−10x +3=0 , 解法一:解得 x 1=13,x 2=3所以 |AB|=√1+k 2|x 1−x 2|=√1+3⋅|3−13|=163解法二: Δ=100−36=64>0设 A(x 1,y 1),B(x 2,y 2) ,则 x 1+x 2=103, 过 A,B 分别作准线 x =−1 的垂线,设垂足分别为 C,D 如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x 1+1+x 2+1=x 1+x 2+2=163故答案为:163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.20.(1分)(2020·新高考Ⅲ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC⊥DG ,垂足为C ,tan⊥ODC= 35, BH ∥DG ,EF=12 cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.【答案】4+5 2π【解析】【解答】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r ,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH的面积为S1=12×2√2×2√2=4;扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2 .故答案为:4+5π2.【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角 △OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.21.(1分)(2020·天津)已知直线 x −√3y +8=0 和圆 x 2+y 2=r 2(r >0) 相交于 A,B 两点.若 |AB|=6 ,则 r 的值为 .【答案】5【解析】【解答】因为圆心 (0,0) 到直线 x −√3y +8=0 的距离 d =√1+3=4 , 由 |AB|=2√r 2−d 2 可得 6=2√r 2−42 ,解得 r =5 . 故答案为:5.【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式 |AB|=2√r 2−d 2 ,即可求得 r .22.(1分)(2020·江苏)在平面直角坐标系xOy 中,若双曲线 x 2a2 ﹣ y 25 =1(a >0)的一条渐近线方程为y= √52x ,则该双曲线的离心率是 .【答案】32【解析】【解答】双曲线 x 2a2−y 25=1 ,故 b =√5 .由于双曲线的一条渐近线方程为 y =√52x ,即b a =√52⇒a =2 ,所以c =√a 2+b 2=√4+5=3 ,所以双曲线的离心率为 c a =32 . 故答案为: 32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.23.(1分)(2020·江苏)在平面直角坐标系xOy 中,已知 P(√32,0) ,A ,B 是圆C : x 2+(y −12)2=36 上的两个动点,满足 PA =PB ,则⊥PAB 面积的最大值是 . 【答案】10√5【解析】【解答】 ∵PA =PB ∴PC ⊥AB设圆心 C 到直线 AB 距离为d ,则 |AB|=2√36−d 2,|PC|=√34+14=1所以 S △PAB ≤12⋅2√36−d 2(d +1)=√(36−d 2)(d +1)2令 y =(36−d 2)(d +1)2(0≤d <6)∴y ′=2(d +1)(−2d 2−d +36)=0∴d =4 (负值舍去) 当 0≤d <4 时, y ′>0 ;当 4≤d <6 时, y ′≤0 ,因此当 d =4 时, y 取最大值,即 S △PAB 取最大值为 10√5 , 故答案为: 10√5【分析】根据条件得PC⊥AB,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.24.(2分)(2020·北京)已知双曲线C:x 26−y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.【答案】(3,0);√3【解析】【解答】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为3√12+2=√3.故答案为:(3,0);√3.【分析】根据双曲线的标准方程可得出双曲线C的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.25.(1分)(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【解答】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【分析】根据定义逐一判断,即可得到结果26.(2分)(2020·浙江)设直线l:y=kx+b(k>0),圆C1:x2+y2=1,C2:(x﹣4)2+y2=1,若直线l与C1,C2都相切,则k=;b=.【答案】√33;﹣2√33【解析】【解答】由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1=√1+k2=1,d2=√1+k2=1,则有|b|√1+k2=|4k+b|√1+k2,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1=|b|√1+k2=1,解得k=√33,则b=﹣2√33,故答案为:√33;﹣2√33.【分析】根据直线l与两圆都相切,分别列出方程d1=|b|√1+k2=1,d2=|4k+b|√1+k2=1,解得即可.。
2020年高考数学真题汇编 7:立体几何 理
2020高考真题分类汇编:立体几何一、选择题1.【2020高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2020高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。
将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。
A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C3.【2020高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 3()C 23 ()D 22【答案】A4.【2020高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C5.【2020高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45o角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=o ,则A 、P两点间的球面距离为( )αCAODBPA 、2arccos 4R B、4R π C 、3arccos 3R D 、3R π 【答案】A6.【2020高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.55 B.53 C. 255D. 35【答案】A.7.【2020高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D8.【2020高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π【答案】B9.【2020高考真题广东理6】某几何体的三视图如图所示,它的体积为A.12π B.45π C.57π D.81π【答案】C10.【2020高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.11.【2020高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,12和a,且长为a2的棱异面,则a的取值范围是(A )(0,2) (B)(0,3) (C )(1,2) (D )(1,3)【答案】A12.【2020高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B13.【2020高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 【答案】D二、填空题14.【2020高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】115.【2020高考真题四川理14】如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。
