程稼夫电磁学第二版 习题解析

合集下载

电磁学第二版习题答案第六章

电磁学第二版习题答案第六章

电磁学第二版习题答案第六章电磁学第二版习题答案第六章习题在无限长密绕螺线管内放一圆形小线圈,圆平面与螺线管轴线垂直。

小线圈有100 6.2.11 匝,半径为 1cm,螺线管单位长度的匝数为 200cm . 设螺线管的电流在0.05 s 内以匀变化率从 1.5 A 变为 -1.5 A ,(1) 求小线圈的感应的电动势;(2) 在螺线管电流从正直经零值到负值时,小线圈的感应电动势的大小和方向是否改变,为什么,解答:1 2 ,小线圈半径 R, = 10 (1) 螺线管单位长度的匝数 n=200 cm m ,匝数N , , 100 ,若选择电动势的正方向与电流的正方向相同,螺线管内小线圈的感应电动势大小为, , , N , ddt, , N , dBdtS , , , 0 n( R, 2 ) N , dIdt , 4.7 ,10 2V . >0 表明电动势的方向与设定的方向相同。

螺线管电流从正值经零值到负值时,小线圈的感应电动势的大小和方向都不变, (2)因为电流以及磁通量都以相同的变化率作变化。

6.2.2 边长分别为 a=0.2 m 和 b=0.1 m 的两个正方形按附图所示的方式结成一个回路,单2 , 位的电阻为 5 , 10 10 .回路置于按 B , Bm sin ,t 规律变化的均匀磁场中, mBm , 10 2 T,, , 100 s 1 。

磁场 B 与回路所在平面垂直。

求回路中感应电流的最大值。

解答:在任一瞬时,两个正方形电路中的电动势的方向相反,故电路的总电动势的绝对值为d ,大 d ,小 dB 2 , , , a , b2 , , , a 2 b2 ,, Bm cos ,t , , m cos ,t dt dt dt2 , ,故回路电阻为因回路单位长度的电阻, , 5 ,10 mR , , , 4 , a , b, , 6 ,10 2 ,回路中感应电流的最大值为I m , R, m , 0.5 A6.2.3 半径分别为 R 和 r 的两个圆形线圈同轴放置,相距为 x (见附图)。

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。

电磁学第二版习题答案

电磁学第二版习题答案

电磁学-第二版-习题答案第二版《电磁学》的习题答案:1. 第一章:电荷和电场习题1:假设有两个电荷,一个带正电量Q1,另一个带负电量Q2,在他们之间的距离为r1。

如果将Q1的电荷减小到原来的一半,同时将Q2的电荷加倍,并将它们之间的距离改为r2,那么这两个电荷之间的相互作用力是怎样改变的?解答:根据库伦定律,两个电荷之间的相互作用力正比于它们的电荷量乘积,反比于它们之间的距离的平方。

即F∝(Q1Q2)/r^2。

根据题目,Q1变为原来的一半,Q2变为原来的两倍,r由r1变为r2。

代入上述关系式,可得新的相互作用力F'为:F'∝((Q1/2)*(Q2*2))/(r2^2)。

化简上式,可得F'∝(Q1Q2)/(r2^2)。

由上式可知,新的相互作用力与原来相互作用力相等。

即新旧相互作用力大小相同。

习题2:有一组平行板电容器,两板之间的距离为d,电容的电极面积为A。

当电容器充满理想电介质时,电容器的电容是原来的多少倍?解答:当电容器充满理想电介质时,电容的电容量由电容公式C=εA/d得到。

其中,ε为电介质的相对介电常数。

而当电容器未充满电介质时,电容的电容量为C0=ε0A/d。

其中,ε0为真空的介电常数。

所以,电容器充满电介质时,电容与未充满时的电容C0比较,即C/C0=ε/ε0。

所以,电容器电容是原来的ε/ε0倍。

2. 第二章:电荷的连续分布习题1:在距离线段中点为R的的P点,取出一个长度为l的小线段,小线段的位置如何改变时,该小线段对P点电势的贡献较大?解答:根据电场电势公式,P点电势由该小线段的电荷贡献决定。

即V=k(q/R),其中k为电场常量,q为该小线段的电荷量,R为该小线段到P点的距离。

所以,小线段对P点电势的贡献较大的情况是,当该小线段长度l较大且该小线段离P点的距离R较小的时候,即小线段越靠近P点且长度越大,对P点电势的贡献越大。

习题2:线电荷的线密度为λ,长度为L,P点到线电荷的距离为d。

电磁学第二版习题答案第四章

电磁学第二版习题答案第四章

j
δ
=
ρ I 3.14 ×10−8 × 20 = = 0.2 V 2 −3 2 m πR 3.14 × (10 )
4.3.5 铜的电阻温度系数为 4.3 ×10−3 / 0C ,在 0 0C 时的电阻率为 1.6 ×10−8 Ω ⋅ m ,求直径为 5mm、长 为 160km 的铜制电话线在 25 0C 时的电阻。
b a
ρ dx ρ 1 1 ρ (b − a) = ( − )= 2 4π r 4π a b 4π ab
ρ dx 4π r 2
4.3.4 直径为 2mm 的导线由电阻率为 3.14 ×10−8 Ω ⋅ m 的材料制成,当 20A 的电流均匀地流过该导 体时,求导体内部的场强。
解:根据 j = δ E ,得 E =
lρ ⎡ 1 1 ⎤ lρ − = π (b − a) ⎢ ⎣a b⎥ ⎦ π ab lρ l =ρ 2 s πa
当 a = b 时: R =
4.3.3 球形电容器内外半径为 a 和 b,两极板间充满电阻率为 ρ 的均匀物质,试计算该电容器的漏 电电阻。 解:对漏电电阻,其内部电极电位差,电流沿径向从高电位向低电位流过,则有: dR = 积分得: R = ∫ dR = ∫
(a) Rab = 1K Ω , (b) Rab = 4.5Ω (c) Rab = 1.2Ω (d) Rab = 7.4Ω (e) Rab = 5Ω (f) Rab = 1.5Ω (g) Rab = 14Ω
4.2.3 当附图中的 R1 为何值时 A、B 间的总电阻恰等于 R0? 解:由 R总 = R1 +
U = 0.01× 103 = 10(V ) , U 额 = RW =
2 P 100 = 0.01 × 100 = 0.01(W )

