离子三大守恒定律

合集下载

如何把握好电解质溶液中的三个守恒关系

如何把握好电解质溶液中的三个守恒关系

电解质溶液中,不论存在多少种离子,但溶液总是呈电中性,即阴离子所带负电荷总数一定等于阳离子所带正电荷总数,也就是电荷守恒定律。

在这个定律中,首先要注意的是溶液呈电中性这个关键词,溶液呈电中性与溶液呈中性是两个不同的概念,溶液呈中性则说明存在如下关系:c(H +)= c(OH -)。

所以理解其概念就不会混淆了。

如在KHCO 3溶液中必存在以下关系:c(K +)+c(H +)=c(HCO 3-)+c(OH -)+2c(CO 32-)分析:溶液中存在以下的电离:KHCO 3= K ++ HCO 3- HCO 3-H ++ CO 32- 、H 2O H ++ OH - 和水解:HCO3-+ H 2O H 2CO 3+ OH - ,所以溶液中存在K +、H +、HCO 3-、OH -、CO 32- 这些离子,由于CO 32-带2个负电荷,阴离子所带负电荷总数为c(HCO 3-)+c(OH -)+2c(CO 32-),阳离子所带正电荷总数为c(K +)+c(H +)。

根据电荷守恒定律,两者相等就是如下关系式:c(K +)+c(H +)=c(HCO 3-)+c(OH -)+2c(CO 32-)电荷守恒的具体应用:例1:某地的雨水呈明显酸性,取少量水样检测,其中含各离子的物质的量浓度分别是:c(Na +)=5.0×10-5mo l ·L -1,c(Cl -)=7.1×10-5mo l ·L -1,c(SO 42-)=4.5×10-6mo l ·L -1,c(NH 4+)=1.0×10-6mo l ·L -1.则雨水中氢离子的物质的量浓度为多少?分析:本题已知溶液中四种离子的浓度,求氢离子的浓度,可选用电荷守恒法:c(Na +)+ c(NH 4+)+ c(H +) + c(H +)水= c(OH -)水 +c(Cl -) +2c(SO 42-),由于c(H +)水= c(OH -)水,所以:5.0×10-5mo l ·L -1+1.0×10-6mo l ·L -1+ c(H +) =7.1×10-5mo l ·L -1+2×4.5×10-6mo l ·L -1解得:c(H +)=2.9×10-5mo l ·L -1点评:学生往往列出电荷守恒式c(Na +)+ c(NH 4+)+c(H +)=c(Cl -) +c(SO 42-)而产生错误,究其原因,是没有对电荷守恒的的概念理解透彻。

电解质溶液中的三个守恒

电解质溶液中的三个守恒

电解质溶液中的三个守恒一、电荷守恒电解质溶液中不论存在多少种离子,溶液老是呈电中性的,就是说阳离子所带的正电荷总数必然等于阴离子所带负电荷的总数,这就是电荷守恒规律。

在应用这个定律时,要明确溶液呈电中性和溶液呈中性是两个不同的概念,因为只有当c(H+)=c(OH-)时,溶液才呈中性(相对于酸碱性)。

例如:NaHCO3溶液中存在着:c(Na+)+c(H+)=c(HCO3-)+c(OH-)+2c(CO32—) 解析:溶液中存在有以下电离:NaHCO3=Na++HCO3-、HCO3-H++CO32—、H2O H++OH-和水解:HCO3-+H2O H2CO3 +OH-,所以溶液中存在Na+、H+、HCO3--、CO32—、OH-这些离子,阳离子所带正电荷总数为:c(Na+) +c(H+),由于CO32—带两个单位负电荷,故阴离子所带电荷总数为c(HCO3-) +c(OH-)+ 2c(CO32—)。

按照电荷守恒,必然有如下关系:c(Na+)+c(H+) =c(HCO3-)+c(OH-)+2c(CO32—)例题1.某地的雨水呈酸性,取其少量进行检测,其中含各离子的物质的量浓度别离为:c (Na+)=×10-5mol·L-1,c(Cl-)=×10-5mol·L-1,c(SO42-)=×10-6mol·L-1,c (NH4+)=×10-6mol·L-1,则雨水pH约是多少?判断正误:c(Na+)+c (NH4+)+ c (H+)=c (OH-)+c(Cl-)+c (SO42-)解析:该题可采用电荷守恒法:c (Na+) + c (NH4+)+ c (H+)=c (OH-)+ c(Cl-) +2c (SO42-),由于溶液显酸性,c (OH-)水很小,即由水电离出来氢氧根离子可以略去不计。