2020高考数学立体几何练习题23题
2020高考数学之立体几何解答題23 題一.解答题(共 23 小题)1.在如图所示的几何体中,四边形 ABCD 是菱形, ADNM 是矩形,平面 ADNM ⊥平面 ABCD ,∠DAB=60 °,AD=2 , AM=1 , E 为 AB 的中点.(Ⅰ)求证: AN ∥平面 MEC;(Ⅱ)在线段 AM 上是否存在点 P,使二面角 P﹣ EC﹣D 的大小为?若存在,求出 AP 的长 h;若不存在,请说明理由.2.如图,三棱柱中 ABC ﹣A1B1C1 中,点 A1 在平面 ABC 内的射影 D 为棱 AC 的中点,侧面 A1ACC 1为边长为 2 的菱形, AC⊥CB,BC=1 .(Ⅰ)证明: AC 1⊥平面 A 1BC;(Ⅱ)求二面角 B﹣ A1C﹣B1的大小.3.如图,已知四棱锥 P﹣ABCD ,PB⊥AD 侧面 PAD 为边长等于 2的正三角形,底面 ABCD 为菱形,侧面PAD 与底面 ABCD 所成的二面角为 120°.(I)求点 P 到平面 ABCD 的距离,(II )求面 APB 与面 CPB 所成二面角的大小.4.在正三棱锥 P﹣ABC 中,底面正△ ABC 的中心为 O,D 是 PA 的中点, PO=AB=2 ,求 PB 与平面 BDC 所成角的正弦值.5.如图,正三棱锥 O ﹣ABC 的三条侧棱 OA 、OB 、 OC 两两垂直,且长度均为 2.E 、F 分别是 AB 、AC 的中点, H 是 EF 的中点,过 EF 作平面与侧棱 OA 、OB 、OC 或其延长线分别相交于 A 1、B 1、C 1,已知 . ( 1)求证: B 1C 1⊥平面 OAH ;( 2)求二面角 O ﹣A 1B 1﹣C 1 的大小.6.如图,在三棱锥 A ﹣ BCD 中,侧面 ABD 、ACD 是全等的直角三角形, AD 是公共的斜边, 且AD= ,BD=CD=1 , 另一个侧面是正三角形.1)求证: AD ⊥BC .E ,使 ED 与面 BCD 成 30°角?若存在,确定E 的位置;若不存在,说明理由. 2)求二面角 B ﹣AC ﹣D 的大小.7.如图,在四棱锥 P ﹣ ABCD 中, AD ∥ BC ,∠ ADC= ∠ PAB=90 °, BC=CD=PA 与CD 所成的角为 90°.(Ⅰ)在平面 PAB 内找一点 M ,使得直线 CM ∥平面 PBE ,并说明理由; (Ⅱ)若二面角 P ﹣CD ﹣A 的大小为 45°,求直线 PA 与平面 PCE 所成角的正弦值.8.如图,在三棱台 ABC ﹣DEF 中,平面 BCFE ⊥平面 ABC ,∠ ACB=90 °,BE=EF=FC=1, BC=2 , AC=3 . ( Ⅰ )求证: BF ⊥平面 ACFD ;( Ⅱ )求直线 BD 与平面 ACFD 所成角的余弦值.9.如图,在以 A ,B ,C ,D ,E ,F 为顶点的五面体中,面 ABEF 为正方形, AF=2FD ,∠AFD=90 °,且二面角 D ﹣AF ﹣E 与二面角 C ﹣BE ﹣ F 都是 60°.(Ⅰ)证明平面 ABEF ⊥平面 EFDC ; (Ⅱ)求二面角 E ﹣ BC ﹣A 的余弦值.AD .E 为棱 AD 的中点,异面直线10.如图,已知边长为 6的菱形 ABCD ,∠ ABC=120 °,AC 与BD 相交于 O ,将菱形 ABCD 沿对角线 AC 折起,使 BD=3 .(1)若 M 是 BC 的中点,求证:在三棱锥 D ﹣ABC 中,直线 OM 与平面 ABD 平行;(2)求二面角 A ﹣BD ﹣O 的余弦值;( 3)在三棱锥 D ﹣ ABC 中,设点 N 是 BD 上的一个动点,试确定 N 点的位置,使得 CN=4 .11.如图所示的多面体 ABCDE 中,已知 AB ∥DE ,AB ⊥AD ,△ACD 是正三角形, AD=DE=2AB=2 ,BC= ,F 是 CD 的中点.( 1)求证: AF ∥平面 BCE ;( 2)求直线 CE 与平面 ABED 所成角的余弦值;( 3)求多面体 ABCDE 的体积.12.如图,已知矩形 ABCD 所在平面垂直于直角梯形 ABPE 所在平面于直线 AB ,且 AB=BP=2 ,AD=AE=1 ,AE ⊥AB ,且 AE ∥BP .Ⅰ)设点 M 为棱 PD 中点,求证: EM ∥平面 ABCD ;若不存在,请说明理由.Ⅱ )线段 PD 上是否存在一点 N ,使得直线 BN 与平面 PCD 所成角的正弦值等于 ?若存在,试确定点 N 的位置;13.如图,在三棱锥 P ﹣ABC 中,∠ PAB= ∠PAC=∠ ACB=90 °.( 1)求证:平面 PBC ⊥平面 PAC ;(2)若 PA=1,AB=2 , BC= ,在直线 AC 上是否存在一点 D ,使得直线 BD 与平面 PBC 所成角为 30°?若存在, 求出 CD 的长;若不存在,说明理由.14.如图,在四棱锥 P ﹣ABCD 中,底面 ABCD 是平行四边形, ∠BCD=135 °,侧面 PAB ⊥底面 ABCD ,∠ BAP=90 °, AB=AC=PA=2 , E ,F 分别为 BC ,AD 的中点,点 M 在线段 PD 上.( Ⅰ )求证: EF ⊥平面 PAC ;( Ⅱ )如果直线 ME 与平面 PBC 所成的角和直线 ME 与平面 ABCD 所成的角相等,求 的值.Ⅰ)求证: CD ⊥AM ;AM 与平面 BDM所成角的正弦值.15.如图,在多面体 ABCDM 平面 BCD , AB ⊥平面 BCD . 中,△ BCD 是等边三角形,△ CMD 是等腰直角三角形,∠ CMD=90 °,平面 CMD ⊥Ⅱ )若 AM=BC=2 ,求直16.如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF,AB=2 ,AD=AF=1 ,∠ BAF=60°,O,P分别为 AB,CB的中点, M为底面△ OBF的重心.(Ⅰ)求证: PM ∥平面 AFC;(Ⅱ )求直线 AC 与平面 CEF 所成角的正弦值.17.已知菱形 ABCD ,AB=2 ,∠BAD= ,半圆 O 所在平面垂直于平面 ABCD ,点 P 在半圆弧上.(不同于B ,C).(1)若 PA与平面 ABCD 所成角的正弦值为,求出点 P 的位置;(2)是否存在点 P,使得 PC⊥ BD ,若存在,求出点 P 的位置,若不存在,说明理由.18.如图,菱形 ABCD 中,∠ ABC=60 °,AC 与BD相交于点 O,AE ⊥平面 ABCD,CF∥AE,AB=AE=2 .(Ⅰ)求证: BD ⊥平面 ACFE ;(Ⅱ)当直线 FO与平面 BED 所成角的大小为 45°时,求 CF 的长度.19.如图,在四棱锥 P﹣ ABCD 中,等边△ PAD 所在的平面与正方形 ABCD 所在的平面O为 AD 的中点,互相垂直, E 为 DC 的中点,且 AD=2 .(Ⅰ )求证: PO⊥平面 ABCD ;(Ⅱ)求二面角 P﹣EB﹣ A 的余弦值;(Ⅲ)在线段 AB 上是否存在点 M,使线段 PM 与△PAD 所在平面成 30°角.若存在,求出 AM 的长,若不存在,请说明理由.20.在斜三棱柱 ABC ﹣ A 1B 1C1中,底面 ABC 是正三角形, E 是 AB 中点, A 1E⊥平面 ABC.( I)证明: BC1∥平面 A1EC;(II)若 A1A⊥A1B,且 AB=2 .① 求点 B 到平面 ACC 1A1 的距离;② 求直线 CB1 与平面 ACC 1A 1 所成角的正弦值.1)求证: DF ⊥平面 ABCD ;2)若△ ABD 是边长为 2 的等边三角形,且 BF 与平面 ABCD 所成角的正切值为 1,求点 E 到平面 BDF 的距离.22.如图,在三棱柱 ABC ﹣A 1B 1C 1中,G 为ABC 的重心,( 1)求证: GE ∥平面 AA 1B 1B ;(2)若侧面 ABB 1A 1⊥底面 ABC ,∠ A 1AB= ∠BAC=60°,AA 1=AB=AC=2 ,求直线 A 1B 与平面 B 1GE 所成角 正弦值.21.如图,在多面体 EF ﹣ABCD 中, ABCD , ABEF 均为直角梯形,∠ 平面 DCEF ⊥平面 ABCD .ABE= ∠ABC= DCEF 为平行四边形,θ的BC 1.23.如图,在四棱锥 P﹣ABCD 中, PA⊥底面 ABCD,AD∥BC,AD⊥CD,BC=2,AD=CD=1,M是 PB的中点.(Ⅰ )求证: AM ∥平面 PCD;(Ⅱ )求证:平面 ACM ⊥平面 PAB;。
