角平分线的性质与判定的习题ppt课件
合集下载
角平分线的性质教学课件
![角平分线的性质教学课件](https://img.taocdn.com/s3/m/efd6bb6adc36a32d7375a417866fb84ae45cc3e5.png)
三角形中的角平分线与相对边 成比例,这是三角形中一个重 要的性质。
利用这个性质,可以解决与三 角形相关的问题,例如求边长 、角度等。
此外,三角形中的角平分线还 是三角形内切圆和外接圆的半 径的角平分线。
在日常生活中的应用
角平分线在日常生活中也有广泛的应用,例如在建筑设计、机械制造等领域。
在建筑设计方面,可以利用角平分线来设计建筑物的外观和结构,使其更加美观和 稳固。
THANK YOU
角平分线的性质教学课件
• 角平分线的定义 • 角平分线的性质定理 • 角平分线的应用 • 角平分线的相关定理 • 习题与解答
01
角平分线的定义
什么是角平分线
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分的 一条射线。
02
角平分线将相对边分为两等份, 形成的两个小角相等。
角平分线的作法
通过角的顶点,作一条射线,使得该 射线和角的两边相交形成的两个小角 相等。
使用量角器或三角板等工具辅助作图 。
角平分线的性质
角平分线上的点到角的两边距离 相等。
角平分线将相对边分为两等份。
角平分线上的任意一点到角的两 边的距离之和等于从角的顶点到
该点的距离。
02
角平分线的性质定理
定理内容
01
02
答案: $AB = AC$
解析:由于$AD$是$angle BAC$的角平分线,且$BD = CD$,根据等 腰三角形的性质,我们可以得出$triangle ABD cong triangle ACD$( SAS),所以$AB = AC$。
习题答案与解析
01
答案与解析3:
02
答案: AC是$angle BCD$的角平分线。
角的平分线课件(共16张PPT)
![角的平分线课件(共16张PPT)](https://img.taocdn.com/s3/m/ac8ee79b6037ee06eff9aef8941ea76e58fa4a8f.png)
6.3.2.2 角的平分线
思考 如何能得到角平分线呢? 量角器度量、折叠.
在一张半透明的纸上通过折纸作角的平分线.
6.3.2.2 角的平分线
例1 把一个周角 7 等分,每一份是多少度的角 (精确到分)?
解:360°÷7 = 51° + 3°÷7 = 51° + 180'÷7 ≈ 51°26'.
精确到分,要先取到 小数点后 1 位,然后 再四舍五入.
6.3.2.2 角的平分线
2.如图,O 是直线AB 上一点,OC 是∠AOB 的平分线,若∠COD = 31°28',求∠AOD 的度数.
解:∵OC 是∠AOB 的平分线,∠AOB是平角. C
∴∠AOC = ∠AOB = × 180°=90°.
∴∠AOD = 12∠AOB - ∠COD.
D
=90°- 31°28' =89°60' - 31°28'
2
1
O
A
6.3.2.2 角的平分线
新知学习
思考
如图,如果∠1 =∠2,那么射线 OB 把∠AOC分成两个相等的角.你可
以写出∠AOC 和∠1 、∠2的关系式吗?
C B
∠AOC = 2∠1 = 2∠2, ∠1 = ∠2 = 1 ∠AOC
2
2
1
O
A
6.3.2.2 角的平分线
一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线, 叫作这个角的平分线.
注意:度、分、秒是60进制的,要把剩余的度数化成分.
6.3.2.2 角的平分线
随堂练习
1.如图,把一个蛋糕等分成8份,每份中的角是多少度?如果 要使每份中的角是15°,这个蛋糕应等分成多少份?
