高电压技术雷电及防雷装置
《高电压技术》复习纲要
《高电压技术》复习纲要第一篇 高电压绝缘及试验第一章 电介质的极化、电导和损毁高压(HV ):10~220kV 超高压(EHV ):330~750kV 特高压(UHV ):1000kV 及以上电介质中的能量损耗:在电场的作用下,电介质由于电导引起的损耗和有损极化(如偶极子极化、夹层极化等)引起的损耗,总称为电介质的损耗。
介质损耗角 δ 为功率因数角 φ 的余角,其正切 tg δ 又可称为介质损耗因数,常用百分数(%)来表示。
定义δ 为介质损失角,是功率因数角ϕ 的余角 介质损失角正切值tg δ ,如同εr 一样,取决于材料的特性,而与材料尺寸无关,可以方便地表示介质的品质1-4电介质电导与金属电导的本质区别?电介质电导主要为离子式电导,即电解式电导;金属电导主要为自由电子电导。
R 3i 3 CI 2 RI 2 3I 1I CRIItg =δ第二章 气体放电的物理过程气体的电离形式:碰撞电离:气体放电中,碰撞电离主要是电子和气体分子碰撞而引起的 在电场作用下,电子被加速而获得动能。
当电子的动能满足如下条件时,将引起碰掩电离光电离:光辐射引起的气体分子的电离过程称为光电离 热电离:因气体热状态引起的电离过程称为热电离 负离子的形成:有时电子和气体分子碰撞非但没有电离出新电子,反而是碰撞电子附着分子,形成了负离子表面电离:气体中的电子也可能是从金属电极的表面电离出来的(逸出功:从金属表面电极表面逸出电子需要一定的能量,通常称为逸出功)汤逊气体放电理论:汤逊理论认为,当pS 较小时,电子的碰撞电离和正离子撞击阴极造成的表面电离起着主要作用,气隙的击穿电压大体上是pS 的函数 流注气体放电理论:认为电子碰撞电离及空间光电离是维持自持放电的主要因素,并强调了空间电荷畸变电场的作用汤逊理论适用于均匀电场,流注理论适用于不均匀电场巴申曲线:假设S 保持不变,当P 增大时,电子的平均自由行程缩短了,相邻两次碰撞之间,电子积聚到足够动能的几率减小了。
四、高电压技术
高电压技术一、电介质的电气特性及放电理论01 电介质的基本特性1.电介质的四性:•极化特性•电导特性•损耗特性•击穿特性2.所有介质中均发生的极化类型为电子式极化。
3.温度和频率对电子式极化都影响不大。
4.频率对离子式极化无影响。
5.温度对离子式极化有影响,温度上升,离子式极化程度加强。
6.温度对偶极子极化有明显影响,对于极性气体,温度上升,偶极子极化程度减小;对于极性液体、固体,温度上升,偶极子极化程度先增大后减小。
7.频率升高,偶极子极化程度先不变后减小。
8.电压性质(频率)对夹层极化有明显影响,只有直流或低频交流下发生。
9.温度升高,夹层极化程度减小。
10.对于液体和固体,温度升高,介电常数先增大后减小;频率增加,介电常数减小。
电介质受潮或污染后,介电常数变大。
11.介电常数:气体1,纯绝缘油2.2,酒精33,水81。
12.直流电压下,流过绝缘的总电流=电容电流(无损极化)+吸收电流(有损极化损耗)+泄漏电流(电导损耗)13.气体、中性和弱极性液体(变压器油)、无机固体中的云母、有机固体中的非极性材料(聚乙烯、聚苯乙烯、聚四氟乙烯)的损耗主要是电导损耗。
14.极性液体、无机固体中的玻璃和电工陶瓷、有机固体中的极性材料(聚氯乙烯、纤维素、酚醛树脂、胶木、绝缘纸)的损耗主要是电导损耗和极化损耗。
15.电导损耗随温度的升高而升高,极化损耗随温度的升高先升高再降低,总损耗随温度的升高先升高再降低再升高。