2020年高考数学专题提升: 空间几何体(含答案)
空间几何体一、单项选择题(每题5分;共55分)1.某几何体的三视图如图所示,则该几何体的体积为()A. π+412B. π+13C. π+1D. π+142.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为()A. 16+12πB. 32+12πC. 24+12πD. 32+20π3.直三棱柱ABC−A1B1C1的底面是边长为2的正三角形,侧棱长为√3,D为BC中点,则三棱锥A−B1DC1的体积为()A. 3B. 32C. 1D. 24.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π5.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为ℎ1,如图2放置容器时,液面以上空余部分的高为ℎ2,则ℎ1ℎ2=()A. r2r1 B. (r2r1)2 C. (r2r1)3 D. √r2r16.如图,长方体ABCD−A1B1C1D1的体积是36,点E在棱CC1上,且CE=2EC1,则三棱锥E-BCD的体积是()A. 3B. 4C. 6D. 127.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是平行四边形A′B′C′D′,如图2所示.其中A′B′=2A′D′=4,则该几何体的表面积为( )A. 16+12πB. 16+8πC. 16+10πD. 8π8.某几何体的三视图如图所示,若该几何体的体积为10,则棱长为a的正方体的外接球的表面积为()3A. 12πB. 14πC. 4√3πD. 16π9.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400cm2,900cm2,高为9cm,长方体形凹橹的体积为4300cm3,那么这个斗的体积是()注:台体体积公式是V=1(S' +√S′S+S)h.3A. 5700cm3B. 8100cm3C. 10000cm3D. 9000cm310.在四棱锥P−ABCD中,PB=PD=2,AB=AD=1,PC=√3PA=3,∠BAD= 120°,AC平分∠BAD,则四棱锥P−ABCD的体积为()A. √62B. √6 C. √63D. √311.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5∘≈513)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸二、填空题(每空4分;共44分)12.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是________.13.已知某正四棱锥的底面边长和侧棱长均为2cm,则该棱锥的体积为________ cm3.14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为________.15.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为________,表面积为________.16.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.17.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1,挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm2,不考虑打印损耗,制作该模型所需原料的质量为________g.18.某三棱锥的三视图如图所示,则该三棱锥体积是________,四个面的面积中最大的是________.19.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.20.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别为棱A1D1、C1D1的中点,NBC1,若P、M分别为线段D1B、EF上的动点,则|PM|+是线段BC1上的点,且BN=14|PN|的最小值为________.参考答案一、单项选择题1.【答案】A2.【答案】A3.【答案】C4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】A9.【答案】C10.【答案】A11.【答案】D二、填空题12.【答案】24√213.【答案】4314.【答案】1315.【答案】2π;(3 +√2)π316.【答案】1017.【答案】118.818.【答案】1;3√5219.【答案】2420.【答案】√6。
2020届高考数学专题:立体几何计算问题(答案不全)
立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
2020全国卷二数学理科立体几何
2020全国卷二数学理科立体几何
全国卷二数学理科立体几何的内容主要包括:
一、立体几何的基本概念:
1. 空间的概念:空间的维数、空间的直角坐标系、空间的坐标变换、空间的参数方程等。
2. 立体几何的基本概念:点、直线、面、体、立体图形的分类、立体图形的基本性质、立体图形的基本关系等。
二、立体几何的基本公式:
1. 空间的距离公式:点到直线的距离、点到平面的距离、直线到平面的距离、点到点的距离等。
2. 空间的体积公式:正多面体的体积、球体的体积、椎体的体积等。
3. 空间的面积公式:正多面体的表面积、球体的表面积、椎体的表面积等。
三、立体几何的基本定理:
1. 空间三角形的关系:直角三角形的定理、锐角三角形的定理、钝角三角形的定理等。
2. 空间四边形的关系:正方形的定理、矩形的定理、平行四边
形的定理、平行六边形的定理等。
3. 空间多面体的关系:正多面体的定理、正八面体的定理、正十二面体的定理等。
2020年山东省高考数学试卷(新高考)
可以用指数模型: I (t) ert 描述累计感染病例数 I (t) 随时间 t (单位:天)的变化规律,指
数增长率 r 与 R0 ,T 近似满足 R0 1 rT .有学者基于已有数据估计出 R0 3.28 ,T 6 .据 此,在新冠肺炎疫情初始阶段,累计感染病例数增加 1 倍需要的时间约为 ( )(ln2 0.69)
取值范围是 ( )
A. [1 ,1][3 , )
B. [3 , 1][0 ,1]
第 1页(共 22页)
C. [1 , 0][1 , )
D.[1 , 0][1 , 3]
二、选择题:本题共 4 小题,每小题 5 分,共 20 分。在每小题给出的选项中,有多项符合 题目要求。全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分。
b
0)
的离心率为
2 ,且过点 A(2,1) . 2
(1)求 C 的方程;
(2)点 M , N 在 C 上,且 AM AN , AD MN , D 为垂足.证明:存在定点 Q ,使得
| DQ | 为定值.