代入数据有:×10-5mol·L-1+×10-6mol·L-1+c (H+)=×10-5mol·L-1+2××10-6mol·L-1,解得:c (H+) =×10-5mol·L-1电荷守恒是用离子的浓度或物质的量来表示电荷关系的,所以不仅要考虑离子的浓度或物质的量,还要考虑离子所带的电荷。

溶液中离子浓度大小比较及三大守恒定律讲解例题

溶液中离子浓度大小比较及三大守恒定律讲解例题

⑵相对较强的酸与相对较弱的碱溶液混合,因碱有剩余,
所得溶液为碱性;
⑶相对较弱的酸与相对较强的碱溶液混合,因酸有剩 余,所得溶液为酸性; ⑷若弱酸、弱碱混合,则考虑两者的相对强弱,混合后 的溶液可能也为酸性,碱性或中性。
【归纳】谁弱谁过量、谁弱显谁性、同强(弱)显中性
解题方法小结:
两种(或多种)物质相混合: 先考虑这两种物质能否发生反应、反应后溶液中剩 余的物质是强电解质还是弱电解质。 如果恰好完全反应,则考虑生成的物质是什么,然 后按照只有一物质作溶质进行处理; 若溶液中同时存在能水解的盐和弱酸、弱碱,若不 特别注明则溶液通常显弱酸、弱碱的性质.
CH3COONa配成1 L混合溶液,已知其中c(CH3COO-) 大 于c(Na+),对该混合溶液下列判断正确的是( A B ) A.c(H+)>c(OH-) B.c(CH3COOH)+c(CH3COO-)=0.2 mol· L-1 C.c(CH3COOH)>c(CH3COO-) D.c(CH3COO-)+c(OH-)=0.1 mol· L-1
1、二元的盐>一元的盐
2、水解的盐>双水解的盐 3、当溶液中存在水解的显性离子时,抑制盐的水解, 则该水解的离子浓度大
解题方法小结:
对于溶质单一型的溶液, 若溶质是弱酸或弱碱的考虑电离且电离是弱电离, 若溶质是盐考虑水解同样水解也是弱水解。 无论哪种情况都要考虑水的电离。
2.两种溶液混合后不同离子浓度的比较: 对策:①首先考虑电荷守恒;
【想一想】写出下列溶液的MBE。 1. NH4Cl溶液 C(Cl-) = C(NH4+) + C(NH3· H2O)
2.Na2S溶液
C(Na+) = 2[C(S2-) + C(HS-) + C(H2S)]

三大守恒定律和离子浓度大小关系

三大守恒定律和离子浓度大小关系

盐类的水解第3课时电解质溶液中三种守恒及其应用班级小组姓名评价【学习目标】1、学会电荷守恒、物料守恒、质子守恒的书写方法2、会用三种守恒解决有关问题3、学会方法的灵活应用【课前2分钟】请写出下列盐类水解的离子方程式NH4Cl:Na2S:NaHCO3:Na2CO3:【基础感知与合作探究一】以Na2S溶液为例分析下列问题:(1)、电解质溶液中存在哪些电离?(2)、电解质溶液中哪些微粒可以发生水解?请用方程式书写出来。