16.电导损耗不受频率影响,极化损耗随频率的升高先不变后降低,总损耗随频率的升高先不变后降低。
17.电导损耗随场强增大,损耗先不变再升高。
18.变压器负载损耗中,绕组电阻损耗与温度成正比;附加损耗与温度成反比。
02 气体放电过程及其击穿特性1.平均自由行程:带电粒子在单位行程中碰撞次数的倒数。
2.迁移率:带电粒子在单位场强下沿电场方向的漂移速度。
3.工频交流电压下,棒-棒气隙的工频击穿电压比棒-板高。
高电压技术_7电力系统防雷保护
6
1 ~ 2km
A
F1
F2
(a )
F3
F1
F2
(b )
(10-3-1) 35kv 及以上变电所的进线保护接线
(a )未沿全线路架设避雷线的 35~110kv 线路的变电所的进线保护接线 (b )全线有避雷线的变电所的进线保护接线
7
二、图中各元件的名称和作用: 图中各元件的名称和作用: 1)进线段的作用 进线段的作用:进线段内防止雷击导线,进线段 进线段的作用 以外进雷时,由于进线段本身阻抗的作用,使流经 避雷器的雷电流受到限制,同时由于冲击电晕的影 响,将使入侵波陡度和幅值下降。 2)F3的作用 F 的作用:限制入侵波的幅值。 3)(管型避雷器)F2的作用 )F2 (管型避雷器)F 的作用:在雷季保护断路器和隔 离开关.断路器闭合运行时,入侵雷电波不应使其动 作。 )F1的作用 4)(阀式避雷器)F1的作用 (阀式避雷器)F1的作用:DL合闸状态时,保护一 切绝缘。
8
§7-3 变压器中性点保护 -
一、全绝缘
变压器中性点的绝缘水平与相线端是一样的。 1、35~60KV非有效接地系统中,变压器中性点一般不需 要保护装置。 2、对110KV且为单进线的变电所,宜在中性点上加设避 雷器。
二、分级绝缘
变压器中性点的绝缘水平比相线端低得多。 对于中性点接地系统中,有些不接地的变压器需要保护。
不平衡绝缘的原则是使两回路的绝缘子串片数有差异,这 样,雷击时绝缘串片数少的回路先闪络,闪络后的导线相当 于地线,增加了对另一回路导线的耦合作用,提高了另一回 路的耐雷水平以保证继续供电,一般两回路绝缘水平的差异 为 3 倍的相电压(峰值)。
3
五、架设自动重合闸
雷击造成的闪络大多能在跳闸后自行恢复绝缘性能。
国网考试——高电压技术考点分析
考点分析
5.防雷与接地技术
① 雷电与防雷装置 ——雷电参数、保护范围(避雷针、避雷线)、避雷器、 接地装置 ② 防雷保护措施
——输电线路(区分雷击方式、防雷措施)
——发电厂与变电所(进线段保护、一次设备保护)
考点分析
6.电力系统绝缘配合
① 原则与方法 ——决定因素、方法(惯用法、统计法、简化统计法) ② 绝缘水平 ——设备绝缘(短时、雷电冲击、操作冲击) ——架空线路绝缘(绝缘子片数、空气间隙)
考点分析
1.绝缘介质
极化类型(时间、温度、能量损耗) 介电常数(意义、固液气的相对介电常数) 电介质电导(固液气的电导、影响因素) 介质损耗(概念及等效电路、固液气损耗的影响因素) 气体放电(微观过程、宏观现象) 固体和液体电介质击穿(机理、影响因素、老化、提高方法)
考点分析
考点分析
3.波过程
① 单导线中波过程 ——波过程等值电路 ——行波的折射与反射规律(折返射系数电感对波过程的影响
② 多导线系统中波过程(波速、耦合系数)
考点分析
4.电力系统过电压
① 暂时过电压 ——工频、线性谐振、非线性谐振、参数谐振 ——产生机理与限制措施 ② 操作过电压 ——间歇电弧接地、空载变压器分闸、空载线路分闸、空 载线路合闸 ——产生机理与限制措施