第 4页(共 22页)
2020 年山东省新高考数学试卷
参考答案与试题解析
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一
2020年高考数学精选专题(含答案详解)08 空间几何体
2020年高考数学精选专题(含答案详解)一、单选题(共11题;共22分)1.某几何体的三视图如图所示,则该几何体的体积为()A. π+412B. π+13C. π+1D. π+142.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为()A. 16+12πB. 32+12πC. 24+12πD. 32+20π3.直三棱柱ABC−A1B1C1的底面是边长为2的正三角形,侧棱长为√3,D为BC中点,则三棱锥A−B1DC1的体积为()A. 3B. 32C. 1D. 24.如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π5.一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为ℎ1,如图2放置容器时,液面以上空余部分的高为ℎ2,则ℎ1ℎ2=()A. r2r1 B. (r2r1)2 C. (r2r1)3 D. √r2r16.如图,长方体ABCD−A1B1C1D1的体积是36,点E在棱CC1上,且CE=2EC1,则三棱锥E-BCD的体积是()A. 3B. 4C. 6D. 127.某几何体的正视图和侧视图如图1所示,它的俯视图的直观图是平行四边形A′B′C′D′,如图2所示.其中A′B′=2A′D′=4,则该几何体的表面积为( )A. 16+12πB. 16+8πC. 16+10πD. 8π8.某几何体的三视图如图所示,若该几何体的体积为10,则棱长为a的正方体的外接球的表面积为()3A. 12πB. 14πC. 4√3πD. 16π9.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图一图二是斗拱实物图,图三是斗拱构件之一的“斗”的几何体.本图中的斗是由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400cm2,900cm2,高为9cm,长方体形凹橹的体积为4300cm3,那么这个斗的体积是()注:台体体积公式是V=1(S' +√S′S+S)h.3A. 5700cm3B. 8100cm3C. 10000cm3D. 9000cm310.在四棱锥P−ABCD中,PB=PD=2,AB=AD=1,PC=√3PA=3,∠BAD= 120°,AC平分∠BAD,则四棱锥P−ABCD的体积为()A. √62B. √6 C. √63D. √311.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin22.5∘≈513)A. 600立方寸B. 610立方寸C. 620立方寸D. 633立方寸二、填空题(共9题;共11分)12.如图,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,正视图中的曲线为四分之一圆弧,则该几何体的表面积是________.13.已知某正四棱锥的底面边长和侧棱长均为2cm,则该棱锥的体积为________ cm3.14.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为________.15.祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为________,表面积为________.16.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.17.学生到工厂劳动实践,利用3D打印技术制作模型,如图,该模型为长方体ABCD-A1B1C1D1,挖去四棱推O一EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm2,不考虑打印损耗,制作该模型所需原料的质量为________g.18.某三棱锥的三视图如图所示,则该三棱锥体积是________,四个面的面积中最大的是________.19.在《九章算术》中有称为“羡除”的五面体体积的求法.现有一个类似于“羡除”的有三条棱互相平行的五面体,其三视图如图所示,则该五面体的体积为________.20.如图,在棱长为2的正方体ABCD−A1B1C1D1中,E、F分别为棱A1D1、C1D1的中点,NBC1,若P、M分别为线段D1B、EF上的动点,则|PM|+是线段BC1上的点,且BN=14|PN|的最小值为________.一、单选题1.【答案】A【解析】【解答】由三视图还原原几何体如图,该几何体可看作两个几何体的组合体,左侧是四分之一圆锥,右侧是四棱锥,圆锥的底面半径为1,高为1,棱锥的底面是边长为1的正方形,一条侧棱垂直于底面,且长度为1.所以,该几何体的体积为V=13S⋅ℎ=13(π4⋅12+1)⋅1=π+412.故答案为:A.【分析】根据三视图判断出几何体的直观图,结合三视图的数据可计算出该几何体的体积.2.【答案】A【解析】【解答】由三视图知:该几何体是正四棱柱与半球体的组合体,且正四棱柱的高为√2,底面对角线长为4,球的半径为2,所以几何体的表面积为:S=12×4π×22+π×22+2√2×√2×4= 12π+16,故答案为:A.【分析】利用三视图还原立体几何图形为正四棱柱与半球体的组合体,再利用正四棱柱和球的表面积公式,结合求和的方法,从而求出该几何体的表面积。
空间几何体的结构及其三视图和直观图、表面积与体积 高考数学真题分类题库2020解析版 考点31
考点31空间几何体的结构及其三视图和直观图、空间几何体的表面积与体积一、选择题1.(2020·全国卷Ⅰ高考文科·T3理科·T3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()【命题意图】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学运算的核心素养,是一道容易题.【解析】选C.如图,设CD=a,PE=b,则PO=B2-B2=由题意PO2=12ab,即b2-24=12ab,化简得-2·-1=0,解得=1+54(负值舍去).2.(2020·全国卷Ⅰ高考文科·T12理科·T10)已知A,B,C为球O的球面上的三个点,☉O1为△ABC的外接圆,若☉O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【命题意图】本题考查空间想象的能力和球的基本知识,注重对学生基础知识的考查和运用,主要的知识点为正弦定理和球的表面积公式.属于中档题.【解题指南】由已知可得等边△ABC的外接圆半径,进而求出其边长,得出OO1的值,根据球截面性质,求出球的半径,即可得出结论.【解析】选A.设圆O1的半径为r,球的半径为R,依题意,得πr2=4π,所以r=2,由正弦定理可得AB=2r sin60°=23,所以OO1=AB=23,根据球截面性质得OO1⊥平面ABC,所以OO1⊥O1A,R=OA=B12+12=B12+2=4,所以球O的表面积S=4πR2=64π.3.(2020·全国卷Ⅱ文科·T11理科·T10)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.3B.32C.1【命题意图】本题考查球的相关问题,意在考查学生的空间想象能力和运算求解能力.【解析】选C.设△ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O的半径为R,△ABC的边长为a,则S△ABC2可得a=3,于是r=3,由题知,球O的表面积为16π,则R=2,由R2=r2+d2易得d=1,即O到平面ABC的距离为1.【方法技巧】解答球的有关问题时,通常要用到截面圆.如图所示,设球O的半径为R,截面圆O'的半径为r,M为截面圆上任意一点,球心O到截面圆O'的距离为d,则在Rt△OO'M中,OM2=OO'2+O'M2,即R2=d2+r2.4.(2020·全国卷Ⅱ理科·T7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【命题意图】本题考查根据三视图判断点的位置,意在考查学生的空间想象能力.【解析】选A.该几何体是两个长方体拼接而成,如图所示,由图可知选A.5.(2020·全国卷Ⅲ理科·T8文科·T9)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【命题意图】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力.【解析】选C.