角平分线的性质 课件
![角平分线的性质 课件](https://img.taocdn.com/s3/m/3981d7fe64ce0508763231126edb6f1afe007113.png)
05
角平分线的习题与解析
基础习题
1 3
基础习题1
已知角平分线AD,点E在AD上,若∠BAC=50°, ∠CAD=25°,求∠BCA的度数。
基础习题2
2
在△ABC中,AD是∠BAC的平分线,若∠B=40°,∠C=70°,
求∠BAD的度数。
基础习题3
在△ABC中,AD是∠BAC的平分线,若∠BAC=120°, ∠C=30°,求∠BAD的度数。
03
角平分线将一个多边形分成面积相等的两部分。
02
角平分线的性质证明
性质1的证明
总结词
角平分线将相对边分成两段相等 的线段
详细描述
根据角平分线的定义,我们知道 角平分线将一个角分为两个相等 的子角。因此,相对边被角平分 线分成两段相等的线段。
性质2的证明
总结词
角平分线上的点到角的两边距离相等
详细描述
总结词
基于角平分线定理,我们可以推导出 一些重要的推论,这些推论在解决几 何问题时非常有用。
详细描述
推论一,若AD为角BAC的角平分线,则有 AB/BD = AC/CD。这个推论可以直接从角平 分线定理得出。推论二,若AD为角BAC的角平 分线,且在点D上作线段DE平行于AB交AC于 点E,则有AE =EB。这个推论可以用于证明线 段的等分。
角平分线定理的应用
要点一
总结词
角平分线定理在实际问题中有着广泛的应用,它可以用于 解决各种与角度和线段比例相关的几何问题。
要点二
详细描述
应用一,在建筑设计时,可以利用角平分线定理来确定建 筑物的位置和角度,以确保建筑物的美观和功能性。应用 二,在地图绘制时,可以利用角平分线定理来确定道路、 河流等地理要素的走向和分布,以保证地图的准确性和实 用性。应用三,在土地测量时,可以利用角平分线定理来 确定土地的边界和面积,以确保土地测量的准确性和公正性。
角平分线的性质与判定通用课件
![角平分线的性质与判定通用课件](https://img.taocdn.com/s3/m/4caf965c876fb84ae45c3b3567ec102de3bddf74.png)
角平分线定理
01
角平分线上的点到这个角的两边的距离相等。
利用角平分线定理证明线段比例
02
通过构造角平分线,利用角平分线定理证明线段之间的比例关
系。
利用角平分线定理证明等腰三角形
03
通过构造角平分线,证明三角形中的两个底角相等,从而证明
是等腰三角形。
在三角形中的实际应用
利用角平分线确定角的度数
通过构造角平分线,将一个较大的角分成两个较小的角,从而确定角的度数。
判定方法在多边形中的应用
在多边形中,可以通过作对角线来判定角平分线。如果一个 点到多边形两个相对顶点的距离相等,那么这个点就是角平 分线上的点。
在多边形中,也可以通过作角平分线上的点到对边的垂线来 判定角平分线。如果这条垂线与对边平行,那么这个点就是 角平分线上的点。
03
角平分线的应用
在几何证明题中的应用
角平分线的性质与 判定通用课件
目 录
• 角平分线的性质 • 角平分线的判定 • 角平分线的应用 • 角平分线的作法 • 角平分线的性质与判定的联系与
区别
01
角平分线的性质
定义与性质
角平分线定义
从一个角的顶点出发,将该角分 为两个相等的部分,这条线段被 称为该角的角平分线。
角平分线性质
角平分线将相对边分为两段相等 的线段。
04
角平分线的作法
通过给定角的两边作垂线
总结词
通过角的两边作垂线,可以确定角平 分线。
详细描述
在给定角上,通过角的两边作垂直于 对边的垂线,这两条垂线会在角的顶 点处相交,且交点到角的两边距离相 等,这个交点就是角平分线的交点。
通过给定角的顶点作对边的平行线
总结词
角平分线的性质和判定(共张)课件
![角平分线的性质和判定(共张)课件](https://img.taocdn.com/s3/m/d8401465492fb4daa58da0116c175f0e7cd11931.png)
作法应用
01
在几何证明题中,常常需要用到 角平分线的作法来构造辅助线, 从而证明某些结论。
02
作法应用可以帮助我们更好地理 解几何图形的性质和判定定理。
作法证明
第一步
根据等腰三角形的性质, 等腰三角形的两个底角相 等。
第二步
由于所作的线段是等腰三 角形的底边,所以这条线 段将角平分。
第三步
证明所作的线段与角的两 边垂直,从而证明这条线 段是角的平分线。
证明方法二
利用相似三角形的性质,通过相似三角形的边长比例关系证明角平分线的性质 。
02
角平分线的判定
判定定理
判定定理
角的平分线上的点到这个角的两边的距离相等。
定理证明
在角的平分线上任取一点,过这点作角的两边的垂线,垂足分别为A、B。根据角 平分线的定义,角平分线上的点到角的两边距离相等,即$PA=PB$。因此,角 平分线上的点满足到角的两边距离相等的性质。