高电压技术
知识要点
知识点概述
高电压技术所占分值: 10分(满分100分) 题型:选择、多选、 判断 特点:侧重于基础知 波过程 识和理论的应用
绝缘 介质 绝缘预 防性试 验
绝缘 配合
过电压
防雷和 接地
知识点概述
1.绝缘介质——气体、液体、固体
2.高电压绝缘预防性试验 ——破坏性试验 ——非破坏性试验 3.分布参数的波过程 ——集中参数波过程计算方法 4 电力系统过电压 ——暂态过电压和操作过电压 5 防雷和接地技术 ——防雷装置和技术、接地装置 6 电力系统绝缘配合——绝缘配合方法和绝缘水平
005雷电及防雷设备
高电压技术
高电压技术
第一节 雷电放电和雷电参数
高电压技术
一、雷电及雷电放电过程:
㈠ 雷电的产生:
雷电放电起源于雷云的形成,为了更好的理解雷电 放电的某些特性,我们来大致地了解一下雷云的形成机 理。
1、雷云的形成: ⑴ 热雷云: 地表潮湿空气,受热上升;形成湿热气流的水份在
2——5km的高空受冷凝结为悬浮小水滴;小水滴集聚成 大面积的乌黑积云。这类云荷电后称为热雷云。
高电压技术
一、避雷器保护原理和基本类型
3、基本要求: ⑴ 能瞬时动作。
⑵ 能自行迅速截断工频续流。
工频续流:避雷器在冲击电压作用后流经间隙的工频 电弧。即过电压消失后,间隙中仍有由工作电压所产生 的工频电弧电流。
⑶ 具有平直的伏秒特性曲线。 ⑷ 具有一定的通流容量,其残压应低于被保护物的 冲击耐压。
高电压技术
2、两支等高避雷针
上部边缘最低点o
h0
h
D 7P
高电压技术
二针间被保护物高度水平面上保护范围的一侧宽度
bx 1.5(h0 hx )
针间的距离D不宜大于5h。
3、两支不等高避雷针
高电压技术
等效为等高的避雷针
f D' 7P
4、多支等高避雷针
高电压技术
外部:分别用两针法。
内部:采用三角形法,若 满足bx>0, 即认为多针所覆盖的全面积就受到保护。
不足15日为少雷区,超过40的为多雷区,超过90的为 强雷区。
西昌为75.6,成都36.9。
高电压技术
四、地面落雷密度和输电线路落雷次数
地面落雷密度:每个雷电日每平方公里地面遭受 雷击的次数。
表示雷云对地放电的频数和强烈程度。 我国雷暴日为40时,取=0.015,国外取值在0.1~0.2之间。
第四章 雷电放电特性及防雷装置
雷电放电特性及防雷装置
高电压技术
第四章
雷电放电特性及防雷装置
高电压技术
雷电放电特性及防雷装置
高电压技术
雷电放电特性及防雷装置
第一节 雷电的放电过程
雷电放电是由带电荷的雷云引起的放电现象 雷云带电机理:冻结起电、水滴分裂起电等 大多数的放电发生在雷云之间——不危险 少数的放电发生在雷云和大地之间——危险
三、常用接地电极的接地电阻
材料:钢 埋深: 0.6~0.8m 垂直接地体 水平接地体
高电压技术
雷电放电特性及防雷装置
输电线路的防雷接地
自然接地电阻
发电厂和变电站的防雷接地
敷设统一的接地网
避雷线:架空线路中
高电压技术
雷电放电特性及防雷装置
一、避雷针
由接闪器(针头)、引下线和接地装置三部分组成
高电压技术
雷电放电特性及防雷装置
构架避雷针
高电压技术
雷电放电特性及防雷装置
1、要求
(1)可靠接地 (2)对设备提供可靠屏蔽
高电压技术
雷电放电特性及防雷装置
2、单支避雷针的保护范围
高电压技术
重复放电
由于雷云中存在多个电荷密集中心。 重复放电的次数,多数情况下为2—3次。