根据三视图特征,在正方体中截取出符合题意的立体图形,根据立体图形可得:S△ABC=S△ADC=S△CDB=12×2×2=2,根据勾股定理可得:AB=AD=DB=22,所以△ADB是边长为22的等边三角形,根据三角形面积公式可得:S△ADB=12AB·AD·sin60°=12×(22)2×3=23,所以该几何体的表面积是:3×2+23=6+23.(2020·新高考全国Ⅰ卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处水平面所成的角为()A.20°B.40°C.50°D.90°【命题意图】本题考查直线与平面所成的角、线面垂直的定义以及数学文化,考查学生的空间想象能力,体现了直观想象和数学运算等核心素养.【解析】选B.晷针与晷面垂直,而晷面与赤道所在平面平行,所以晷针与赤道所在平面垂直,进而可知晷针与OA的夹角是50°,又OA垂直点A处的水平面,则晷针与点A处的水平面所成的角为40°.6.(2020·北京高考·T4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+3B.6+23C.12+3D.12+23【命题意图】考查三视图,三棱柱的表面积.【解析】选D.底面为正三角形,其面积为3,侧面为三个全等的长方形,一个长方形的面积为2×2=4,所以表面积为12+23.7.(2020·天津高考·T5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π【命题意图】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.【解题指南】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】选C.这个球是正方体的外接球,其半径等于正方体的体对角线的一半,设外接球的半径为R,则R所以,这个球的表面积为S=4πR2=4π×32=36π.8.(2020·浙江高考·T5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6【命题意图】本题主要考查空间几何体的三视图与体积的计算,考查基本运算求解能力,体现了直观想象与数学运算等核心素养.【解析】选A.根据三视图可知,该空间几何体为三棱柱与三棱锥组合而成,底面积为1,三棱柱高为2,三棱锥高为1,故几何体体积为1×2+13×1×1=73.二、填空题9.(2020·全国卷Ⅲ理科·T15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.【命题意图】考查几何体内切球问题以及球的体积公式的运用,考查学生的空间想象能力以及计算能力.【解析】方法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=32-12=22,故S△ABC=12×2×22=22,设内切圆半径为r,则S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×3+3+2×r=22,解得r其体积:V=43πr3.方法二:分析知圆锥内半径最大的球应为圆锥的内切球,如图,由题可知圆锥的母线长为BS=3,底面半径为BC=1,高SC=B2-B2=22,不妨设该内切圆与母线BS切于D点,令OD=OC=r,则由△SOD∽△SBC,可得O B=B B,即=13,得r此时V=43πr3.10.(2020·全国卷Ⅲ文科·T16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.【命题意图】考查几何体内切球问题以及球的体积公式的运用,考查学生的空间想象能力以及计算能力.【解析】方法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边上的中点,设内切圆的圆心为O,由于AM=32-12=22,故S△ABC=12×2×22=22,设内切圆半径为r,则S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×3+3+2×r=22,解得r=2,其体积:V=43πr3=2π.方法二:分析知圆锥内半径最大的球应为圆锥的内切球,如图,由题可知圆锥的母线长为BS=3,底面半径为BC=1,高SC=B2-B2=22,不妨设该内切圆与母线BS切于D点,令OD=OC=r,则由△SOD∽△SBC,可得O B=B B,即22-=13,得r=2,此时V=43πr3=2π.答案:2π11..(2020·浙江高考·T14)已知圆锥的侧面积为2π,且侧面展开图为半圆,则底面半径为.【命题意图】本题主要考查空间几何体的侧面展开问题,考查空间想象能力,体现了直观想象与数学运算等核心素养.【解析】题中圆锥展开图如图,半径为2,所以半圆弧长为2π,即圆锥底面圆周长为2π,所以底面半径为1.答案:112.(2020·江苏高考·T9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm3.【命题意图】本题主要考查正棱柱、圆柱的体积计算,要求学生要熟记公式.【解析】记此六角螺帽毛坯的体积为V,正六棱柱的体积为V1,圆柱的体积为V2,则V1=6×12×2×2×sin 60°×2=123(cm3),V2=π×(0.5)2×2=π2(cm3),所以V=V1-V2=123-π2(cm3).答案:123-π2。
2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)
2020年普通高等学校招生全国统一考试数学+答案一、选择题:(本题共10小题,每小题6分,共60分)1.若z=1+i ,则|z 2–2z |=( )A. 0B. 1C.D. 2 【答案】D【解析】【分析】由题意首先求得22z z -的值,然后计算其模即可.【详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-. 故2222z z -=-=.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A. –4B. –2C. 2D. 4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D. 512+【答案】C【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则22224aPO PE OE b =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b ba a -⋅-=,解得15b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A. 2B. 3C. 6D. 9【答案】C【解析】【分析】 利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p .故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y a bx =+B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =--B. 21y x =-+C. 23y x =-D. 21y x =+ 【答案】B【解析】【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9B. 7π6C. 4π3D. 3π2 【答案】C【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5B. 10C. 15D. 20 【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515rr rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C x y -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤) 所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为: 56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++== 在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5 所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A. 3B. 23C. 13D.9 【答案】A【解析】【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形, 由正弦定理可得2sin 6023AB r=︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