电磁学第二版习题答案第六章

电磁学第二版习题答案第六章

电磁学第二版习题答案第六章习题在无限长密绕螺线管内放一圆形小线圈,圆平面与螺线管轴线垂直。

小线圈有100 6.2.11 匝,半径为1cm ,螺线管单位长度的匝数为200cm . 设螺线管的电流在0.05 s 内以匀变化率从 1.5 A 变为-1.5 A(1) 求小线圈的感应的电动势;(2) 在螺线管电流从正直经零值到负值时,小线圈的感应电动势的大小和方向是否改变, 为什么,解答:1 2 , 小线圈半径R, = 10 (1) 螺线管单位长度的匝数n=200 cm m , 匝数N , , 100 ,若选择电动势的正方向与电流的正方向相同,螺线管内小线圈的感应电动势大小为, , , N , ddt, , N , dBdtS , , , 0 n( R, 2 ) N , dIdt , 4.7 ,10 2V .>0表明电动势的方向与设定的方向相同。

螺线管电流从正值经零值到负值时,小线圈的感应电动势的大小和方向都不变,(2)因为电流以及磁通量都以相同的变化率作变化。

6.2.2 边长分别为a=0.2 m 和b=0.1 m 的两个正方形按附图所示的方式结成一个回路,单2 , 位的电阻为 5 , 10 10 . 回路置于按 B , Bm sin , t 规律变化的均匀磁 场中, mBm , 10 2 T , , , 100 s 1 。

磁场 B 与回路所在平面垂直。

求回路中感应 电流的最大值。

解答:在任一瞬时,两个正方形电路中的电动势的方向相反,故电路的总电动势的绝对值,故回路电阻为 因回路单位长度的电阻 , , 5 ,10 ma ,b , , 6 ,10 2 ,回路中感应电流的最大值为I m , R, m , 0.5 A已知 r x (设 x 以匀速 v , 而大线圈在校线圈内产生的磁场可视为均匀时间 t dt而变.(1) 把小线圈的磁通 , 表为 x 的函数, 表为 x 的函数 (2) 把小线圈的感应电动势 (绝对值 )(3) 若 v , 0 , 确定小线圈内感应电流的方向 .解答:cos大 d , 小 dB 2 , , , a, b2 , , , a 2 b2 Bm cos ,t , , m t dt dt dt6.2.3 半径分别为 R 和 r 的两个圆形线圈同轴放置,相距为 x (见附图)。

程稼夫电磁学第二版第三章习题解析

程稼夫电磁学第二版第三章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.非习题部分:P314 积分中运用了近似,这里给出非近似解答:3-2先计算圆环上的电流3-又垂直于磁场方向粒子做圆周运动得当运动了时,电子一定会回到轴上.即若,则聚焦到了屏上.解得.3-4考虑出射角度为θ为粒子,其运动在垂直于磁场平面内的投影为一个过原点的圆.设半径为r,1)2)对应的立体角为比值为——前辈大神云:当年我没事练习积分的时候发现,找一个球面,沿垂直于一固定方向的平面切两刀,则无论如何切,两刀间的面积总是仅与两刀间的距离呈正比。

(具体证明请在X3-5(1得(2)沿TM方向不受力,速度分量恒为;垂直于磁场方向的平面上,粒子的投影是匀速圆周运动.动力学方程:解得欲经过M点,须在时,圆周运动回到了圆周运动的起点,即周运动抵达原点.由此设计,并考虑方向,可得答案:3-8当摆角为θ时,设摆的速度v,(1解得.(2)若,便不能达到,这时只需考虑最低点,因为那里最接近二次函数的极值点:解得前面的条件要求,故,解得.即时,在最低点恰好T=0,而时不会出现情况2)综上所述(2)出发后时,粒子第一次经过x轴代入解得.(3),为整数个周期,即粒子回到x轴此时即粒子回到原点.粒子运动中占据的空间为一圆柱,轴线长即x坐标最大值:半径即粒子匀速圆周运动的半径:体积为.3-10因为E垂直于平面而质子轨迹在平面内,所以质子的动能守恒.. 3-11如图,速度方向、电场方向和磁场方向两两垂直,洛伦兹力与电场力平衡得取一小段时间,这期间冲到靶上的粒子的电量为.这些粒子的质量为.由动量定理其中F是质子束受到的力.作用在靶上的力是它的反作用力.3-12(1)在垂直于磁场方向粒子做匀速圆周运动,动力学方程时,3-取,记,有可见是以为角速度的匀速圆周运动的速度.,解得,故有积分得到(3)粒子速度为零,即,由此解得,相(4x投影3-14设粒子距离磁极r,轨道半径为R,回旋角速度为ω.粒子受力如图,其中动力学方程可由力三角表示,以为直角边的三角形,斜边为解得,故有.3-15设圆运动半径为R3-16法一:建立空间直角坐标系如图.取,记,有可见是以为角速度的匀速圆周运动的速度.知圆运动这部分的半径,且与y轴相切,由几何关系临界是当..(2)根据运动的独立性,首先只考虑匀速圆周运动由速度合成可得.3-18撤去重力场,以等效的电场代之.动力学方程:取,记,有,记,有可见是以为角速度的匀速圆周运动的速度.由初始条件,知线速度速度最大时圆运动的速度与漂移速度同向,第二阶段的速度最大值为综上,整个过程最大速度.3-20方法一:记这一段导管长为l,它受到安培力为,于是两壁压差为3-由于把3-竖直方向只有重力作用,是上抛运动水平方向,得,有所以由二次函数性质,在时有最小值3-23设横向电场E2,纵向电场E1.由横向电场力与洛伦兹力平衡:于是有.3-24(1)由动力学方程:得到,又回旋加速器中粒子作圆周运动的周期即为电场的周期解得(2).3-25(2)能够射出的电子,其轨迹圆心都在S的右半边.由于电子顺时针回旋,电子总是轨迹圆与MN 从较为靠上的交点射出.对于圆心在右下时,射出点在相切时最靠下.由几何关系对于圆心在右上时,射出点与S对径时最靠上.由几何关系所以(3)轨迹圆心在S右边的电子初速度方向是向上和斜向上的所有方向.故占. 3-26数据不足无法得到答案,这里提供解法:(1)初速度设为,由,解得3-28题设A的量纲明显不对,强行忽略就好了.动力学方程取,记,有可见是以为角速度的匀速圆周运动的速度.因为z方向无外力,故粒子会留在平面内,因为,所以圆周运动那部,依分离实部虚部得:电子在z方向的运动,由一个沿z方向的匀速直线运动和另一个同样沿z方向的谐振动叠加;电子运动在平面内的投影是一条旋轮线.。