03
角平分线定理的逆定理
逆定理内容
逆定理
如果一条射线将一个角分成两个相等的部分,那么这条射线 就是这个角的角平分线。
证明过程
首先,我们知道角平分线上的点到这个角的两边的距离相等 。反之,如果一条射线上的点到这个角的两边的距离相等, 那么这条射线将这个角平分。因此,我们可以得出上述逆定 理。
逆定理应用
通过角平分线的定义和性质,结合三角形全 等的判定定理,证明推论1的正确性。
证明2
通过反证法和角的平分线的性质,证明推论 2的正确性。
感谢您的观看
THANKS
角平分线的性质和判定(共 张)课件
目录
• 角平分线的性质 • 角平分线的判定 • 角平分线定理的逆定理 • 角平分线的作法 • 角平分线定理的推论
角平分线课件PPT
![角平分线课件PPT](https://img.taocdn.com/s3/m/cef8cca20875f46527d3240c844769eae009a3ed.png)
生活中有趣角平分线现象
建筑设计中的应用
在建筑设计中,角平分线常被用来确保建筑物的对称性和平衡感。例如,古希腊的帕特 农神庙就运用了角平分线的原理来设计其立面和柱子。
自然界的角平分线
在自然界中,角平分线的现象也很常见。例如,当阳光照射在树叶上时,树叶的脉络就 会呈现出角平分线的形状,这是因为树叶在生长过程中会自然地沿着角平分线的方向扩
例题2
已知在△ABC中,∠C=90° ,AD是∠BAC的平分线, DE⊥AB于E,F在AC上, BD=DF。求证:CF=EB 。
解析
过点D作DM⊥AC于M。 根据角平分线的性质,可 得DE=DM。在Rt△FCD 和Rt△EBD中,DF=BD, DE=DM。 ∴Rt△FCD≌Rt△EBD(HL )。∴CF=EB。
的两边分别与OA、OB相交于点C、D。求证: PC=PD。
输入 标题
解析
根据角平分线的性质和直角三角形的性质,可以证明 △OPC和△OPD全等,从而得出PC=PD。具体证明过 程略。
例题1
例题2
根据角平分线的性质和勾股定理,可以求出点D到AB 的距离。具体求解过程略。
解析
在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若 BC=32,且BD:CD=9:7,求点D到AB的距离。
04
角平分线在几何变换中应用
旋转对称性质及应用
旋转对称性质
角平分线将一个角分为两个相等的小角,且两个小角关于角平分线对称。当图形 绕角平分线旋转一定角度时,两个小角能够重合,具有旋转对称性。
应用
利用旋转对称性质,可以解决与角平分线相关的角度计算、线段长度等问题。例 如,通过旋转对称性质可以证明两个三角形全等或相似。
建筑设计中角平分线应用
角平分线的判定定理ppt课件
![角平分线的判定定理ppt课件](https://img.taocdn.com/s3/m/86bab43ff342336c1eb91a37f111f18583d00c8e.png)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
4、如图,已知△ABC的外角∠CBD和∠BCE的
平分线相交于点F,
求证:点F在∠DAE的平分线上.
G
P
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
课内拓展延伸
如图,△ABC中,点O是∠BAC与∠ABC的平分线的 交点,过O作与BC平行的直线分别交AB、AC于D、E.已 知△ABC的周长为15,BC的长为6,求△ADE的周长.
A
D OE
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
的判定 到角的两边的距离相等的点
的平分线上。
在角
D
已知:如图,PD^OA ,PE^OB,
垂足分别是 D、E,PD=PE,
O
求证:点P在 AOB的角平分线上。
证明: 作射线OP
∵ PD^OA PE^OB
E
\ PD P OE 9O 0
在 Rt△PDO 和Rt△PEO 中,
OP = OP (公共边)
B
(1). ∵DC⊥AC ,DE⊥AB ,DC=DE ∴_∠__1_=_∠__2___
(_到__一__个__角__的__两__边__的__距__离__相__等__的__点__,__在__这__个__角__平__分__线__上__。)
北师大版八年级数学下册1.4角平分线角平分线的性质与判定课件
![北师大版八年级数学下册1.4角平分线角平分线的性质与判定课件](https://img.taocdn.com/s3/m/5ee090dde43a580216fc700abb68a98270feac0b.png)
= ,
∴△ADB≌△ADC(SAS).
∴BD=CD.