迎面先导
高电压技术
雷电放电特性及防雷装置
雷电的热效应:雷电通道温度15000~ 20000oC,森林大火; 雷电的机械效应:气体膨胀爆炸, 热 应力,电动力 雷电造成的事故:黄岛油库
高电压技术
雷电放电特性及防雷装置
中h=120m计算
高电压技术
高电压技术第5章雷电及防雷设备1
三支等高避雷针在hx水平面上的保护范围如左图所示,
5.1.1 雷云的形成
能产生雷电的带电云层称为雷云。
雷云的形成主要是含水汽的空气的热对流效 应。太阳的热辐射使地面部分水分化为蒸汽,含 水蒸汽的空气受到炽热的地面烘烤而上升,会产 生向上的热气流。热气流每上升10km,温度下降 约10℃,热气流与高空冷空气相遇形成雨滴、冰 雹等水成物,水成物在地球静电场的作用下被极 化,形成热雷云。
图8-2 雷电流的等值波形
(a)双指数波 (b)斜角平顶波 (c)半余弦波
f 1.2s t 50s
i I0 (et et )
f 2.6s I I / 2.6kA / s
f
i I (1 cost) 2
/ f
max
di dt
max
I 2
3、雷暴日及雷暴小时
雷暴日Td 是指该地区平均一年内有雷电放电的 平均天数,单位d/a 。 雷暴小时Th 雷暴小时是指平均一年内的有雷电 的小时数,单位h/a。
2. 避雷针的保护范围
表示避雷针的保护效能,通常采用保护范围的 概念,只具有相对意义。避雷针的保护范围是指被 保护物体在此空间范围内不致遭受直接雷击。我国 使用的避雷针的保护范围的计算方法,是根据小电 流雷电冲击模拟试验确定,并根据多年运行经验进 行了校验。保护范围是按照保护概率99.9%确定的 空间范围(即屏蔽失效率或绕击率0.1%)。
第5章 雷电及防雷设备
高电压技术第8章习题答案
第八章雷电过电压及防护8-1试述雷电放电的基本过程及各阶段的特点。
8-2试述雷电流幅值的定义,分别计算下列雷电流幅值出现的概率:30kA、50kA、88kA、100kA、150kA、200kA。
8-3雷电过电压是如何形成的?8-4某变电所配电构架高11m,宽10.5m,拟在构架侧旁装设独立避雷针进行保护,避雷针距构架至少5m。
试计算避雷针最低高度。
8-5设某变电所的四支等高避雷针,高度为25m,布置在边长为42m的正方形的四个顶点上,试绘出高度为11m的被保护设备,试求被保护物高度的最小保护宽度。
8-6什么是避雷线的保护角?保护角对线路绕击有何影响?8-7试分析排气式避雷器与保护间隙的相同点与不同点。
8-8试比较普通阀式避雷器与金属氧化物避雷器的性能,说说金属氧化物避雷器有哪些优点?8-9试述金属氧化物避雷器的特性和各项参数的意义。
8-10限制雷电过电压破坏作用的基本措施是什么?这些防雷设备各起什么保护作用?8-11平原地区110kV单避雷线线路水泥杆塔如图所示,绝缘子串由6×X-7组成,长R为7Ω,导线和避雷线的直径分别为1.2m,其正极性U50%为700kV,杆塔冲击接地电阻i为21.5mm和7.8mm,15℃时避雷线弧垂2.8m,下导线弧垂5.3m,其它数据标注在图中,单位为m,试求该线路的耐雷水平和雷击跳闸率。
习题8-11图8-12某平原地区550kV输电线路档距为400m,导线水平布置,导线悬挂高度为28.15m,相间距离为12.5m,15℃时弧垂12.5m。
导线四分裂,半径为11.75mm,分裂距离0.45m(等值半径为19.8cm)。
两根避雷线半径5.3mm,相距21.4m,其悬挂高度为37m,15℃时弧垂9.5m。