电磁学答案第二版习题答案第五章

电磁学答案第二版习题答案第五章

B=
解: (1) (2)
l u0 nI 2 (2 × − 1) 2 2 l + 122 4
l总 = 2nlπ R
5.2.10 附图中的A、C是由均匀材料支撑的铁环的两点,两根直载流导线A、C沿半径方向伸出,电流 方向如图所示,求环心O处的磁场B。 解:∵
B10 = B40 = 0 ,
6
5.3.3 电子在垂直于均匀磁场B的平面内作半径为1.2cm,速率为 10 m/s的圆周运动(磁场对它的洛伦 兹力充当向心力, )求B对此圆轨道提供的磁同通量。 解:∵
Φ m = Bπ R 2 ,而B由R=mv/qB Φm = mvπ R q

5.4.1 ‐同轴电缆由一导体圆柱和同一轴导体圆筒构成,使用时电流I从一导体流去,从另一导体流回, 电流都是均匀地分布在横截面上,设圆柱的半径为R1,圆筒的半径分别为R2和R3(见附图) ,以r代表 场点到轴线的距离,求r从O到无穷远的范围内的磁场(大小)B。

B = ∫ dB =
u0 N u NI cos 2 θ dθ = 0 ∫ πR 4R
5.2.16 有一电介质薄圆盘,其表面均匀带电,总电荷为Q,盘半径为a,圆盘绕垂直于盘面并通过圆 心的轴转动,每秒n转,求盘心处的磁场(大小)B。 解:与半径不同的一系列圆心载流3圆等效,
B=
∵ 圆电流圆心处
l
B=
u0 ΔI 2π R , B= u0 h πR
∵ ΔI = 2 h ∴
5.2.13 将上题的导体管沿轴向割去一半(横截面为半圆) ,令所余的半个沿轴向均匀地流过电流I,求 轴线上的磁场(大小)B。
dB =
解:∵
u0 dI 2π R , dI = I Rdα πR

电磁学第二版习题答案2

电磁学第二版习题答案2

电磁学第二版习题答案2电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .............................................................. 2 第二章 ............................................................ 18 第三章 ............................................................ 27 第四章 ............................................................ 36 第五章 ............................................................ 40 第六章 ............................................................ 48 第七章 (54)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。

在两者距离一定的前提下,它们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为2()q Q q =-,两者距离为r ,则由库仑定律求得两个点电荷之间的作用力为20()4q Q q F r πε-=令力F 对电荷量q 的一队导数为零,即20()04dF Q q qdq rπε--== 得122Q q q ==即取 122Qq q ==时力F 为极值,而 22202204Q q d F dq rπε==<故当122Qq q ==时,F 取最大值。

1.2.3 两个相距为L 的点电荷所带电荷量分别为2q 和q ,将第三个点电荷放在何处时,它所受的合力为零?解答:要求第三个电荷Q 所受的合力为零,只可能放在两个电荷的连线中间,设它与电荷q 的距离为了x ,如图1.2.3所示。

程稼夫电磁学答案全解

程稼夫电磁学答案全解
电容比喽~ 45 首先,两次大导体的电势都不为正,故正电荷发出的全部电场线都被小球吸收,于是
Q1、Q2 ≤ Q
然后由于小球电势为负(易证),有从小球发出的电场线到达无穷远,故去掉等号。
用a图减去b图,然后就是左边一个不带电导体,右边一个大导体右边带负电,如果左边带正
电,很明显在没有外界净电荷干扰的情况下正负电荷会抵消于是左边应带负电即 Q1 < Q2
r − cos θx
r
(小量约化有关事宜请自己练习……)
然后把高阶小量x2拿走,化简化简答案就出来了
剩下的也用这方法搞搞就行了
8 方法同题 4 9 可以用极限法——如果向右移动很长距离,那么正负电荷离 q 的距离近似相等,那么合力 应该向左。于是乎,稳定平衡。图像程书的很详细嘛
10 嗯……大家都懂的 11 由对称性可知答案为 0
的电势好研究。) (2)它带电量为 0,那么对自身电势无贡献,只考虑环对它电势的影响即可 (3)…… (4)作用力的该变量相当于环对均匀分布在球表的多出来的电荷的作用力 (5)大家懂的 36 质子刚好不能到达时,速度与切线平行,根据角动量守恒和能量守恒得答案 37 证明切向是简谐振动,然后求出半周期乘以速度即可
(以上方法可行的原理在程书静电场唯一性定理的证明部分,大家自己读哈)
程书电磁学答案
主编:
血色の寂宁
小编:
lx10525 没有“等等”
编者的话:本人是freshman,故时间精力有限,还有能力有限……故步骤缺失与不
准确再所难免,请大家原谅。另感谢徒弟
第一章
1F
=
kQ 2
=
k(0.01ne) 2
=
k(0.01 m M
2
qN Ae)

电磁学第二版习题答案第七章

电磁学第二版习题答案第七章

R1 < r < R2 : H ⋅ 2π r = I H = B = μ 2 H = 2

L
H ⋅ dl = ∑ I i
过所求点以 r 为半径作同心圆为闭合电路 L r < R1 : H ⋅ 2π r =
I Ir μ Ir ⋅ π r 2 , H = , B = μ1 H = 1 2 2 2 π R1 2π R1 2π R1
B = μ0 μ r1 H =
μ0 μr ( R32 − r 2 ) I 2 2π r ( R32 − R2 )
1
r > R3 : H ⋅ 2π r = I − I H = 0 B = 0 7.1.6 解:磁介质由于磁化在界面上出现面磁化电流,它们相当于两个无限大的均匀截流面由。 对称性分析可知:在平板内存在一个平行于导体板侧面且 B = 0 的平面在该平面的两侧 B 方向相 反。
第七章 习题
7.1.1 半径为 R 的均匀磁化介质球的磁化强度 M 与 z 轴平行,用球坐标写出球面上磁化电流面密度的 表达式,并求出其总磁矩 解:
α′ = M × n
即 α ′ = Mk × r = M sin θ eϕ 又∵ M = 7.1.2
2 1 1 2 1 2
H 2 = γ E (b −
B2 = μ0γ E
7.1.6
μr b μr b )=γE μr + μr μr + μr
2 1 1 2 1 2 1 2
μr μr b μr + μr
1 2
解: (1)

L
H ⋅dl = ∑ I i Ir μ Ir I B = μ1 H = 1 2 ⋅π r 2 H = 2 2 2π R1 2π R1 π R1

电磁学第二版答案 (3)

电磁学第二版答案 (3)

电磁学第二版答案第一章:电磁场的基本概念和电场定律1.问题:什么是电磁场?电磁场与电荷的关系是什么?答案:电磁场是由电荷产生的一种物质性质,可以通过施加力量或引力相互作用的方式来描述。