复习训练
1.如图,视察尺规作图痕迹,下列说法错误的是( C )
A.OE是∠AOB的平分线
B.OC=OD
C.点C,D到OE的距离不相等
D.∠AOE=∠BOE
2.如图,PD⊥AB,PE⊥AC,垂足分别为点D,E,且PD=PE,若
∠BAP=20°,则∠BAC=( D )
5.如图,DA⊥AC于点A,DE⊥BC于点E.若AD=5,DE=5,∠ACD
=30°,则∠DCE=( A )
A.30°
B.40°
C.50°
D.60°
例2
如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂
足分别是点E,F,BE=CF.求证:AD平分∠BAC.
证明:∵点D是BC的中点,∴DB=DC.
D,DE⊥BC于点E,若AD=3,DC=5,则DE= 3 ,CE= 4 .
例1
如图,在△ABC中,AD是它的角平分线,且BD=CD,
DE⊥AB,DF⊥AC,垂足分别为点E,F.求证:EB=FC.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°.
= ,
解:如图,连接BD.
∵DE=DF,DE⊥AB,DF⊥BC,
∴BD平分∠ABC.
∴∠ABD= ∠ABC= ×60°=30°.
在Rt△BDE中,DE= ,∠DBE=30°,
∴BD=2DE=2 .∴BE= − =3.
基础巩固
1.如图,DB⊥AB,DC⊥AC,垂足分别为点B,C,AD平分
∠BAC,BD=2,∠BAC=80°,则DC= 2 ,∠ADC= 50 °.
∴△ADB≌△ADC(SAS).
∴BD=CD.
复习训练
1.如图,视察尺规作图痕迹,下列说法错误的是( C )
A.OE是∠AOB的平分线
B.OC=OD
C.点C,D到OE的距离不相等
D.∠AOE=∠BOE
2.如图,PD⊥AB,PE⊥AC,垂足分别为点D,E,且PD=PE,若
∠BAP=20°,则∠BAC=( D )
5.如图,DA⊥AC于点A,DE⊥BC于点E.若AD=5,DE=5,∠ACD
=30°,则∠DCE=( A )
A.30°
B.40°
C.50°
D.60°
例2
如图,在△ABC中,点D是BC的中点,DE⊥AB,DF⊥AC,垂
足分别是点E,F,BE=CF.求证:AD平分∠BAC.
证明:∵点D是BC的中点,∴DB=DC.
D,DE⊥BC于点E,若AD=3,DC=5,则DE= 3 ,CE= 4 .
例1
如图,在△ABC中,AD是它的角平分线,且BD=CD,
DE⊥AB,DF⊥AC,垂足分别为点E,F.求证:EB=FC.
证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°.
= ,
解:如图,连接BD.
∵DE=DF,DE⊥AB,DF⊥BC,
∴BD平分∠ABC.
∴∠ABD= ∠ABC= ×60°=30°.
在Rt△BDE中,DE= ,∠DBE=30°,
∴BD=2DE=2 .∴BE= − =3.
基础巩固
1.如图,DB⊥AB,DC⊥AC,垂足分别为点B,C,AD平分
∠BAC,BD=2,∠BAC=80°,则DC= 2 ,∠ADC= 50 °.
1第2课时角平分线的性质及判定PPT课件(沪科版)
![1第2课时角平分线的性质及判定PPT课件(沪科版)](https://img.taocdn.com/s3/m/7c489251854769eae009581b6bd97f192279bfa8.png)
最小边(角)是对应边(角). 对应边所对的角是对应角. 对应角所对的边是对应边.
合作提高 .请指出下列全等三角形的对应边和对应 角
如上图中△ ABD ≌ △CDB则AB= CD ;AD=
;
BD= CB ; ∠ABDD=B
; ∠A∠DBC=DB ;
∠A= ∠CB;D
∠C
• 总结提升
1、回忆这节课,学习了全等三角形的哪些知识?
思考:1、全等三角形的周长、面积相等吗?
2、两个三角形三边对应相等,三对角也对应相等, 这两个三角形全等吗?
当堂训练
有什么办法判断两个三角形全等?,用数学式子表
示两个三角形全等,并指出对应角、对应边
A
E
B
C
D
平 F移
两个三角形全等是通过什么方法验证的?