(3)、电解质溶液中有哪些阴阳离子?它们存在怎么样的关系?(4)、电解质溶液中物料(原子间)存在什么关系?(5)、电解质溶液中哪些微粒会得质子或失去质子?得失质子间存在什么样关系?电荷守恒:【用一用1】请你写出下列物质的电荷守恒NH4ClNaHCO3Na2CO3【用一用2】请你写出下列物质的物料守恒NH4ClNaHCO3Na2CO3【用一用3】请你写出下列物质的质子守恒NH4ClNaHCO3Na2CO3【用一用4】1、下列溶液中各微粒的浓度关系正确的是A.在Na2CO3溶液中:c(Na+) =2c(CO32-)+c(HCO3-)B.在醋酸钠溶液中:c(Na+)= c(CH3COO-)C.在硫酸溶液中加氨水直至溶液呈中性,则c(NH4+)=2c(SO42-)D.在NaHA溶液中一定有:c(Na+) + c(H+) =c(HA-) + c(OH-) +2 c(A2-)2、下列溶液中各微粒的浓度关系正确的是A. Na2CO3溶液中:2c(Na+) =c(CO32-)+c(HCO3-) +c(H2CO3)B. 醋酸钠溶液中:c(Na+)= c(CH3COO-)+c(CH3COOH)C. 0.1mol·L-1NaHSO3溶液中:c(SO32-)+c(HSO3-)+c(H2SO3)=0.3mol·L-1D. 0.1 mol·L-1Na2S溶液中:c(S2-)+c(HS-)=0.1 mol/L3、在Na2CO3溶液中,下列等量关系正确的是:A. c (OH-) =c (H+) + c (HCO3-) + c (H2CO3)B. 2c (Na+) =c (CO32-) + c (HCO3-) + c (H2CO3)C. c (Na+) + c (OH-) =c (H+) + 2c (CO32-) + 3c (HCO3-) + 4c (H2CO3)D. c (Na+) + c (H+) =c (HCO3-) + c (CO32-) + c (OH-)4、下列溶液中各微粒的浓度关系不正确的是A.在0.1 mol·L-1CH3COONa溶液中,c(OH-)=c(CH3COOH)+c(H+)B.1mol·L-1NH4Cl溶液中:c(H+)=c(NH4+)-c(OH-)C.0.2mo1·L-1的Na2CO3溶液:c(OH-)=c(HCO3-)+c(H+)+2c(H2CO3)D.在NaHCO3溶液中,c(OH-)=c(H+)+c(H2C O3)- c(CO32-)5、下列溶液中各微粒的浓度关系正确的是A. Na2CO3溶液中:2c(Na+) =c(CO32-)+c(HCO3-) +c(H2CO3)B. 乙酸钡溶液中:2c(Ba2+)= c(CH3COO-)+c(CH3COOH)C. 0.1mol·L-1NaHSO3溶液中:c(SO32-)+c(HSO3-)+c(H2SO3)=0.1mol·L-1D. 0.1 mol·L-1Na2S溶液中:c(S2-)+c(HS-)=0.1 mol/L第4课时电解质溶液中离子浓度大小比较【学习目标】1.会比较溶液中离子浓度大小的关系。

化学三大守恒定律

化学三大守恒定律

对于溶液中微粒浓度(或数目)的比较,要遵循两条原则:一是电荷守恒,即溶液中阳离子所带正电荷总数等于阴离子所带负电荷总数;二是物料守恒,即溶液中某一组分的原始浓度应该等于它在溶液中各种存在形式的浓度之和。

(物料守恒实际属于原子个数守恒和质量守恒。

)★电荷守恒1. 化合物中元素正负化合价代数和为零2.溶液呈电中性:所有阳离子所带正电荷总数等于阴离子所带负电荷总数3.除六大强酸,四大强碱外都水解,多元弱酸部分水解。

产物中有部分水解时产物4.这个离子所带的电荷数是多少,离子前写几。

例如:NaHCO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)★物料守恒物料守恒可以理解为原子守恒的另一种说法,即“任一化学反应前后原子种类(指原子核中质子数相等的原子,就是元素守恒)和数量分别保持不变”。