电磁场与电荷之间通过电场和磁场来相互作用。

电荷产生的电场是电力线从正电荷指向负电荷的线,而磁场则是呈环状绕着电流或磁体产生的。

2.问题:什么是库仑定律?请描述其数学形式。

答案:库仑定律是描述电荷之间相互作用力的定律。

其数学形式可以表示为:$F = k \\frac{Q_1Q_2}{r^2}$其中,F表示电荷之间的力,Q1和Q2分别表示两个电荷,r表示两个电荷之间的距离,k为库仑常数。

3.问题:什么是电场强度?电场强度的计算公式是什么?答案:电场强度表示单位正电荷在某点上受到的力,是描述电场场强性质的物理量。

其计算公式可以表示为:$E = \\frac{F}{q}$其中,E表示电场强度,F表示力,q表示测试电荷。

4.问题:什么是高斯定律?请描述其数学形式。

答案:高斯定律描述了电场与电荷之间的关系。

其数学形式可以表示为:$\\phi_E = \\frac{Q}{\\varepsilon_0}$其中,$\\phi_E$表示电场的通量,Q表示电荷量,$\\varepsilon_0$为真空介电常数。

第二章:静电场1.问题:什么是电势能?请描述其计算公式。

答案:电势能是指电荷在电场中的位置所具有的能量。

其计算公式为:PE=qV其中,PE表示电势能,q表示电荷量,V表示电势。

2.问题:什么是电势?请描述其计算公式。

答案:电势是描述电场中某一点电能状态的物理量。

其计算公式为:$V = \\frac{U}{q}$其中,V表示电势,U表示电势能,q表示电荷量。

3.问题:什么是电容器?请描述电容器的分类。

答案:电容器是储存电荷的装置,由两个导体之间的绝缘介质(电介质)隔开。

电容器根据结构和工作方式的不同,可以分为电容电器和分布式电容器两种类型。

程稼夫电磁学第二版第二章习题解析

程稼夫电磁学第二版第二章习题解析

程稼夫电磁学篇第二章《恒定电流》因此两球间介质间的电阻:.法二:设总电流为,两球心间距,一球直径对另一球球心的张角利用电流的叠加原理,用张角为的这部分电流计算电势差:后同法一2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.电阻R热平衡:,解得.(2),即在图中作出该直线,交伏安特性曲线于.即.2-5(1)消耗的功率,不变,而随减小而增大,因而时,最大,消耗的功率最大.(2)电路中电流,消耗的功率根据均值不等式得,时,消耗的功率最大.2-6(1)电压按电阻分配.合上开关前,上电压为两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为炉丝上电流由干路均分,所以故,几乎相等.2-8题意应是恰好不能烧开,即100℃时达到热平衡,断电后只下降1℃,可以认为散热功率是不变的:,其中水的比热容为2-9(1)周期,A位置时热平衡:,其中加热时间B位置时热平衡:,其中加热时间两式相除,解得(2)连续加热时热平衡:,解得.2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.电压最小时,,解得.2-12保险丝要保证熔断电流是一定的.在一定的融化温度下,辐射功率P与辐射体表面积S成正比.电流一定时,电功率Q与R成正比.解得,与无关.2-13绝缘层损坏使得相邻的两圈电阻丝接触,相当于损坏处产生的接触电阻与一圈漆包线并联之后,再与剩余九圈漆包线串联.一圈电阻为设绝缘层损坏处产生电阻为,则解得.2-14(1)作直线交A于,交B于故.(2).即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.2-16(1)设流过的电流为,上流过的电流为.所以,故.此时.(2),取最小值(此时)代入得.2-17设流过灯泡电流为,.设图中三个定值电阻从左至右分别为K闭合时,R3与R并联,流过R2的电流于是可列出:K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:.2-20设通过电源1的逆时针电流为,通过电源2顺时针电流为于是在电源1与R1构成的回路可列出:在电源2与R1R2构成的回路中,可列出:代入数据可解得,通过R1的电流为1A,通过R2的电流为0.5A.设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:代入数据,联立可解得:.2-23设R1上电流为,R2上电流为由并联得又由节点电流方程知:,联立解得:.又因为,所以可得即CD上电流大小为1.0A,方向由C流向D.2-24将R替换为导线,用叠加原理计算短路电流等效内阻,等效电源.将R替换为导线,用叠加原理计算短路电流.等效内阻,等效电源.2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:令,电源最少,要使最小代入得是关于x的一元二次方程,该方程要有实数解:将n带回原方程即可解得答案同法一答:至少需要120个电池.此时有20组电池组串联,每组内有6个电池并联.2-26首先,B与B’为同一节点,思考时可视为一点,由(2)可知电路对称,此时容易联想到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:,所以.2-29由分析知,安培表读数由两部分组成.第一部分,R2回路;第二部分,流过R1电流,于是流过R3R3(电流表)的电流:.所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:2-31(1)(2)设流经V1的电流为,流经V2的电流为,则流经V3从左到右的电流为则有2-32设电压表电阻为,电流表电阻为由并联两表电压相等可知由节点方程可知流经并联两表中电压表的电流欧姆定律:得.2-33由每个量程达到满偏时通过电流计的电流相同得:解得:.如用A修复,则在用1mA量程测量1mA电流时流过A的电流为0.195mA<0.2mA.若再串联一个电阻,则分到的电流更少.若并联,则由两个电阻并联变成三个电阻并联,A 在总电流中分到的电流依然会更少.综上:排除A 而B在此时分到的电流为0.57mA>0.5 mA故可以考虑并联一个17 欧的电阻或者串联一个40 欧的电阻。

电磁学第二版习题答案第三章

电磁学第二版习题答案第三章

(1)求外电场作用于偶极子上的最大力矩; (2)把偶极距从不受力矩的方向转到受最大力矩的方向,求在此过程中外电场 5 力所做的功。
解:(1)T = p ⋅ E ,T = P ⋅ E sinθ
当θ = π 时,取最大,T = P ⋅ E = 1.0×10−6 × 2.0×105 = 2×10−3 NM 2
解:由σ1s1 + σ 2s2 = Q …………………..(1)
即: σ ′ nˆ = − σ 0 + σ ′ nˆ
ε0x
ε0
σ0
=
−σ ′(1 x
+ 1)
解法二:用ξ 与 D 的知识,σ ′ = (P介 − P金 ) ⋅ nˆ介 = − p

p=
xε0E =
xε 0
D ε0ε r
=xD εr
=
xσ0 εr

σ0
=

σ ′εr x
= − σ ′(1+ x) x
当 x = εr −1
=
−q2 E−
+
q1E+
=
2q2 p1
4πε
0
(r
+
l2 2
)3

2q2 p1
4πε
0
(r

l2 2
)3


=
2q2 p1 4πε 0 r 3
⎢1
⎢ ⎢ (1+
l2
)3

1 (1− l2
)3
⎥ ⎥ ⎥
⎣ 2r
2r ⎦
将上式方括号内按马克劳林级数展开取前两项: f (l2 ) = f (0) + f ′(o)l2

电磁学第二版课后习题答案

电磁学第二版课后习题答案

电磁学第二版课后习题答案电磁学是物理学中的重要分支,研究电荷和电流的相互作用以及电磁场的产生和传播。

对于学习电磁学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将对《电磁学第二版》课后习题进行一些解答和讨论,帮助读者更好地理解电磁学的概念和应用。