解:对应边是:AC与DF,AB与DE,BC与EF 对应角是:∠A与∠D,∠B与∠E,∠C与∠F 小结:最大边(角)是对应边(角)。 最小边(角)是对应边(角)。
合作探究
师生探究·解决问题
• 例:如图,△OCA≌△OBD,C和B,A和D是
对应顶点, 说出这两个三角形中相等的边和
角.
C
B
O
A
D
请视察,并说出你看到的现象
(1)
(2)
(3)
(4)
思考:他们能完全重合吗?
(5)
•形状、大小完全一样的两个图形能够完全重合。
1、能够完全重合的两个图形叫做全等图形 2、你能够找诞生活中的一些全等图形吗?
E
两个全等三角形能够完全重合
C
F
互相重合的顶点叫__对__应_顶__点___
点A、点F的对应顶 点分别是_D__、 _C__
合作提高 .请指出下列全等三角形的对应边和对应 角
如上图中△ ABD ≌ △CDB则AB= CD ;AD=
;
BD= CB ; ∠ABDD=B
; ∠A∠DBC=DB ;
∠A= ∠CB;D
∠C
• 总结提升
1、回忆这节课,学习了全等三角形的哪些知识?
思考:1、全等三角形的周长、面积相等吗?
2、两个三角形三边对应相等,三对角也对应相等, 这两个三角形全等吗?
当堂训练
有什么办法判断两个三角形全等?,用数学式子表
示两个三角形全等,并指出对应角、对应边
A
E
B
C
D
平 F移
两个三角形全等是通过什么方法验证的?
解:对应边是:AC与DF,AB与DE,BC与EF 对应角是:∠A与∠D,∠B与∠E,∠C与∠F 小结:最大边(角)是对应边(角)。 最小边(角)是对应边(角)。
合作探究
师生探究·解决问题
• 例:如图,△OCA≌△OBD,C和B,A和D是
对应顶点, 说出这两个三角形中相等的边和
角.
C
B
O
A
D
请视察,并说出你看到的现象
(1)
(2)
(3)
(4)
思考:他们能完全重合吗?
(5)
•形状、大小完全一样的两个图形能够完全重合。
1、能够完全重合的两个图形叫做全等图形 2、你能够找诞生活中的一些全等图形吗?
E
两个全等三角形能够完全重合
C
F
互相重合的顶点叫__对__应_顶__点___
点A、点F的对应顶 点分别是_D__、 _C__
《角平分线的判定》课件
![《角平分线的判定》课件](https://img.taocdn.com/s3/m/197984baf80f76c66137ee06eff9aef8941e48a4.png)
应用举例
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
在几何证明题中,常常利用角平分线的性质定理来证明线段相等或 角相等。
角平分线的判定定理的推论
推论1
到角的两边的距离相等的 点在角平分线上。
证明方法
利用反证法进行证明,假 设点不在角平分线上,通 过构造反例来证明假设不 成立。
应用举例
在解题过程中,可以利用 这个推论来寻找角平分线 上的点,从而解决问题。
《角平分线的判定》ppt课件
• 角平分线的定义 • 角平分线的判定方法 • 角平分线的应用 • 角平分线的相关定理和性质 • 练习题与答案
01
角平分线的定义
角平分线的描述
01
角平分线是从一个角的顶点出发 ,将该角分为两个相等的部分, 且与相对边相交的线段。
02
角平分线将角分为两个相等的角 ,这两个角的大小与原角相等。
提高练习题
提高练习题1
在三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF。求证:EB=FC。
提高练习题2
已知三角形ABC中,AD是角BAC的平分线,E、F分别是AB、AC上的点,且 DE=DF,EF平行于BC。求证:EB=FC。
综合练习题与答案
综合练习题1
在三角形ABC中,AD是角BAC的平 分线,E、F分别是AB、AC上的点, 且DE=DF。EF交AD于G。求证: EG=FG。
角平分线与三角形面积的关系
01
角平分线可以将三角形分割成两个面积相等的子三角形。
面积分割定理
02
利用角平分线,可以证明面积分割定理,从而得出其他相关性
质和结论。
面积计算
03
通过角平分线,可以方便地计算三角形的面积,进一步用于解
决实际问题。
《角平分线》PPT教学课件
![《角平分线》PPT教学课件](https://img.taocdn.com/s3/m/223fcaa6534de518964bcf84b9d528ea80c72f7b.png)
知识讲解
如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角
的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就
是角平分线,你能说明它的道理吗?