⒈ 含特定元素的微粒(离子或分子)守恒⒉ 不同元素间形成的特定微粒比守恒⒊ 特定微粒的来源关系守恒【例1】在0.1mol/LNa3PO4溶液中:根据P元素形成微粒总量守恒有:c[PO43-]+c[HPO42-]+c[H2PO4-]+c[H3PO4]=0.1mol/L根据Na与P形成微粒的关系有:c[Na+]=3c[PO43-]+3c[HPO42-]+3c[H2PO4-]+3c[H3PO4]根据H2O电离出的H+与OH-守恒有:c[OH-]=c[HPO42-]+2c[H2PO4-]+3c[H3PO4]+c[H+]【例2】以NaHCO3溶液为例若HCO3-没有电离和水解,则c(Na+)=c(HCO3-)现在HCO3-会水解成为H2CO3,电离为CO32-(都是1:1反应,也就是消耗一个HCO3-,就产生一个H2CO3或者CO32-),那么守恒式中把Na+浓度和HCO3-及其产物的浓度和画等号(或直接看作钠与碳的守恒):即c(Na+) == c(HCO3-) + c(CO32-) + c(H2CO3)【例3】在0.1mol/L的H2S溶液中存在如下电离过程:(均为可逆反应)H2S=(H+) +(HS-)(HS-)=(H+)+(S2-)H2O=(H+)+(OH-)可得物料守恒式c(S2-)+c(HS-)+c(H2S)==0.1mol/L, (在这里物料守恒就是S元素守恒--描述出有S元素的离子和分子即可)【例4】Na2CO3溶液的电荷守恒、物料守恒、质子守恒·电荷守恒c(Na+)+c(H+)=2c(CO32-)+c(HCO3-)+c(OH-)上式中,阴阳离子总电荷量要相等,由于1mol碳酸根电荷量是2mol负电荷,所以碳酸根所带电荷量是其物质的量的2倍。

高考化学真题专题解析—水溶液中的离子平衡

高考化学真题专题解析—水溶液中的离子平衡

高考化学真题专题解析—水溶液中的离子平衡【母题来源】2022年全国乙卷【母题题文】常温下,一元酸HA 的3a K (HA)=1.010-⨯。

在某体系中,+H 与-A 离子不能穿过隔膜,未电离的HA 可自由穿过该膜(如图所示)。

设溶液中()c (HA)c(HA)c A -=+总,当达到平衡时,下列叙述正确的是A .溶液Ⅰ中()()()c Hc OH c A +--=+B .溶液Ⅱ中的HA 的电离度()-c A c (HA)⎛⎫ ⎪ ⎪⎝⎭总为1101C .溶液Ⅰ和Ⅱ中的(HA)c 不相等D .溶液Ⅰ和Ⅱ中的c (HA)总之比为410- 【答案】B 【试题解析】A .常温下溶液I 的pH=7.0,则溶液I 中c (H +)=c (OH -)=1×10-7mol/L ,c (H +)<c (OH -)+c (A -),A 错误;B .常温下溶液II 的pH=1.0,溶液中c (H +)=0.1mol/L ,K a =+-(H )(A )(HA)c c c ⋅=1.0×10-3,c 总(HA)=c (HA)+c (A -),则--0.1(A )(HA)-(A )c c c 总=1.0×10-3,解得-(A )(HA)c c 总=1101,B 正确; C .根据题意,未电离的HA 可自由穿过隔膜,故溶液I 和II 中的c (HA)相等,C 错误;D .常温下溶液I 的pH=7.0,溶液I 中c (H +)=1×10-7mol/L ,K a =+-(H )(A )(HA)c c c ⋅=1.0×10-3,c 总(HA)=c (HA)+c (A -),-710[(HA)(HA)](HA)c c c -总=1.0×10-3,溶液I 中c 总(HA)=(104+1)c (HA),溶液II 的pH=1.0,溶液II 中c (H +)=0.1mol/L ,K a =+-(H )(A )(HA)c c c ⋅=1.0×10-3,c 总(HA)=c (HA)+c (A -),0.1[(HA)(HA)](HA)c c c -总=1.0×10-3,溶液II 中c 总(HA)=1.01c (HA),未电离的HA 可自由穿过隔膜,故溶液I 和II 中的c (HA)相等,溶液I 和II 中c 总(HA)之比为[(104+1)c (HA)]∶[1.01c (HA)]=(104+1)∶1.01≈104,D 错误; 答案选B 。

电荷守恒、物料守恒、质子守恒综述知识讲解

电荷守恒、物料守恒、质子守恒综述知识讲解

电荷守恒、物料守恒、质子守恒综述电荷守恒、物料守恒、质子守恒综述电荷守恒,物料守恒,质子守恒同为溶液中的三大守恒关系。

这三个守恒的最大应用是判断溶液中粒子浓度的大小,或它们之间的关系等式。

电荷守恒:是指溶液中所有阳离子所带的正电荷总数与所有阴离子所带的负电荷总数相等。

即溶液永远是电中性的,所以阳离子带的正电荷总量=阴离子带的负电荷总量1.溶液必须保持电中性,即溶液中所有阳离子所带的电荷数等于所有阴离子所带的的电荷数2.除六大强酸,四大强碱外都水解,多元弱酸部分水解。