杆塔电杆15.6μH,冲击接地电阻为10Ω。
线路采用28片XP-16绝缘子,串长4.48m,其正极性U50%为2.35MV,负极性U50%为2.74MV,试求该线路的耐雷水平和雷击跳闸率。
技能培训专题-高电压技术-雷电及防雷保护措施
防雷接地
• 接地电阻:对工作接地和保护 接地,将接地点的电位Ue与流 过的工频或直流电流Ⅰe的比值。 它是大地电阻效应的总和,包 括:接地引线、接地体、接地 体与土壤间的过渡、大地的溢 流电阻,前三项阻值较小,可 忽略。对防雷接地,关心的是 冲击接地电阻,即流过冲击大 电流时的接地电阻。
防雷接地
1. 带间隙阀式避雷器 (1)结构 • 火花间隙F • 工作电阻(阀片电阻)R
三.阀式避雷器
(2)主要特性参数 • 额定电压:指正常运行时作用在避雷器上的工频工作电压,
也就是使用该避雷器的电网额定电压。 • 冲器击,放指电的电是压在[标U准b(i雷)]:电对波额下定的电放压电为电2压20(幅kV值及)以的下上的限避。雷对
避雷器
4.有间隙避雷器的基本要求
(1)过电压作用时,避雷器先于被保护电力设备放电,这 需要由两者的伏秒特性的配合来保证;
(2)避雷器应具有一定的熄弧能力,以便可靠地切断在第 一次过零时的工频续流,使系统恢复正常。
(3)过电压下其残压应小于被保护设备冲击绝缘强度。 • 以上所述要求对有间隙的避雷器都是适宜的,这类避雷器
• 通流容量大,能制成重载避雷器,即使是带间隙的MOA 的通流能力也完全不受串联间隙被灼伤的制约,它仅与 MOV本身的通流能力有关。
• 耐污性能好:由于没有串联间隙,因而可避免因瓷套表面 不均匀污染使串联火花间隙放电电压不稳定的问题,即这 种避雷器具有极强的耐污性能,有利于制造耐污型和带电
清洗型避雷器。
2.无间隙氧化锌避雷器
• 无续流、动作负载轻,能重复动作实施保护:MOA的续 流仅为微安级,实际上可认为无续流。所以,在雷电或内 部过电压作用下,只需吸收过电压的能量,而不需吸收续 流能量,因而动作负载轻;再加上MOV的通流容量远大 于SiC阀片,所以MOA具有耐受多重雷击和重复发生的操 作过电压的能力。
高电压技术____课后答案
第二章长线路中的暂态过程1、波阻抗与集中参数电阻有什么不同?答:线路波阻抗Z与数值相等的集中参数电阻相当,但在物理含义上是不同的,电阻要消耗能量,而波阻抗并不消耗能量,它反映了单位时间内导线获得电磁能量的大小。
2、冲击电晕对波过程有什么影响?为什么?答:冲击电晕增大导线有效半径,耦合系数得到增大;冲击电晕增大导线单位长度的对地电容C0,而不影响单位长度导线电感的大小,所以波阻抗减小(自波变,互波不变),波速减小;冲击电晕减小波的陡度、降低波的幅值特性,有利于防雷保护。
而采用分裂导线冲击电晕将减弱。
3、行波传到线路开路的末端时,末端电压如何变化?为什么?答:行波传到线路开路的末端时,即电压波为正的全反射,电流发生负的全反射,使末端的电压升高为入射电压的2倍。
从能量的角度解释,由于末端开路时,末端电流为零,入射波的全部能量转变为电场能量的缘故。
4、行波传到线路末端对地接有匹配电阻时,末端电压如何变化?为什么?答:线路末端接电阻R,且R=Z1时,反射电压为零,折射电压等于入射电压。
表明波到线路末端不发生反射,行波传到末端时全部能量都消耗在电阻R上了,这种情况称为阻抗匹配。
在进行高压测量时,在电缆末端接一匹配电阻,其值等于电缆波阻抗,就可以消除波传到电缆末端时的折、反射情况,从而正确的测量到来波的波形和幅值。