第一章:电荷和电场1. 问题:两个等量的正电荷之间的相互作用力是多少?答案:根据库仑定律,两个等量的正电荷之间的相互作用力等于它们之间的电荷量的平方乘以一个常数k,即F = kq1q2/r^2。

2. 问题:电场是什么?如何计算电场强度?答案:电场是指电荷周围的一种物理量,它描述了电荷对其他电荷的作用力。

电场强度E可以通过电场力F除以测试电荷q得到,即E = F/q。

第二章:静电场1. 问题:什么是电势能?如何计算电势能?答案:电势能是指电荷在电场中由于位置变化而具有的能量。

电势能可以通过电荷q乘以电势差V得到,即U = qV。

2. 问题:什么是电势差?如何计算电势差?答案:电势差是指单位正电荷从一个点移动到另一个点时所做的功。

电势差可以通过电场力F乘以移动距离d得到,即V = Fd。

第三章:电流和电阻1. 问题:什么是电流?如何计算电流?答案:电流是指单位时间内通过导体横截面的电荷量。

电流可以通过电荷量Q除以时间t得到,即I = Q/t。

2. 问题:什么是电阻?如何计算电阻?答案:电阻是指导体中电流流动受到的阻碍程度。

电阻可以通过电压V除以电流I得到,即R = V/I。

第四章:电路和电源1. 问题:什么是电路?如何计算电路中的电流和电压?答案:电路是指由电源、导线和电器元件组成的路径,用于电流的传输和电能的转换。

电路中的电流可以通过欧姆定律计算,即I = V/R,其中V为电压,R 为电阻。

2. 问题:什么是直流电源?什么是交流电源?答案:直流电源是指电流方向保持不变的电源,如电池。

交流电源是指电流方向周期性变化的电源,如交流发电机。

通过以上的解答和讨论,我们对电磁学的基本概念和计算方法有了更深入的了解。

程稼夫电磁学第二版 习题解析

程稼夫电磁学第二版 习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.4-1动生电动势,电路中的电流要使功率最大,应取最小值1,即.4-2原题图片和答案结果不符,现分两种情况:(1)按答案来:整体绕过o点且于磁感应强度平行的轴转动将运动分解为绕c的平动和转动,转动对电势差无贡献4-3(1)OP电势相等时,OP速度沿磁场方向,显然当OP位于YOZ平面时,OP电势相等(2)当OP在YOZ平面右侧即X>0时,电势差(3)当OP在XOZ平面第一象限时,电势差最大4-4在任意时刻t,线圈中的电流为,则由电磁感应定律和欧姆定律得,该式也可以由能量得到4-5其中后一项式中与直杆平行,当与直杆方向垂直时,电动势绝对值最大故有.4-6对于回路有,故有力矩平衡故有.4-7(1)当转轮在磁场中旋转时,每一根轮辐上的感应电动势为四根辐条作为电源是并联的,轮子产生的感应电动势不变(2)根据戴维宁定理,将轮子作为电源,此时将外电路断路计算等效电动势. 4-8式中当转轮1和转轮2分别以ω1和ω2旋转并达到稳定时,闭合回路中感应电流为注意,因转轮1的四根轮辐并联,总电阻为;转轮2类似,其余连接导线、电刷、轮边缘的电阻均忽略不计.又,因转轮1和转轮2同方向旋转,ε1和ε2同方向,但在电路中的作用是彼此减弱的稳定转动时,转轮2所受磁力矩应与阻力矩抵消.磁力矩是四轮辐所受安培力产生的力矩,为式中是转轮2每根轮辐中的电流.阻力矩是阻力闸提供的力矩,因阻力恒为F,故有稳定将要向下滑动时安培力加滑动摩擦力等于重力分力解得可变电阻最大值匀速向上滑动时,电路中同时杆受力平衡,有联立解得.4-11注意题文描述中磁场竖直向上而所给图垂直于轨道平面,此处以文字为正.(1)下滑时,动生电动势与电源同向,故当加速下滑时,电流增大,V2读数增大,V1减小.(2)由牛顿第二定律及欧姆定律得:4-4-4-内电阻阻值负载电阻与内阻相等时,负载上功率最大.4-15平板的宽度d切割磁感线产生感应电动势,积累电荷产生电场,使自由电荷磁场力和4-16由受力平衡,;由力矩平衡,解得.4-17由于圆盘有厚度D,故当圆盘在磁场区域内竖直下落的速度为v时,在圆盘的厚度方向分离变量:两边积分:又初态,代入得:最大焦耳热:4-23(1)如图所示,当小球在管中任意位置x时,设该处的涡旋电场为E,则故式中r是小球在x位置时与O′的距离,式中的负号表示E的方向如图所示,即E与B的变化构成左手螺旋.因此,E的x分量为其中用到几何关系表示沿y轴正方向.小球所受洛仑兹力沿y方向,无x分量,为可见,即洛仑兹力沿y轴负方向小球在y方向还受管的支持力,因三力平衡,故管对小球的支持力为,于是,小球对管的作用力为.4-24法一:cd法二:记圆心为O,连接,.封闭回路中,与段无感生电动势,则.4-25由图中磁场方向及均匀减小,可知圆周上感应电动势方向为顺时针,大小为已知,联立解出故A、B两点电势差.4-26磁场变化产生感应电动势(负号代表逆时针方向)圆环电阻阻值,感应电流电功率.4-27回路以逆时针指向纸外为正,则磁通ab上解得做功.4-29K反向时,励磁电流反向,磁场反向,磁通量变化量大小为原来的两倍,方向相反.4-32根据自感定义,单匝线圈磁通为.4-36设原线圈电路电流为,副线圈电路电流为,由理想变压器性质由题整理得要求灯正常发光,所以算出额定电流,然后能得到每个回路上的电流.4-38(1)如图,由输入等效电路原理(2)原线圈上的电压;副线圈上的电压(3)变压比为.4-39(1)由题,安培力等于阻力(2)代入,(3)单位时间克服阻力做功单位时间电路中消耗代入得(2)当C2断路时,没有感应电流,C1中无互感电动势此时C2中只有互感电动势,a′、b′两端的电压为.。