2020年高考数学试题分项版—立体几何(解析版)
2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。
2020年高考数学 专题四 立体几何题型分析 理
2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α l β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α l β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D A 1C E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q PB A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。
2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)
专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。
2020年高考数学卷(全国卷2)答案
发,想象出直观图,再验证其他视图是否正确;(2)视图中标注
的长度在直观图中代表什么,要分辨清楚;(3)视图之间的数
量关系:正俯长对正,正侧高平齐,侧俯宽相等 .
8.B 【解题思路】本题考查双曲线的几何性质、基本不等式 .由
题意知双曲线 C的渐近线方程为 y=± abx.将 x=a代入渐
近线方程可得 D,E的坐标,不妨设点 D(a,b),E(a,-b),所
( ) 2x在 R上为增函数,y=
1 3
x
在 R上为减函数,则 y=
( ) -
1 3
x
在 R上为增函数,所以函数 f(x)在 R上为 增函
数,所以 y>x,所以 y-x+1>1,所以 ln(y-x+1)>ln1=
0,故选 A.
【关键点拨】解答本题需抓住的关键点:(1)不等式中含有相
同结构的代数式,通常考虑构造一个函数;(2)利用指数函数
15.2槡3 【解题思路】本题考查复数的模的运算 .因为 z1+z2=
槡3+i,设复数 z1=a+bi(a,b∈R),则 z2=(槡3-a)+(1-
{ { |z1|2=a2+b2=4,
a2+b2=4,
b)i,则
即
|z2|2=(槡3-a)2+(1-b)2=4, 槡3a+b=2,
所以 |z1-z2|2=(2a-槡3)2+(2b-1)2=4(a2+b2)-4(槡3a+
点 D,E的坐标,确定出 |DE|关于 a,b的关系;(2)利用基本
不等式求双曲线的焦距 2c的最小值 .
9.D 【解题思路】本 题 考 查 函 数 的 奇 偶 性 与 单 调 性 .由
{ ( ) 2x+1≠0, 得 函 数 f(x)的 定 义 域 为 2x-1≠0,
2020年高考数学 空间几何体 解答题专练15题(含答案)
2020年高考数学空间几何体解答题专练15题1.如图,在四棱锥p-ABCD中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4.(1)求证:BD⊥PC;(2)求二面角B-PC-A的余弦值.2.在四棱锥P-ABCD中,底面ABCD为菱形,,侧面△ADP为等腰直角三角形,PA=PD,点E为棱AD的中点.(1)求证:面PEB⊥面ABCD;(2)若AB=PB=2,求直线AB与平面PBC所成角的正弦值3.如图,在三棱柱ABC-AB1C1中,AC=CB=2,,且AC⊥CB,AA1⊥底面ABC,E为AB中1点,点P为B1B上一点.(1)求证:BC1//平面A1CE;(2)求二面角A1-CE-B的余弦值;4.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB//平面AEC.5.如图,在直三棱柱ABC-AB1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1.1求证:(1)DE//平面AA1CC1.(2)BC1⊥AB1.6.如图,直三棱柱ABC-AB1C1的底面是正三角形,E,F,G,H分别是BC,CC1,B1C1,BB1的中点.1证明:(1)平面AEF⊥平面BCC1B1;(2)平面A1GH//平面AEF.7.如图所示,四边形ABCD为菱形,且∠ABC=120°,AB=2,BE//DF,且BE=DF=,DF⊥平面ABCD.(1)求证:平面ABE⊥平面ABCD;(2)求平面AEF与平面ABE所成锐二面角的正弦值.8.在多面体ABCDEF中,四边形ABCD是正方形,CF⊥平面ABCD,CF//DE,AB=CF=2DE=2,G为BF的中点。
(1)求证:CG⊥AF;(2)求平面BCF与平面AEF所成角的正弦值。
9.在四棱锥P-ABCD的底面是菱形,PO⊥底面ABCD,O,E分别是AD,AB中点,AB=6,AP=5,∠BAD=60°.(1)求证:AC⊥PE;(2)求直线PB与平面POE所成角的正弦值;(3)在DC边上是否存在点F,使BF与PA所成角的余弦值为,若存在,确定点F的位置;若不存在,说明理由.10.如图所示,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC中点,M是PD的中点.(1)求证:平面AEM⊥平面PAD;(2)若F是PC上的中点,且AB=AP=2,求三棱锥P-AMF的体积.11.如图所示,在四棱台ABCD-AB1C1D1中,AA1⊥底面ABCD,四边形ABCD为菱形,∠BAD=120°,1AB=AA1=2A1B1=2.(1)若M为CD中点,求证:AM⊥平面AA1B1B;(2)求直线DD1与平面A1BD所成角的正弦值.12.如图所示,已知直三棱柱ABC-AB1C1的底面ABC为等腰直角三角形,点D为线段A1B1的中点.1(1)探究直线B1C与平面C1AD的位置关系,并说明理由;(2)若BB1=A1B1=B1C1=2,求三棱锥C-ADC1的体积.13.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA=AB=1,PB=PD=.(1)证明:BD⊥平面PAC;(2)若E是PC的中点,F是棱PD上一点,且BE//平面ACF,求二面角F-AC-D的余弦值.14.如图,直三棱柱ABC-AB1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=1(1)证明:BC1//平面A1CD;(2)求二面角D-A1C-E的余弦值.15.如图,在直三棱柱ABC﹣AB1C1中,点M,N分别为线段A1B,B1C的中点.1(1)求证:MN∥平面AA1C1C;(2)若∠ABC=90°,A B=BC=2,AA1=3,求点B1到面A1BC的距离.参考答案1.证明:2.3.解:4.解:(1)证明:∵在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,∴AC⊥AB,AC⊥PA,又AB∩PA=A,∴AC⊥平面PAB,∵PB?平面PAB,∴AC⊥PB.(2)证明:连接BD,与AC相交于O,连接EO,∵ABCD是平行四边形,∴O是BD的中点,又E是PD的中点,∴EO∥PB,又PB不包含于平面AEC,EO平面AEC,∴PB∥平面AEC.5.解:6.解:7.解:8.解:9.解:10.解:11.解:12.解:15.解:。
2020年高考数学(理数)大题专项练习立体几何9题(含答案)
2020年高考数学(理数)大题专项练习立体几何9题1.如系,--减性M3匚中.班ffeAAtr 底面Ain二足总K为二打正二m唯.已知出0 4足H方rX十就.1口东一,麻用坨AC旧的大小;㈠求冲击宜税M 5承’的距离.门)直携4A 上是否。
花点。
.使DC/平面感a C?若存在.清确定点心的性黄土若不存在谙意可用由,2.如图,在矩形期⑶,NH =二】.廿为C。
上的点,以LW为石痕把折起,使点不到达点P 的位置,耳平面乩甘尸i平面ABCD.连接PB,PC、羔N为网的中点.巾CN#平面AMP.(1 )求线段Gf的《事(II )求平向同尸与平曲BCP所成锐二面角的余荥值,3.如图.在四棱如S - AHCD中.侧面30)为惋角三角形艮垂百于底面钻CD,8 =即小V是口的中点,由中Bg上A配= )*.4B=4D{1 )求证■平胤SC”⑵若骏苑与底面TBCD听成的角为60,求平面M3D 与平面SAC所成的锐二面角的余弦值.4.用国.四幢惟F ■用方匚。
中.忸1植FJJ.面目BCD,AB = AC-4M在找蜀HD 上, IL2AM = MD > X 为PE 的中题.AD/JSC. MN"面PCD-U>求9c的长।门口若为1=2,求:面希M—广材一办的余帮富,B5.如图T在二棹抨£8。