两个三角形三边对应相等,两个三角形全
A C
等,两全等三角形的对应角相等.所以AE就
是角平分线 想一想:能够运用这种方法作出任意角的 角平分线吗?
B
(1)∵ 如图,AD平分∠BAC(已知)
× ∴ BD = CD ,
A
D C
( 角的平分线上的点到这个角的两边的距离相等)
理由: 没有垂直,不能确定BD,CD是点D到角两边的距离.
知识讲解
★ 练一练
(2)∵ 如图, DC⊥AC,DB⊥AB (已知).
× ∴ BD = CD ,
(角内任意一条线上的点到这个角的两边的距离相等 )
B
A
D
C
理由:无法确定点D在∠BAC的平分线上.
知识讲解
线段的垂直平分线的性质定理有逆定理,角的平分 线的性质定理是否也有逆定理呢?
如果一个点到角两边的距离相等,那么这个点在 角的平分线上.
知识讲解
角平分线性质定理的逆定理 到角的两边的距离相等的点在角的平分线上.
A
D C
P
O
E
B
用途: 证明点在角平分线上,即可以判定角平分线.
知识讲解
典例讲解 例题 如图,△ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB,BC,CA的距离相等.
A N PM
B
C
知识讲解
证明:
A
D
N
P
F M
B
C
E
知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
练习题 :
.
1.如图,已知△ABC的外角∠CBD和∠BCE的平 分线相交于点F,
求证:点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M
∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM
又∵点F在∠CBD的平分线上, FH⊥AD, FM⊥BC ∴FM=FH ∴FG=FH
G M
H
∴点F在∠DAE的平分.线上
2.三角形的三条角平分线相交于一点,并且这 一点到 到三角形三边的距离 相等.
3.到三角形三边距离相等的点是( C )
A.三条高的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 不能确定
B E
M
D
A
FN
C
.
18.如图,已知△ABC的周长为10,OB、OC 分别平分∠ABC、∠ACB、OD⊥BC于点D, 且OD=2,求△ABC的面积。
A
O
B
D
C
.
19.如图Rt△ABC中,∠C=90。AC=BC,AD是∠BAC
的平分线,DE⊥AB于E,
求证:△DBE的周长等于AB长
B E
D
C
A
.
则△DEB的周长为( B)
A. 4cm
B. 6cm
C. 10cm
D. 以上都不对
.
8.如图在△ABC中,∠ACB=90°,BE平分∠ABC,
DE⊥AB于D,如果AC=3 cm,那么AE+DE等于
(B )
A.2 cm
B.3 cm
C.4 cm
D.5 cm
C
E
A
D
B
.
9.如图,在△ABC中,∠C=90°,AD是角平分线, DE⊥AB于E,且DE=3cm,BD=5cm,则
.
15.如图:在△ABC中,∠C=90°, AD是∠BAC 的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EB A
F
E
CD B
.
16.如图,AB=AC,BD=CD,DE⊥AB于E, DF⊥AC于F,
求证:DE=DF
E
B
A
D
C F
.
17.如图,在∠BAC的平分线上任取一点D,在 AB,AC上各取一点E,F,若DE=DF,且AE>AF 求证:∠AED=∠DFC
BC=__8___cm.
.
10.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,
且CD=CE,则∠DOC=_3_0__°.
.
11.如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为6,OM=6,则
PN=___2____。
N
A
C
0
P
MB
.
12.已知:如图,在Rt△ABC中,∠C=90°,D是 AC上一点,DE⊥AB于E,且DE=DC.
D.4
.
6.如图所示,在△ABC中,∠C=90°,AD平分
∠BAC,AE=AC,下列结论中错误的是( D )
A. DC=DE
B. ∠AED=90°
C. ∠ADE=∠ADC
D. DB=DC
.
7.如图所示,△ABC中,∠C=90 Nhomakorabea,AC=BC,AD
平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,
角平分线的性质 (复习课)
.
1、会用尺规作角的平分线.
2、角的平分线的性质:
角的平分线上的点到角的两边的距离相等
用数学语言表述: ∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
A D
1 O2
P C
E B
.
3、角平分线性质的逆定理: 角的内部到角的两边的距离相等的点
在角的平分线上。
(1)求证:BD平分∠ABC; (2)若∠A=36°,求∠DBC的度数. (1)根据角平分线性质的逆定理: 或:证△BDE≌△BDC(HL). (2)∠DBC=27°
.