程稼夫电磁学第二版第二章习题解析

程稼夫电磁学第二版第二章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.2-2变阻器在A位置时,焦耳热:,其中.变阻器在中间时,焦耳热:.代入题中数据,可得.2-32-4(1)即,在图中作出该直线,交伏安特性曲线于.两端电压.(2)电源功率之比就等于干路电流之比,即总电阻之反比,设总电阻分别为,则.2-7未烧断前总电阻,烧断后,故干路电流之比为22AB2-10注意电阻温度系数的基准是0℃,得.负载时,负载时,联立解得:.2-11题设是默认加热间断时间相等的,设为.即110V为A、B串联时的工作电压的等差中项作伏安特性曲线关于直线的对称图像,分别交另一曲线于和.得.2-15(1)电容器极板带电量,极板间电流保持为电势差为0时,极板不带电,所以.(2)最大动能的电子到达上极板时动能全部转化为电势能所以,得.K断开时,R与R1串联,该支路总电压该支路与R2并联,为R2两端电压,又R2,R3串联,R3两端电压为可以列出:两式联立,代入数据可解得:.2-18(1)由基尔霍夫方程知:.(2)沿n个电源这一路计算:2-22注意看题,不要啥都不想直接Y-△变换了设从1向O流的电流为,从2向O流的电流为,则从O向3流的电流为则可由三点的电势得到:2-即2-将等效内阻,等效电源. 2-25设有x组电池组串联,每组内有y个电池并联.法一:电源最大输出功率,电池个数.要使电源达到最大输出功率,则必有内阻与负载相等:解得法二:回路内满足:到的是Y-△变换的Y型电路(b),设出电阻即可求解,然后用Y-△变换得到△型电路(a).2-27上式联立解得.2-28(i)由知122’1’回路为电路干路而无支路,该干路总电阻;1 2与1’2’间若有电阻,则应被导线短路.(ii)由知1 2与1’2’间确有电阻,设为;由于要求电路最简,不妨设12间仅有一个电阻;故此情况中两电阻并联:代入数据得:,带回各条件检查,满足.故电路图如下:所以安培表示数.2-30题意即5两端接电源.电压表示数是由其上电流决定的,所以可以把电压表全看成电阻,求其上电流比例.由分析,电路可简化为如下图:由节点方程可知流经并联两表中电压表的电流欧姆定律:得. 2-33由每个量程达到满偏时通过电流计的电流相同得:,干路电流为,而B,C间的电流为,即100kΩ电阻和电压表各分得干路电流的一半,可知电压表内阻也为100kΩ.在图(b)中,200kΩ电阻与电压表并联后的电阻为,电压表读数为A、B间所分的电压为.由本题推广,可以证明,电压表接入串联电路测得的数值与所测部分电阻成正比,此性质与电压表内阻无关.2-36首先说明,若测量过程中测得某两点间电阻为1Ω,由对称性及电阻串并联等效可以判断:特异电阻被短路,连接在另外两端点间.2-38等效电路图如下:其中,由电桥平衡条件,有,解得.2-39第一次实验,B端电压为40V,即电阻R分压40V,则左段电缆电阻为第二次实验,A端电压为40V,即电阻R分压40V,则右段电缆电阻为左右电缆的电阻之比为:由于电缆的电阻与长度成正比,可知左段电缆长度为由此得:2-41,解得,解得;对于上述两支路的交点A,列节点方程:;由欧姆定律,图中B点的电势为:.显然U1与U3所在支路的电流为0;由于电容所在支路电流为0,由节点方程,图中B与C之间的支路上电流为;对图中红圈内的部分列节点方程(以向下为正方向):.2-42设该平行板电容器极板面积为S,极板间距为d,漏电流为I.由平行板电容器的电容公式,得玻璃的电阻为.由高斯2-44首先明确,无论短接哪个电阻,总电阻一定变小将五个电阻分两类,一类是四周的4 个电阻臂,一类是中间的100Ω桥上电阻.短接桥上电阻,总电阻变为203Ω;短接一支电阻臂,以500Ω的为例:两个100Ω的并联后与200Ω的串联再与300Ω的并联.可以看出300Ω的在这里与其他所有电阻并联,而并联电路中的总电阻不超过最小的电阻,故让100Ω与其他电阻并联可以使变化最大.2-45等效电阻整理得,故或.2-46本题为无穷网络等效电阻题.先分析对称性:电路呈轴对称,可将图中各个处于对称轴上的中点断开,于是电路转化为:转化为:再将A,B两点左侧网络“翻折”至右侧:单电路:,即两导线间电压为零.2-51本题为无穷网络等效电阻题,解题关键在于网络的自相似性.记A点左侧无穷网络等效电阻为R1.分析电路可知:故只需求出R1.分析R1结构可知:除去三个电阻r后剩余部分仍为一无穷网络R1:2-52(1)本题中的三角形电阻网络具有高度对称性,可将分割n次后的电阻网络(设其两顶点之间的电阻为;图中未画出分割后电阻网络的全貌;最初的只有三条边的三角形当作分割了0次)等效为如下的Y形网络:其中每个电阻的大小均为则下一次分割所得的电阻网络可以等效为三个上图所示的网络相连接而成(每个电阻变为一半),如下图所示:其中每个电阻大小为.这是一个简单的电阻网络,我们可以依据串并联关系计算其两端点间的电阻:(2,解得.2-53本题为等效电容题.(a)图中三电容实为并联;(b)图为中心对称图形,由对称性可知中间的C0等价为断路:整个线路和原来的线路完全一样,线路结构没有改变,各线上电流、各点的电势均无改变.可见,由点2到点n−1这n−2个点是完全等价的.因此,上述n−2个点的电势必然完全相同,从而这些点之间的连线上都没有电流,在考虑本题所问时,这些连线可以全部撤去,于是可得.2-58(1)电阻网络E、G两点间电压可表示为从图中的二极管D的正向伏安曲线中可査得,电压UDI对应的电流I1为25.0mA,此电流就是流过电阻R及由E点流入电阻网络的电流,将数据代入上式得由对称性可得H、A、C、F电势相等,其等效电路如图13-13所示(除两只电阻为外,(2)当引线两端P、Q与电阻网络B、D两点相接时,等效电路仍如图所示,易得通过二极管DD的电流与二极管两端电压有关系代入数据得这是一条联系UD与ID的方程,但是UD与ID又必须满足二极管的伏安特性曲线,在图中绘出上式所述直线,它与曲线的交点的纵坐标即为通过二极管的电流ID,由图中读出由对称性,,,则.2-59本题为图像分析题,同时需要用到“负载功率最大时,路端电压等于电源电动势的一半”的结论(此处证明从略).图像显示电源可视为两个负载电流范围不同的电源``拼接''而成,分段讨论即可.电流小于0.26A时,电源电动势等于6.2V,故路端电压等于3.1V时(由(2)(3)C1电荷变化量C2电荷变化量故由a到b流过K的正电荷.2-62本题为含电容的电路分析题,只需分析始末状态和电量变化即可.通过K的电量即通过R的电量.闭合K前,两电容器不带电;闭合K并稳定后,两电容器靠近电键K的极板上均沿回路列出方程:联立解得代入数据.忽略接地信息的解法得到的答案与此一致,但无视了与大地间的电流和电位.。