一乩80中.上HC8 =/aCB = 90,匕工4(? = 60, 0,芯分金二1 4」.1 卜II 片「:口:"」・Il JJ = .4('=81,([)求证:4£"平面SC;D;门口求T面BC0与平而17?「所成错.面角的余强囿6.刎四-在四桎箫P A3+33正面是进枪-2的正川乱尸月=FH= /IT. E为PA中心*"?-自™六门£f |干扣内。
.,”在J乂班M纵L. I H"九N『M J- li. IL 卜H I.( “ 卜叫: 以/■■- f ilir『HLf;i力此点汇1找苣件「i.*若_曲曲砰一”\一只为〜一*求HN m氏度•第2页共14页7.8.如用,长方体阻上口一小瓦a仇的侧面匕他马是正方形. (X)证明:W平面孙i(2)若,蚯=2, A£=4t求二面用用的余弦值9.加图.在风冏体力/。
2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)
2020年全国统一考试数学一、选择题:(本题共10小题,每小题6分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.C.23D.【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.详解】由题意可得:1sin sin cos 122θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:3sin coscos sin663ππθθ+=, 即3sin 63πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=, 整理可得:2221x y a +=+,即点C 的轨迹是以AB 21a +为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:2362332=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设3log 2a =,5log 3b =,23c =,则( ) A. a c b << B. a b c <<C. b c a <<D. c a b <<【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分.11.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.12.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】 【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 14.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:22r,其体积:34233V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第15~19题为必考题,每个试题考生都必须作答.第20、21题为选考题,考生根据要求作答. (一)必考题:共60分.15.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q , 根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩, 所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.17.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 18.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x 在(1,k --上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.19.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525xy+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B,∴651PM BN==-=,设P点为(,)P Px y,可得P点纵坐标为1Py=,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第20、21题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]20.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)4102)3cos sin 120ρθρθ-+= 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]21.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考数学空间几何高考真题一.选择题(共9小题)1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.105.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1 B.+3 C.+1 D.+36.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.162.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.二.填空题(共5小题)8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.三.解答题(共9小题)13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.15.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.16.如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.8.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.2017年高考数学空间几何高考真题参考答案与试题解析一.选择题(共7小题)1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.【解答】解:对于选项B,由于AB∥MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB∥MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由于AB∥NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A.2.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r==,∴该圆柱的体积:V=Sh==.故选:B.3.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC【解答】解:法一:连B1C,由题意得BC1⊥B1C,∵A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,∴A1B1⊥BC1,∵A1B1∩B1C=B1,∴BC1⊥平面A1ECB1,∵A1E⊂平面A1ECB1,∴A1E⊥BC1.故选:C.法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),=(﹣2,1,﹣2),=(0,2,2),=(﹣2,﹣2,0),=(﹣2,0,2),=(﹣2,2,0),∵•=﹣2,=2,=0,=6,∴A1E⊥BC1.故选:C.4.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.60 B.30 C.20 D.10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积==10.故选:D.5.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1 B.+3 C.+1 D.+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A6.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),Q,R,=,=(0,3,6),=(,5,0),=,=.