5、使用彼德逊法则的先决条件是什么?答:(1)波沿分布参数的线路射入;(2)波在该节点只有一次折、反射过程。
6、为什么一般采用并联电容、而不是串联电感的方法来降低来波陡度?答:都可以减少过电压波的波前陡度和降低极短过电压波的幅值,但是由于波刚传到电感时发生的正反射会使电感首端电压抬高,危及电感首端绝缘,所以一般采用并联电容、而不是串联电感的方法来降低来波陡度。
但有时也会利用串联电感来改善接前面的避雷器放电特性。
7、波产生损耗的因素:导线电阻引起损耗;导线对地电导引起损耗;大地电阻损耗;导线发生电晕引起损耗。
高电压技术-第七章-雷电及防雷保护装置
雷电流的等值计算波形。
标准冲击波形,斜角平顶波,等值半余弦波前
雷道波阻抗。雷电通道在主放电时如同导体, 具有等值波阻抗。一般取300R
I et et
1 I 1 cost
2
7.2 防雷保护装置
防雷保护装置
防雷保护装置(定义) :能使被保护物体避免雷击, 引雷于自身并顺利泄入大地的装置。
优点:
结构简单、价廉。
缺点:
熄弧能力低,易使断路器跳闸; 与被保护设备伏秒特性不易配合;
不均匀电场,放电分散性大,伏秒特 性陡
动作后有截波,威胁绕组绝缘
不能保护主变和发电机等重要设备 只能用于线路保护和进线段的保护 需其它设备配合使用
带间隙的阀式避雷器——结构
阀型避雷器主要由火花间隙和阀片(非线 性电阻)组成
第七章 雷电及防雷保护装置
主要内容
雷电放电过程
雷电参数
防雷保护装置
重点是:电压能量吸收 器——避雷器
7.1 雷电过程与雷电参数
什么是雷电放电
雷电放电:一种气体放电现象。路径达数千米,是一种超长 间隙的火花放电。
与实验室的长间隙火花放电有某些共同之处。 但又具有重复雷击等特点。
放电的条件:云中电荷密集处的场强达到:25~30kV/cm 放电型式:线状雷电、片状雷电、球状雷电 “云-地”之间的线状放电,是电力系统雷击危害的主因
主放电和迎面流注阶段。当先导放电接地地面时,地面场强 增大,地面突出物将向上形成迎面先导(迎面流注)。上下 先导放电相遇时,进入主放电阶段。
出现强烈的电荷中和过程,伴随雷鸣和闪光。 主放电时间极短,约50~100uS。发展速度50~100m/uS 电流幅值大,达数十千安到数百千安
《高电压技术》参考答案
参考答案第一章电介质的极化、电导和损耗一、单项选择题:1. D2. D3. B二、填空题:1. 增大了2.电子式极化、离子式极化、偶极子式极化、空间电荷极化(夹层式极化)3.在电场作用下极化程度的物理量4.电子式极化、离子式极化5.偶极子式极化、空间电荷极化(夹层式极化)6.大些7.离子性、电子性8.电导强弱程度9.电场强度、温度、杂质10.体积电导、表面电导11.电导损耗、极化损耗12.电导13.δωCtgU214.电导三、简答题1.答:电介质的电导为离子性电导,随着温度的升高,分子的热运动加剧,分子之间的联系减弱,介质中离解出的离子数目增多,所以电导率增大。
而导体的电导是电子性电导,温度升高,分子的热运动加剧,电子在电场作用下定向运动时遇到的阻力增大,所以电导率降低。
2.答:不同。
电介质在直流电压作用下只有电导损耗,而在交流电压作用下除了电导损耗外还有周期性极化引起的极化损耗,所以同样条件下,电介质在交流电压下的损耗大于直流电压下的损耗。
3.答:电介质的电导是离子性电导,而金属导体的电导是电子性电导;电介质的电导率小,导体的电导率大;随温度升高,电介质的电导率增大,导体的电导率减小。