《电磁学》第二版_课后题的答案

《电磁学》第二版_课后题的答案
满足什么条件时内球电势为正?满足什么条件时内球电势为零?满足什么条件时内球电势为负?
(参考点选在无远。)
答案:U1
=
q1 4πε 0 R1
+
q2 4πε0 2R1
∫ ∫ ∫ ∫ 〈或者:U1 =
R2 R1
E1dr
+

R2
E2dr
=
2R1 q1 dr + R1 4πε 0r 2
∞ q1 + q2 dr 〉 2R1 4πε 0r 2
第一章
静电场的基本规律
1.1 判断下列说法是否正确, 说明理由。 (1)一点的场强方向就是该点的试探点电荷所受电场力的方向。 (2)场强的方向可由 E=F/q 确定,其中 q 可正可负。 (3)在以点电荷为心的球面上,由该点电荷产生的场强处处相等。
答案:(1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上 E 大小相等。
力为零?
解:设 q′ 距 q 为 r,则 q′ 距 2q 为 (L − r) ,放在相距 r 处,受合力为 0,则有受力平衡条件:
k
qq′ r2
=
k
2qq′ (L − r)2
得到: r = ( 2 −1)L
1.2.4 在直角坐标系的(0m,0.1m)和(0m,-0.1m)的;两个位置上分别放有电荷 q=10-10C 的点 带电体,在(0.2m,0m )的位置上放一电荷为 Q=10-8C 的点带电体,求 Q 所受力的大小和方向。
1.2.1 真空中有两个点电荷,其中一个的量值是另一个的 4 倍。她们相距 5.0×10-2 m 时相互排斥力
为 1.6N。问: (1)她们的电荷各为多少? (2)她们相距 0.1m 时排斥力的多少?

程稼夫电磁学第二版第五 六章习题解析

程稼夫电磁学第二版第五 六章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.为保持匀速转动,驱动力矩与之等大反向.5-3三个元件串联,电流设为,其实部表示真实的电流强度,,f为交流电频率.(1)电感的阻抗,电容的阻抗,故电感上的电压UL领先电流相位,UR与电流同相,电容上UC则落后电流相位.则有(3)电感上的电压落后于电流的相位,也就落后灯泡的电压的相位.故则有,解得.5-5补充题文:(1)在(a)中已知L1,r1,求R1.(2)在(b)中已知L2,R2,求C2.(3)在(c)中要想能达到目标,L3C3的下确界是多少?解:复导纳,目标是Y的相位为−ϕ.解得,所以必须要有.5-6法一:并联原件上的电压(瞬时值)相等,干路电流(瞬时值)等于支路之和。