产物中有分步水解产物。

3.这个离子所带的电荷数是多少,离子前就写几。

例如:Na2CO3: c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO3 2-)因为碳酸根为带两个单位负电荷,所以碳酸根前有一个2。

在下列物质的溶液中CH3COONa: c(Na+)+c(H+)=c(CH3COO-)+c(OH-)Na2CO3: c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO3 2-)NaHCO3: c(Na+)+c(H+)=c(HCO3-)+2(CO32-)+c(OH-)Na3PO4: c(Na+)+c(H+)=3c(PO4 3-)+2c(HPO4 2-)+c(H2PO4-)+c(OH-)电荷守恒定律:物理学的基本定律之一。

它指出,对于一个孤立系统,不论发生什么变化,其中所有电荷的代数和永远保持不变。

电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种符号的电荷,那么必定有等量的异号电荷同时产生或消失。

注意:1.正确分析溶液中存在的阴、阳离子是书写电荷守恒式的关键,需要结合电解质电离及盐类的水解知识,尤其是对多级电离或多级水解,不能有所遗漏。

如Na2CO3溶液中存在如下电离和水解平衡:Na2CO3 2 Na+ +CO32-;CO32-+ H2OHCO3-+OH-;HCO3- +H2O H2CO3 +OH-;H2O H++OH- 。

高三化学 溶液中离子浓度大小比较及三大守恒定律讲解例题

高三化学 溶液中离子浓度大小比较及三大守恒定律讲解例题

【方法规律总结】
电荷守恒: 1.溶液中离子要找全; 2.分清离子浓度和电荷浓度。
物料守恒: 1.某元素守恒; 2.等量代换。
质子守恒: 1.明确溶液中那些微粒结合H+(或OH-),结 合的数目; 2.那些微粒电离出H+(或OH-)电离的数目。
二、常见题型和对策
1、单一溶质溶液
(1)弱酸或溶液—只考虑电解质的电离与水的电离
【想一想】写出下列溶液的MBE。 1. NH4Cl溶液 C(Cl-) = C(NH4+) + C(NH3·H2O) 2.Na2S溶液 C(Na+) = 2[C(S2-) + C(HS-) + C(H2S)] 3.NaHCO3溶液溶液
C(Na+) = C(HCO3-) + C(H2CO3) + C(CO32-)
A.c(Cl-)>c(NH4+)>c(H+)>c(OH-) B.c(NH4+)>c(Cl-)> c(H+) > c(OH-)
( A)
C.c(NH4+) =c(Cl-)> c(H+) = c(OH-)
D.c(Cl-)= c(NH4+) > c(H+) > c(OH-)
规律:在有“弱酸根离子或弱碱金属离子”存在的溶液中, 由于该离子水解,因而使其浓度减小,故有: C(不水解离子)>C(水解离子)> C(显性离子) >C(水电离 出的另一种子)
C(Na+)>C(S2-)>C(OH-)>C(HS-)>C(H2S)>C(H+)
二、牢记“三个守恒式”
1、电荷守恒式—CBE
⑴电荷守恒:电解质溶液总是呈电中性的,即:电解 质溶液中所有阳离子所带有的正电荷总数与所有的阴 离子所带的负电荷总数相等。 ⑵写法: 第一步,找出溶液中含有的所有离子; 第二步,把阳离子写在等式的一侧,阴离子写在等式 的另一侧,各离子物质的量或浓度的系数等于离子的 带电荷数。

溶液中离子浓度大小比较及三大守恒定律讲解共48页文档

溶液中离子浓度大小比较及三大守恒定律讲解共48页文档

溶液中离ቤተ መጻሕፍቲ ባይዱ浓度大小比较及三大守恒定 律讲解
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