第二章气体电介质的击穿特性一、单项选择题:1.B 2. C 3. A 4. C 5. B 6. D 7. A8. C 9. D 10. A11. D 12. B 13. C 14. C二、填空题:1. 辉光放电、火花放电、电弧放电、电晕放电2.最小3.升高4.空间光游离5.棒—棒6.扩散7.改善电场分布、削弱气隙中的游离过程8.固体介质9.20℃、101.310.低11.增大12.250/250013.空间电荷14.增大三、简答题1.答:(1)因棒极附近场强很高,不论棒的极性如何,当外加电压达到一定值后,此强场区内的气体首先发生游离。
当棒具有正极性时,间隙中出现的电子向棒极运动,进入强电场区,引起碰撞游离,形成电子崩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当雷电入侵波或操作波超过某一电压值后,避雷器将优先于与其并 联的被保护电力设备放电,从而限制了过电压,使与其并联的电力设备 得到保护。
➢ 避雷器的技术要求
(1)过电压作用时,避雷器先于被保护电力设备放电,当然这要由两者 的全伏秒特性的配合来保证; (2)避雷器应具有一定的熄弧能力,以便可靠地切断在第一次过零时的 工频续流。
9.1 雷电放电的发展过程
先导:不连续性(分级先导),历时约 0.005 ~ 0.010 s。每一级 先导发展速度相当高,但每发展到一定长度(平均约 50m)就有 一个 10 ~ 100 μs 的间隔。发展速度约为光速的 1/1000 。
主放电:时间 50 ~ 100 μs, 移动速度为光速的 1/20 ~ 1/2; 主放电时电流可达数千安, 最大可达200 ~ 300kA。
三、阀型避雷器
当过电压达到间隙动作电压,间隙动作,冲击电流经阀 片流入大地;之后,阀片仅受到工频电压作用,由于非线性 关系,阀片电阻值增高,使流过的工频续流受到限制,并在 第一次过零瞬间,由间隙将此续流切断。 注意:避雷器从间隙击穿到工频续流被切断不超过半个周波, 因此电网在整个过程均保持正常供电。
余辉:雷云中剩下的电荷继 续沿主放电通道下移,称为 余辉放电阶段。余辉放电电 流仅数百安,但持续的时间 可达 0.03 ~ 0.15 s。
9.2 雷电参数
➢ 雷电活动强度——雷暴日及雷暴小时
雷暴日:每年中有雷电的天数。 雷暴小时:每年中有雷电的小时数。 年平均雷暴日不超过 15 的地区为少雷区;超过 40 的为多雷区;超
➢ 雷电流的波形
标准波形
斜角平顶波
半余弦波
9.3 避雷针和避雷线
➢ 避雷针(线)的保护原理
当雷云的先导向下发展,高出地面的避雷针(线)顶端形成局部电 场强度集中的空间,以至有可能影响下行先导的发展方向,使其仅对避 雷针(线)放电,从而使得避雷针(线)附近的物体免遭雷击。
➢ 对避雷针(线)的要求
(1)为了使雷电流顺利地泄入大地,故要求避雷针(线)应有良好的接 地装置。 (2)被保护设备全面位于避雷针(线)的保护范围内。但为了防止与被 保护物之间的间隙击穿(也称为反击),它们之间应保持一定的距离。
1—电极;2—灭弧盒; 3—分路电阻;4—灭弧栅; 5—主间隙;6—磁吹线圈; 7—辅助间隙
➢ 普通阀式避雷器(火花间隙、非线性电阻)
单个火花间隙的结构
a.保证间隙中 的电场为均匀 电场,伏秒特 性平缓;b.电 晕可缩短间隙 放电时间
u Cki
多个短间隙串联易 于切断工频续流。 (复合与散热)