列出这两个方程即可求出线圈内阻r,进而有线圈上的热功率.设通过线圈、电阻的复电流分别为,电感L、内阻r,交流电圆频率ω.并联电压相等电流关系故法二:电感上无损耗,总有功功率减去电阻热功率即所求.5-8记电源电压U则6-2记,,,c为真空光速.当电容为C时,谐振频率为,相应的波长为,有因为,所以C的范围在,宽度.6-3设电容为C时,谐振频率为f,则(2)由于能量守恒,故电能等于磁能的时候,电能由于两端电压相等,电动势.6-5(1)设第n次起辉前上的电压为..第一次起辉前的电荷局域守恒表示为而第n至第n+1次为解得,知,而,故总共起辉399次.第400次是不可能了.(2)设末态两电容器电压均为U.故,左侧电容取正,右侧电容取负,.6-8电流最大使,回路方程化为得到解得.6-9电感的职责是保卫总磁链匝数不突变,故突然撤掉外磁场会对电流产生突然的影响.撤掉之后这个电流就注入到了电容器上,短时间内电压就上升,电流就会下降,所以起初突生的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.1-1设两个小球所带净电荷为q,距离为l,由库仑定律:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4有:1-5联立解得由库仑定律矢量式得:解得1-6(21-7移当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等. 1-12(1)积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n 区,0到x范围内的p区,以及右边的p区,有:,算得度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.1-1-势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:再将球4接地,设球1的电量变为q,则可得因此流入大地的电量为.1-31(1)考虑上下极板间距为x的情况上极板所带电荷由于只有下极板提供的电场对上极板有引力,此电场强度为则等效劲度系数为系统作微小振动频率若,则上下板会吸在一起.1-32粒子由A运动至B,竖直分运动需要时间:水平方向作匀速圆周运动经过的路程:C1-1-34考虑临界状态下小液珠运动全过程:,式中U为两板间电压;临界状态下A板带电量:,解得:最后一滴液珠被A板吸收后,使得A板实际的电量Q′应略大于Q.故吸收的小液珠个数:,[]表示高斯取整函数,即INT1-35(1)导体球电势为:得:感应电荷总电量..1-36能量守恒:(取无穷远处为势能零点)有心力作用,角动量守恒:又,得:代入E= 2keV及d=r/2得:换为电子,运动情况与质子一致,但球带负电.故1-37(1)动力学方程:,其中,解得(2)分析径向运动:1-38(1)电子在区间,做初速为零的匀加速直线运动:得,经到x=d处,沿x轴方向的分速度在区间,即电子做角频率为的简谐运动,振幅(2.1-39.便得,于是必然有1-40通过强相互作用势能,可求得距离为r时正反顶夸克间的强相互作用力为,负号表示此力为吸引力.正反顶夸克之问的距离为r0时作用力大小为正反顶夸克满足动力学方程1-42(1)由对称性,场强向左或向右情况是一样的,不妨设场强方向向右,大小为E. q的受力情况如图(2)将两个小球视为一个整体,受力情况如图垂直于绳方向的平衡方程为解得(3)接第(2)问,悬线AO的张力为1-43(1)设B球碰前所带电量为q,有将A、B接触一下后A、B都带电,此时有由以上各式解得或(2)已知B球碰前所带电量小于A球所带电量,可知B球碰前所带电量为C球与A球相碰后,两球分别带电4Q;C球与B球相碰后,两球分别带电−Q;CAFAB1-441-45两图导体柱的电势都不为正,故正电荷发出的全部电场线被小球吸收,小球收到来自无穷远的电场线,于是:用a 图减去b 图,左边是一个不带电导体,右边一个大导体右边带负电,如果左边带正电,明显在没有外界净电荷干扰的情况下正负电荷会抵消于是左边应带负电即1-46跟静电计相连,则A与静电计外壳等势,腔内没有电场线,不能带电,故闭合.电荷转移到外壳、k及A上.撤去K,用手摸A即接地,则小球电势变为0.外壳带正电,在A产生的电势为正,为使电势变为0,必须使其带负电,故重新张开.1-47设小球带电量为q.引入一个像电荷,其位置与小球关于导电平面对称,带电量与小球相反.设小球重力为G,弹簧初始伸长量为x0.小球受的电场力为初始状态平衡方程:1-48q方1-49引入两个像电荷如图:(1)q的受力情况如图:(2)两个点电荷、两个像电荷分别在两个点电荷中点产生的场强如图:其中,可见合场强水平向右,1-50(1)每一个+q在球壳上感应出的电荷可等效为一个像点电荷,与球心距离.两个像电荷在两个+q的连线上,分居球心左右.其中一个+q的受力由两个q′和另一个+q提供(以指向球心为正):(则1-布的q1、q2;q在球体外壁的感应电荷等效为在球体外壁均匀分布的−q′和在球心与q连线上的像点电荷q′.由于静电屏蔽,q1、q2所受静电力等于左腔内壁感应电荷对q1、q2的作用力.而左腔内壁的感应电荷为均匀分布,故q1、q2所受静电力像电荷,故q所受静电力(以向右为正)为:根据牛顿第三定律,球A所受静电力为大小仍为.1-54将上一问中的q换成Q,并令F=0,化简得:(2)空腔导体造成静电屏蔽,球壳内点电荷和内表面感应电荷对内表面外部无电势贡献,故球壳电势即为外表面感应电荷带来的电势.又由于外表面感应电荷为均匀分布,在外表面内不产生电场,故外表面感应电荷对球壳上电势贡献等于其在球心处产生的电势,.1-56设A1、A2、A3的质量分别为m1、m2、m3,带电量的绝对值分别为q1、q2、q3,A1、A2运动的角速度均为ω对A1有,对A2有两式相比,即得.1-57假设可以做稳定小振动,写出环偏离平衡位置x处的势能:又,得电容:.1-59法一:两个球均可视为与无限远构成电容器,由孤立导体球电容公式,其电容分别为:,.用导线连接前,可视为CA与CB串联,等效电路图如下:电容为用导线连接后,可视为CA与CB并联,等效电路图如下:两金属球等势:,解得则系统电容.1-60(1)设内球带电量为,外球电量在内球球心产生的电势为内球电量在内球球心产生的电势为内球的总电势,解得.外球电量在球心产生的电势为C13故1、2间的电容(b)本问中,3板和4板由导线相连,电势相等,故可看作由1、3构成的电容C13与4、2构成的电容C42串联后整体与1、2构成的电容C12并联,等效电路图如下:故.即又设设由于金属板内无电场,则3板上板与2板下板所带电荷等量同号(故在板内产生电场抵消):则1、2板间电容(b)设给1板充,给2板充,设1板上板带电,则1板下板带电,2板上板带电,2板下板带电,3板下板带电,4板上板带电.设3板上板带电,4板下板带电,由3、4板电荷守恒及金属板内无电场得,联立解得1-64(1)由于任一单元输入端之后的总电容为C,在第1个单元输入端a、b间加电压后,将第1个单元输出端后的电容等效为一个大小为3C的电容,由3个大小为3C的电容串联得第2个单元输入端间电压:同理得第k个单元输入端间电压所求总电能(2)第1单元与后面网络断开前,第1单元中电容为3C的电容器的带电量为Q,有则第第1个单元a、b短路后,设电容器各极板上的电荷分布如图所示.三个电容器贮存的电能1-65(1)首先,1 左与100 右无电荷,因为如果有电荷,则电荷电场线必延伸至无穷远,则金属板电势不为0,与接地不符.设1号板带电,由高斯定理,所有板总电量为零:,则100号板带电.取一个左侧包含1板右板,右侧包含n板左板的高斯面(),由于金属板内无电场,此高斯面电通量为0:,解得.1-66过程中电容电荷量不变,故弹力的水平增量:受力平衡得:.1-67因为,故可用平行板电容器公式近似计算电容C(注意内径是直径!),设玻璃1-并联:1-69设初始时细线与竖直方向夹角为,由受力平衡得:放入煤油后,浮力矩与静电力矩增量抵消:又与空气接触处无极化电荷,得.(4)与正极板接触的极化面电荷密度得1-71设极板面积为S,升高高度h,极化面电荷密度对升高的部分液体电介质受力分析得:其中解得.注意:此题素来受争议,焦点在于此题虚功原理是否适用(如果尝试以虚功原理计算,其结1-73(1)初态电容,电场能,带入得抽出后Q不变,电容变为,电场能..对势能求负梯度得受力:.暴力化简,其中.1-75,外力做功,,电阻放热.(2)故(3).1-1-(得.1-(2)系统静电能小球壳上电荷有电势,大球壳上有电势故系统能量. 1-82记,上的电荷为,有电势.,板带;4上板带,下板无电荷.此时三个电容串联,一个不带电,另外两个极板带电量相同,可等效为一板间距为的电容.1-84同1-501-85(1)取平面(即面)分析.两个点电荷在接地平板感应出两个像电荷:处处.作用在点电荷上的力高斯定理得1-86初态:末态:能量守恒:.1-87(1)设导体球原带电.如图,球外电势.(2)像电荷同(1)如图,球外电势.1-88外场作用下,介质球周围极化电荷面密度余弦分布.计算处:,解得(3).1-90(4)球形电容器电容三个电容串联:得(1). Q为第一问所求值.1-91平行板电容:电路总电容:极板上总电荷:.解得.1-92(21-93解得.(2)电压:电容定义:.(3)设留在电容内介质的长为x,外力为电容并联:。

相关文档
最新文档