规律五-三大守恒规律规律

规律五-三大守恒规律规律

规律五三大守恒规律在水溶液化学计算中,三大守恒规律即:电子守恒、原子守恒、电荷守恒。

根据这些守恒方法可以快速找到解题突破口,利用物质变化过程中某一特定的量(如得失电子数目、某一特定原子数目、质子H+)固定不变来列式求解。

考察了学生整体化学思维方式。

一.电子守恒电子守恒特指在氧化还原反应过程中,氧化剂所得电子总数=还原剂所失电子总数。

在氧化还原反应过程中,常常利用电子守恒法计算生成物的物质的量或电解池的电解过程中电极产物的相关计算。

解题思路:先分别找出氧化剂、还原剂及其各自物质的量及每摩尔氧化剂(还原剂)得失电子的数目,根据电子守恒列出数学等式----氧化剂的物质的量×每摩尔氧化剂得到的电子数目=还原剂的物质的量×每摩尔还原剂失去的电子数目,求解即可。

在非氧化还原反应过程中,要遵循电荷守恒。

即电解质溶液中,无论存在多少种离子,电解质溶液总是呈电中性。

所有阴离子所带负电荷总数=所有阳离子所带正电荷总数。

1.直接以电子守恒建立关系式运用物质之间的当量关系进行计算。

如:用Cu电极电解Na2SO4溶液,阳极、阴极产物及电子转移关系为Cu---2e----H2---2OH-。

2.对于多步或连续的氧化还原反应,可根据“电子传递路径”找出起始反应物与最终生成物之间的关系进行计算而忽略反应过程。

如:将a g Cu投入V mL未知浓度的HNO3中,Cu 完全溶解,将用集气瓶收集到的气体倒置于水面,再向集气瓶中通入bmLO2后,集气瓶中充满水。

该过程电子传递路径为Cu→HNO3→O2,起始反应物与最终生成物的关系为2Cu---O23.以电子守恒为核心建立等价代换关系式。

如:用OH-或Cl-来沉淀某些金属阳离子时,所消耗的阴离子的物质的量=金属的“总正化合价数”。

据此,可延伸为将金属用非氧化性酸恰好溶解后,再用上述阴离子沉淀时,消耗的阴离子物质的量=金属失去的电子的总物质的量。

二.原子守恒原子守恒即化学反应前后,各元素的原子种类、数目都不变。

离子反应特点

离子反应特点

离子反应特点离子反应是指化学反应中发生离子之间的相互作用,包括离子的相互吸引和排斥等现象。

离子反应具有以下特点:1. 电荷守恒定律离子反应中,反应物和生成物的总电荷必须相等,即电荷守恒定律。

这是因为离子反应中原子或分子中的电子被转移到了其他原子或分子中,电荷不能被创造或破坏。

例如,Na+和Cl-反应生成NaCl时,Na+的电荷为+1,Cl-的电荷为-1,两者反应后电荷为0,即电荷守恒。

2. 离子化离子反应中,原子或分子失去或获得一个或多个电子,形成带电离子的过程称为离子化。

离子化是离子反应发生的前提条件。

例如,氢气和氧气反应生成水的过程中,氢原子失去一个电子成为H+离子,氧原子获得两个电子成为O2-离子,形成的水分子中包含H+和O2-离子。

3. 配位作用离子反应中,离子之间的相互作用不仅仅是电荷相互作用,还包括配位作用。

配位作用是指离子或分子中的一个或多个原子或分子围绕着另一个离子或分子形成化学键的过程。

例如,Cu2+离子和NH3分子反应生成[Cu(NH3)4]2+配合物时,四个NH3分子围绕着Cu2+离子形成了化学键。

4. 氧化还原反应离子反应中最常见的类型是氧化还原反应,也称为电子转移反应。

氧化还原反应是指原子或分子失去或获得一个或多个电子的过程。

例如,Fe2+和Cr2O72-反应生成Fe3+和Cr3+时,Fe2+失去一个电子成为Fe3+,Cr2O72-获得一个电子成为Cr3+,这是一个氧化还原反应。

5. 沉淀反应离子反应中,一些离子会在溶液中形成不溶于水的沉淀物,称为沉淀反应。

沉淀反应是指两种溶液中的离子相互作用,生成不溶于水的固体沉淀物的过程。

例如,Ca2+和CO32-反应生成不溶于水的CaCO3沉淀物时,Ca2+和CO32-的相互作用导致了CaCO3的生成。

