泵与风机重点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.泵与风机有性能参数牌上标出的是指哪个工况下的

参数?

答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。 在铭牌上标出的是:额定工况下的各参数 。主要部件?各有何作用?

答:离心泵 1叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。2吸入室:以最小的阻力

损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

3压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。4导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。5密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。6轴端密封防止高压流体从泵内通过转动部件与静止部件之间的间隙泄漏到泵外。

离心风机1叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能2蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。3集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。4进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。

。离心式泵与风机工作原理。

答离心式:叶轮高速旋转时产生的离心力使流体获得能量,从而能够被输送到高处或远处。流体沿轴向流入叶轮并沿径向流出。

轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。流体沿轴向流入叶轮并沿轴向流出。

。流体在旋转的叶轮内是如何运动?用什么速度表示?速度矢量组成图形?

答:当叶轮旋转时,叶轮中某一流体质点将随叶轮一起做旋转运动。同时该质点在离心力的作用下,又沿叶轮流道向外缘流出。流体在叶轮中的运动是一种复合运动。

叶轮带动流体的旋转运动,称牵连运动,其速度用圆周速度u 表示;流体相对于叶轮的运动称相对运动,其速度用相对速度w 表示;流体相对于静止机壳的运动称绝对运动,其速度用绝对速度v 表示。 以上三个速度矢量组成的矢量图,称为速度三角形。 。为了提高流体从叶轮获得的能量,一般有哪几种方法?最常采用哪种方法?为什么?

答:1)径向进入,即90=α;2)提高转速n ;3)

加大叶轮外径D ;4)增大叶片出口安装角β。 提高转速最有利,因加大叶轮外径将使损失增加,降低泵的效率;提高转速则受汽蚀

的限制,对风机则受噪声的限制。增大叶片出口安装

角β将使动能头显著增加,降低泵与风机的效率。用提高转速n 来提高理论能头,仍是当前普遍采用的主要方法。

。泵与风机的能量方程式哪几种形式?分析影响理论扬程(全压)的因素有哪些?

T H ∞

=

1g

2211()

u u u v u v ∞∞-

g g u u g v v H T 2222

2122

12

2122

2∞

∞∞∞∞-+-+-=

ωω

风机

)

(∞∞∞-=u u v u v u 1122T p ρ因素:转

速n ;叶轮外径D ;密度(影响全压)、叶片出口安装角

a

2β;进口绝对速度角α。

。离心式泵与风机有哪几种叶片形式?各对性能有何影响?为什么离心泵均采用后弯式叶片? 答:后弯式、径向式、前弯式

后弯式:

2a

β<90°时,cot

2a

β为正值,

2a

β越

小,cot

2a

β越大,

T H ∞

则越小。径向式:β=90°

时,cot

β =0,2u v

∞=

2

u 。

g

u H T 2

2

=∞

前弯式:

2a

β>90°时,cot

2a

β为负值,

2a

β越大,cot

2a

β越小,

T H ∞

则越大

以上分析表明,随叶片出口安装角

a 2β的增加,

流体从叶轮获得的能量越大。因此,前弯式叶片所产生的扬程最大,。当三种不同的叶片在进、出口流道面积相等,叶片进口几何角相等时,后弯式叶片流道较长,弯曲度较小,且流体在叶轮出口绝对速度小。因此,当流体流经叶轮及转能装置时,能量损失小,效率高,噪声低。但后弯式叶片产生的总扬程较低,需要较大的叶轮外径或较高的转速。为了高效率的要求,离心泵均采用后弯式叶片, 1.在泵与风机内有哪几种机械能损失?试分析损失的原因以及如何减小这些损失。

答:(1)机械损失:主要包括轴端密封与轴承的摩擦损失及叶轮前后盖板外表面与流体之间的圆盘摩擦损失两部分。

提高转速,叶轮外径可以相应减小,则圆盘摩擦损失增加较小,甚至不增加,从而可提 高叶轮机械效率。

(2)容积损失:泵与风机由于转动部件与静止部件之间存在间隙,当叶轮转动时,在间隙两侧产生压力差,因而时部分由叶轮获得能量的流体从高压侧通过间隙向低压侧泄露,称容积损失或泄露损失。如何减小:为了减少进口的容积损失,一般在进口都装有密封环(承磨环或口环),在间隙两侧压差相同的情况下,如间隙宽度减小,间隙长度增加,或弯曲次数较多,则密封效果较好,容积损失也较小。

(3)流动损失:流动损失发生在吸入室、叶轮流道、导叶与壳体中。如何减小:减小流量可减小摩擦及扩散损失,当流体相对速度沿叶片切线流入,则没有冲击损失,总之,流动损失最小的点在设计流量的左边。

1.两台几何相似的泵与风机,在相似条件下,

其性能参数如何按比例关系变化?