13.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D, AE与BD相交于点C .求证:AC=BC.
.
14.如图,∠B=∠C=90°,M是BC的中点,DM平分 ∠ADC,求证:AM平分∠DAB.
.
4.如图所示,三条公路两两相交,交点分别为 A、B、C,现计划修一个油库,要求到三条公
路的距离相等,可供选择的地址有( D)
A. 一处 B. 二处 C.三处 D. 四处
.
5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射
线OM上的一个动点,若PA=2,则PQ的最小值为
(B)
A.1
B.2
C.3
练习题 :
.
1.如图,已知△ABC的外角∠CBD和∠BCE的平 分线相交于点F,
求证:点F在∠DAE的平分线上.
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M
∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM
又∵点F在∠CBD的平分线上, FH⊥AD, FM⊥BC ∴FM=FH ∴FG=FH
G M
H
∴点F在∠DAE的平分.线上
2.三角形的三条角平分线相交于一点,并且这 一点到 到三角形三边的距离 相等.
3.到三角形三边距离相等的点是( C )
A.三条高的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 不能确定
B E
M
D
A
FN
C
.
18.如图,已知△ABC的周长为10,OB、OC 分别平分∠ABC、∠ACB、OD⊥BC于点D, 且OD=2,求△ABC的面积。
A
O
B
D
C
.
19.如图Rt△ABC中,∠C=90。AC=BC,AD是∠BAC
的平分线,DE⊥AB于E,
求证:△DBE的周长等于AB长
B E
D
C
A
.
则△DEB的周长为( B)
A. 4cm
B. 6cm
C. 10cm
D. 以上都不对
.
8.如图在△ABC中,∠ACB=90°,BE平分∠ABC,
DE⊥AB于D,如果AC=3 cm,那么AE+DE等于
(B )
A.2 cm
B.3 cm
C.4 cm
D.5 cm
C
E
A
D
B
.
9.如图,在△ABC中,∠C=90°,AD是角平分线, DE⊥AB于E,且DE=3cm,BD=5cm,则
.
15.如图:在△ABC中,∠C=90°, AD是∠BAC 的平分线,DE⊥AB于E,F在AC上,BD=DF; 求证:CF=EB A
F
E
CD B
.
16.如图,AB=AC,BD=CD,DE⊥AB于E, DF⊥AC于F,
求证:DE=DF
E
B
A
D
C F
.
17.如图,在∠BAC的平分线上任取一点D,在 AB,AC上各取一点E,F,若DE=DF,且AE>AF 求证:∠AED=∠DFC
BC=__8___cm.
.
10.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,
且CD=CE,则∠DOC=_3_0__°.
.
11.如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为6,OM=6,则
PN=___2____。
N
A
C
0
P
MB
.
12.已知:如图,在Rt△ABC中,∠C=90°,D是 AC上一点,DE⊥AB于E,且DE=DC.
D.4
.
6.如图所示,在△ABC中,∠C=90°,AD平分
∠BAC,AE=AC,下列结论中错误的是( D )
A. DC=DE
B. ∠AED=90°
C. ∠ADE=∠ADC
D. DB=DC
.
7.如图所示,△ABC中,∠C=90 Nhomakorabea,AC=BC,AD
平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,
角平分线的性质 (复习课)
.
1、会用尺规作角的平分线.
2、角的平分线的性质:
角的平分线上的点到角的两边的距离相等
用数学语言表述: ∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
A D
1 O2
P C
E B
.
3、角平分线性质的逆定理: 角的内部到角的两边的距离相等的点
在角的平分线上。
(1)求证:BD平分∠ABC; (2)若∠A=36°,求∠DBC的度数. (1)根据角平分线性质的逆定理: 或:证△BDE≌△BDC(HL). (2)∠DBC=27°
.
13.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D, AE与BD相交于点C .求证:AC=BC.
.
14.如图,∠B=∠C=90°,M是BC的中点,DM平分 ∠ADC,求证:AM平分∠DAB.
.
4.如图所示,三条公路两两相交,交点分别为 A、B、C,现计划修一个油库,要求到三条公
路的距离相等,可供选择的地址有( D)
A. 一处 B. 二处 C.三处 D. 四处
.
5.如图,OP平分∠MON,PA⊥ON于点A,点Q是射
线OM上的一个动点,若PA=2,则PQ的最小值为
(B)
A.1
B.2
C.3