综上所述,离子反应具有电荷守恒定律、离子化、配位作用、氧化还原反应和沉淀反应等特点,这些特点使离子反应成为化学反应中重要的一类。

化学电荷守恒、物料守恒、质子守恒综述

化学电荷守恒、物料守恒、质子守恒综述

电荷守恒、物料守恒、质子守恒综述电荷守恒,物料守恒,质子守恒同为溶液中的三大守恒关系。

这三个守恒的最大应用是判断溶液中粒子浓度的大小,或它们之间的关系等式。

电荷守恒:是指溶液中所有阳离子所带的正电荷总数与所有阴离子所带的负电荷总数相等。

即溶液永远是电中性的,所以阳离子带的正电荷总量=阴离子带的负电荷总量1.溶液必须保持电中性,即溶液中所有阳离子所带的电荷数等于所有阴离子所带的的电荷数2.除六大强酸,四大强碱外都水解,多元弱酸部分水解。

产物中有分步水解产物。

3.这个离子所带的电荷数是多少,离子前就写几。

例如:Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO3 2-)因为碳酸根为带两个单位负电荷,所以碳酸根前有一个2。

在下列物质的溶液中CH3COONa:c(Na+)+c(H+)=c(CH3COO-)+c(OH-)Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)NaHCO3:c(Na+)+c(H+)=c(HCO3-)+2(CO32-)+c(OH-)Na3PO4:c(Na+)+c(H+)=3c(PO43-)+2c(HPO42-)+c(H2PO4-)+c(OH-) 电荷守恒定律:物理学的基本定律之一。

它指出,对于一个孤立系统,不论发生什么变化,其中所有电荷的代数和永远保持不变。

电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种符号的电荷,那么必定有等量的异号电荷同时产生或消失。

注意:1.正确分析溶液中存在的阴、阳离子是书写电荷守恒式的关键,需要结合电解质电离及盐类的水解知识,尤其是对多级电离或多级水解,不能有所遗漏。

如Na2CO3溶液中存在如下电离和水解平衡:Na2CO3 2 Na+ +CO32-;CO32-+ H2O HCO3-+OH-;HCO3- +H2O H2CO3 +OH-;H2O H++OH-。

高中化学三大守恒知识点总结

高中化学三大守恒知识点总结

高中化学三大守恒知识点总结一、质量守恒定律质量守恒定律,又称“物质定律”,是一种科学定律,认为任何化学反应和物质的变化都不会改变物质的总质量,即质量在化学反应中是守恒的。

质量守恒定律的表述是:在化学反应过程中,物质的质量不变,也就是说,反应的原料质量等于反应的产物质量。

实际上,质量守恒定律可以从经典力学思想中说明,即质量是物体内构成物质数量的一种度量,质量在动力学和能量守恒定律中表现出一致性。

质量守恒定律是化学反应等物质转化过程中的主导思想,是化学过程中不变的定律,广泛应用于自然界各种物质焓变、热容等物理量的定义和计算,以及化学分析、物质分类和合成等。

能量守恒定律是指在一般的物理反应中,能量的各种形式在这个反应中是不完全消失的,任何物理系统中产生有热或体积变化的反应,都要经历一定的工作量数量,而能量总量是定值,即物质变化伴随着能量变化,而能量总量是不变的。

这种定律表达的本质便是能量守恒原理,即能量在任何物质的转移中都保持不变,也就是说,能量在反应中守恒不变。

能量守恒定律在物质运动中也得到了证明,如发电机制动原理中的功率定律、电动机原理的“功和力的乘积定律”、机械艺术中的变速箱原理“动能传递定律”等都是以能量守恒定律为基础而形成的。

能量守恒定律在物理体系中是不变的,在化学反应中起着不可替代的作用,是检验化学反应有效性、理解化学反应过程和探究新反应产物物性等重要依据,是引起或使高级化学思维能力发展的基础。