答:流量相似定律指出:几何相似的泵与风机,在相似工况下运行时,其流量之比与几何尺寸之比的三次方成正比、与转速比的一次方成正比,与容积效率比的一次方成正比。

扬程相似定律指出:几何相似的泵与风机,在相似工况下运行时,其扬程之比与几何尺寸比的平方成正比,与转速比的平方成正比,与流动效率比的一次方成正比。

功率相似定律指出:几何相似的泵与风机,在相似工况下运行时,其功率之比与几何尺寸比的五次方成正比,与转速比的三次方成正比,与密度比的一次方成正比,与机械效率比的一次方成正比。

2.当一台泵的转速发生改变时,其扬程、流量、功率将如何变化?

答:两台几何相似的泵与风机,在相似条件下,其性能参数如何按比例关系变化?

答:流量相似定律指出:几何相似的泵与风机,在相似工况下运行时,其流量之比与几何尺寸之比的三次方成正比、与转速比的一次方成正比,与容积效率比的一次方成正比。

扬程相似定律指出:几何相似的泵与风机,在相似工况下运行时,其扬程之比与几何尺寸比的平方成正比,与转速比的平方成正比,与流动效率比的一次方成正比。

功率相似定律指出:几何相似的泵与风机,在相似工况下运行时,其功率之比与几何尺寸比的五次方成正比,与转速比的三次方成正比,与密度比的一次方成正比,与机械效率比的一次方成正比。

当一台泵的转速发生改变时,其扬程、流量、功率将如何变化?

答:根据比例定律可知:流量

Vp q =

Vm q p

m

n n

扬程

p

H =

m H 2

(

)p

m

n n 功率

p

P =

m P 3

()p

m

n n

当某台风机所输送空气的温度变化时其全压、流量、功率将如何变化?

答:温度变化导致密度变化,流量与密度无关,

因而流量不变。

m

P

m p

p p ρρ=

功率

m

P m

p

P P ρρ=

1.何谓汽蚀现象?它对泵的工作有何危害?

答:汽泡的形成、发展和破裂以致材料受到破坏的全部过程,称为汽蚀现象。

危害:(1)材料破坏 (2)噪声和振动(3)性能下降

2.为什么泵要求有一定的几何安装高度?在什么情况下出现倒灌高度?

答:提高吸水性能,使泵在设计工况下工作时不发生汽蚀。

当吸水池液面压力等于该温度下液体所对应的饱和压力Pv 时,出现倒灌高度。

4.何谓有效汽蚀余量和必需汽蚀余量,二者有何关系? 答:有效汽蚀余量:指泵在吸入口处,单位重量液体所具有的超过汽化压力(饱和蒸汽压力)的富余能量。 必需汽蚀余量:指液体在泵吸入口的能头对压力最低点

处静压能头的富余能头。二者关系:当(

r

h ∆>

a

h ∆)时,泵内发生汽蚀; 当(

r h ∆<

a

h ∆时,泵内不会发生汽蚀;

当(

r h ∆=

a h ∆=

c

h ∆)时,处于临界状态。

7.提高转速后,对泵的汽蚀性能有何影响?

答:对同一台泵来说,当转速变化时,汽蚀余量随转速的平方成正比关系变化,即当泵的转速提高后,必需汽蚀余量成平方增加,泵的抗汽蚀性能大为恶化。 9.提高泵的抗汽蚀性能可采用那些措施?基于什么原理?

答:一、提高泵本身的抗汽蚀性能

(1)降低叶轮入口部分流速。(2)采用双吸式叶轮。(3)增加叶轮前盖板转弯处的曲率半径。。(4)叶片进口边适当加长。(5)首级叶轮采用抗汽蚀性能好的材料。 二、提高吸入系统装置的有效汽蚀余量

(1)减小吸入管路的流动损失。(2)合理确定两个高度。(3)

采用诱导轮(4)采用双重翼叶轮。 (5)采用超汽蚀泵。(6)设置前置泵。

泵与风机运行时有哪几种调节方式?其原理是什么?

各有何优缺点?

答:变速调节:原理是在管路特性曲线不变时,用变转速改变泵与风机的性能曲线,从而改变工况点。优点是大大减少附加的节流损失,在很大变工况范围内保持较高的效率。缺点是投资昂贵。

节流调节:原理是在管路中装设节流部件,利用改变阀门开度,使管路的局部阻力发生变化,来达到调节

相关文档
最新文档