多个问隙串联电压分布 不均匀,使避雷器灭弧 能力降低。可使用并联 电阻使电压分布均匀。
阀片的伏安特性
单根避雷针保护范围
双根等高避雷针保护范围
当 hx h / 2 时:rx (h hx ) ph 当 hx h / 2时:rx (1.5h 2hx ) ph
h0 bx
hD 1.5(h0
/7hpxh)
双根不等高避雷针保护范围 单根避雷线保护范围
两平行避雷线保护范围 避雷线保护角
9.4 避雷器
二、管型避雷器
外间隙
1—产气管;2—胶木管套; 3—棒电极;4—环形电极; 5—贮气室;6—动作指示器
内间隙
管式避雷器不但有一个切断电流的下限,而且还有一个 切断电流的上限。其安装点最大与最小短路电流要分别小于 和大于管式避雷器的上、下限。
管式避雷器伏秒特性陡,放电分散性大,动作产生截波, 放电特性受大气条件影响,故它主要用作保护线路弱绝缘, 以及电站的进线保护段。
残压:流过避雷器的冲击电流一定幅值(普通阀式避雷器 为 5kA),一定波形(8/20 μs),在阀片电阻上产生的最 大压降。
保护比:残压与灭弧电压之比,保护比的值越小越好。
➢ 磁吹阀式避雷器
提高避雷器切断工频续流值的方法之一是“磁吹”,即 利用磁场电弧的电动力作用,使电弧拉长或旋转,以提高间 隙灭弧能力。
过 90 的地区及根据运行经验雷害特别严重的地区为强雷区。
➢ 落雷密度
地面落雷密度γ :每一个雷暴日、每平方公里对地面落雷次数 。 电力行业标准DL/T620-1997建议取 γ = 0.07次/平方公里. 雷电日。
➢ 雷电通道波阻抗
雷电通道如同一个导体,雷电流在导体中流动,对电流波呈现一定 的阻抗,该阻抗叫做雷电通道波阻抗 (规程建议取 300 ~ 400Ω)。
➢ 雷电流的极性
国内外实测结果表明,负极性雷占绝大多数,约占 75 ~ 90 %。
➢ 雷电流幅值
雷电流:雷击具有一定参数的物体时,若被击物阻抗为零,流过被击物 的电流规程规定,雷电流是指雷击于的低接地电阻物体时,流过该物体 的电流。
一般地区:
lg p
I
44
少雷区: lg p I Βιβλιοθήκη 8➢ 雷电流的波头、陡度及波长
➢ 避雷器的种类
保护间隙,管式避雷器,阀式避雷器(包括金属氧化物避雷器)
一、保护间隙
保护间隙常用双羊角状间隙, 取其有电弧上吹特性,我国常用于3 ~ 10kV电网中。保护间隙有一定的 限制过电压效果,但不能避免供电 中断。
优点:结构简单、价廉。 缺点:保护效果差,与被保护设备的伏秒特性不易配合; 动作后产生的截波,对变压器匝间绝缘有很大的威胁。因此 它往往与其它防护措施配合使用。
a. 当电流增大时,阀片呈现 低阻值,使避雷器上电压降 低,增加了避雷器的保护效 果。b. 希望在工频电压升高 后流过间隙阀片的续流不超 过规定值,此时阀片呈现的 电阻要有足够的数值。
灭弧电压:对于有间隙避雷器,续流第一次经过零值保证 不重燃的条件下,允许作用在避雷器上的最高工频电压。
切断比:避雷器间隙的工频放电电压(下限)与续流过零 后间隙所能承受的最大工频电压(灭弧电压)之比,其值 越小越好。
波头: 1 ~ 5 μs 范围内变化,多为 2.5 ~ 2.6 μs,规程规定取2.6 μs;
波长: 20 ~ 100 μs ,多数为 50 μs 左右。为简化计算,视为无限长;
陡度:陡度 α 与幅值 I 有线性的关系,即幅值愈大,陡度也愈大。一般 认为陡度超过 50 kA/μs 的雷电流出现的概率已经很小(约为0.04)。