设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1).则cos==,取α=arccos.同理可得:β=arccos.γ=arccos.∵>>.∴α<γ<β.解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.设OD=h.则tanα=.同理可得:tanβ=,tanγ=.由已知可得:OE>OG>OF.∴tanα<tanγ<tanβ,α,β,γ为锐角.∴α<γ<β.故选:B.7.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.1.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B2.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.二.填空题(共5小题)8.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为36π.【解答】解:三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3.球O的表面积为:4πr2=36π.故答案为:36π.9.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14π.【解答】解:长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:=.则球O的表面积为:4×=14π.故答案为:14π.10.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.11.由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.三.解答题(共9小题)13.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.【解答】证明:(1)∵在四棱锥P﹣ABCD中,∠BAP=∠CDP=90°,∴AB⊥PA,CD⊥PD,又AB∥CD,∴AB⊥PD,∵PA∩PD=P,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,∵PA=PD=AB=DC,∠APD=90°,平面PAB⊥平面PAD,∴PO⊥底面ABCD,且AD==,PO=,∵四棱锥P﹣ABCD的体积为,∴V P=﹣ABCD====,解得a=2,∴PA=PD=AB=DC=2,AD=BC=2,PO=,∴PB=PC==2,∴该四棱锥的侧面积:S侧=S△PAD+S△PAB+S△PDC+S△PBC=+++==6+2.14.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.【解答】(1)证明:四棱锥P﹣ABCD中,∵∠BAD=∠ABC=90°.∴BC∥AD,∵AD⊂平面PAD,BC⊄平面PAD,∴直线BC∥平面PAD;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE==,△PCD面积为2,可得:=2,即:,解得x=2,PE=2.=×(BC+AD)×AB×PO==4.则V P﹣ABCD15.如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【解答】证明:(1)取AC中点O,连结DO、BO,∵△ABC是正三角形,AD=CD,∴DO⊥AC,BO⊥AC,∵DO∩BO=O,∴AC⊥平面BDO,∵BD⊂平面BDO,∴AC⊥BD.解:(2)法一:连结OE,由(1)知AC⊥平面OBD,∵OE⊂平面OBD,∴OE⊥AC,设AD=CD=,则OC=OA=1,∴E是线段AC垂直平分线上的点,∴EC=EA=CD=,由余弦定理得:cos∠CBD==,即,解得BE=1或BE=2,∵BE<<BD=2,∴BE=1,∴BE=ED,∵四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,∵BE=ED ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1. 法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,∴BO==,∴BO 2+DO 2=BD 2,∴BO ⊥DO ,以O 为原点,OA 为x 轴,OB 为y 轴,OD 为z 轴,建立空间直角坐标系, 则C (﹣1,0,0),D (0,0,1),B (0,,0),A (1,0,0),设E (a ,b ,c ),,(0≤λ≤1),则(a ,b ,c ﹣1)=λ(0,,﹣1),解得E (0,,1﹣λ),∴=(1,),=(﹣1,),∵AE ⊥EC ,∴=﹣1+3λ2+(1﹣λ)2=0,由λ∈[0,1],解得,∴DE=BE ,∵四面体ABCE 与四面体ACDE 的高都是点A 到平面BCD 的高h , ∵DE=BE ,∴S △DCE =S △BCE ,∴四面体ABCE 与四面体ACDE 的体积比为1.16.如图,直三棱柱ABC ﹣A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC ﹣A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.17.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D 为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E﹣BCD的体积.【解答】解:(1)证明:由PA⊥AB,PA⊥BC,AB⊂平面ABC,BC⊂平面ABC,且AB∩BC=B,可得PA⊥平面ABC,由BD⊂平面ABC,可得PA⊥BD;(2)证明:由AB=BC,D为线段AC的中点,可得BD⊥AC,由PA⊥平面ABC,PA⊂平面PAC,可得平面PAC⊥平面ABC,又平面ABC∩平面ABC=AC,BD⊂平面ABC,且BD⊥AC,即有BD⊥平面PAC,BD⊂平面BDE,可得平面BDE⊥平面PAC;(3)PA∥平面BDE,PA⊂平面PAC,且平面PAC∩平面BDE=DE,可得PA∥DE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA⊥平面ABC,可得DE⊥平面ABC,可得S△BDC =S△ABC=××2×2=1,则三棱锥E﹣BCD的体积为DE•S=×1×1=.△BDC18.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.19.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.20.由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【解答】证明:(Ⅰ)取B1D1中点G,连结A1G、CG,∵四边形ABCD为正方形,O为AC与BD 的交点,∴四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,A1G OC,∴四边形OCGA1是平行四边形,∴A1O∥CG,∵A1O⊄平面B1CD1,CG⊂平面B1CD1,∴A1O∥平面B1CD1.(Ⅱ)四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后,BD B1D1,∵M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥A1E,∵四边形ABCD为正方形,O为AC与BD 的交点,∴AO⊥BD,∵M是OD的中点,E为AD的中点,∴EM⊥BD,∵A1E∩EM=E,∴BD⊥平面A1EM,∵BD∥B1D1,∴B1D1⊥平面A1EM,∵B1D1⊂平面B1CD1,∴平面A1EM⊥平面B1CD1.21.如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,FG∥BC,所以FG⊥BD,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.3.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面BDP的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=||=.7.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.8.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.41word版本可编辑.欢迎下载支持.。