电子守恒定律是指在下列化学反应中,原子的核电荷总数不变的原理:原子间的分子化学反应、溶解反应、酸碱反应、电解反应,以及所有其他由原子变成分子的化学反应。

这个定律的表述是:在一个元素的任何反应中,原子内的电子数量总是不变的。

也就是说,化学反应的原子提供的总数是不变的,只是原子间发生变化而已。

电子守恒定律是指化学反应中原子核电荷比例的不变性,是氯化钠、钾化钙等物质变化的基础,也是离子价数、元素略号系统产生的结果。

离子三大守恒定律

离子三大守恒定律

离子三大守恒定律电荷守恒--即溶液永远是电中性的,所以阳离子带的正电荷总量=阴离子带的负电荷总量。

例:NH4Cl溶液:c(NH4+)+ c(H+)= c(Cl-)+ c(OH-)写这个等式要注意2点:1)要判断准确溶液中存在的所有离子,不能漏掉。

2)注意离子自身带的电荷数目。

如:Na2CO3溶液:c(Na+)+ c(H+)= 2c(CO32-)+ c(HCO3-)+ c(OH-)NaHCO3溶液:c(Na+)+ c(H+)= 2c(CO32-) + c(HCO3-)+ c(OH-)NaOH溶液:c(Na+) + c(H+) = c(OH-)Na3PO4溶液:c(Na+) + c(H+) = 3c(PO43-) + 2c(HPO42-) + c(H2PO3-) + c(OH-)总结:电荷守恒式即溶液中所有阳离子的物质的量浓度与其所带电荷数乘积之和等于所有阴离子的物质的量浓度与其所带电荷数乘积之和。

2、物料守恒--溶液中某一组分的原始浓度等于它在溶液中各种存在形式的浓度之和,也就是元素守恒,即变化前后某种元素的原子或原子团个数守恒。

物料守恒实际属于原子个数守恒和质量守恒。

例:NH4Cl溶液:化学式中N:Cl=1:1,即得到,c(NH4+)+ c(NH3?H2O) = c(Cl-)Na2CO3溶液:Na:C=2:1,即得到,c(Na+) = 2c(CO32-+ HCO3- + H2CO3)NaHCO3溶液:Na:C=1:1,即得到,c(Na+) = c(CO32-)+ c(HCO3-) + c(H2CO3)写这个等式要注意,把所有含这种元素的粒子都要考虑在内,可以是离子,也可以是分子。

3、质子守恒——即H+守恒,溶液中酸失去H+总数等于碱得到H+总数,利用物料守恒和电荷守恒推出。

1)Na2CO3溶液:水电离出的c(H+)=c(OH-),在碳酸钠水溶液中水电离出的氢离子以H+、HCO3-、H2CO3三种形式存在。

化学三大守恒的的知识总结以及例题

化学三大守恒的的知识总结以及例题

三大守恒电荷守恒基本看法化合物中元素正负化合价代数和为零指溶液一定保持电中性,即溶液中全部阳离子所带的电荷数等于全部阴离子所带的电荷数除六大强酸,四大外都,多元弱酸部分水解。

产物中有分步水解时产物。

拜见例题Ⅳ这个离子所带的电荷数是多少,离子前写几。

比方:Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)因为碳酸根为带两个单位的,所从前有一个2。

比方:在NaHCO3 溶液中Ⅰ.CH3COONa: c(Na+)+c(H+)=c(CH3COO-)+c(OH-)Ⅱ.Na2CO3:c(Na+)+c(H+)=c(OH-)+c(HCO3-)+2c(CO32-)Ⅲ.NaHCO3:c(Na+)+c(H+)=c(HCO3-)+2c(CO32-)+c(OH-)Ⅳ.Na3PO4:c(Na+)+c(H+)=3c(PO43-)+2c(HPO42-)+c(H2PO4-)+c(OH-)电荷守恒定律物理学的基本定律之一。

它指出,对于一个,无论发生什么变化此中全部电荷的代数和永久保持不变。

电荷守恒定律表示,假如某一地域中的电荷增添或减少了,,那么必然有等量的电荷进入或走开该地域;假如在一个物理过程中产生或消逝了某种符号的电荷,那么必然有等量的异号电荷同时产生或消逝。

电荷守恒应用所谓电荷守恒是指溶液中全部阳离子所带的正电荷总数与全部阴离子所带的负电荷总数相等。

1.正确解析溶液中存在的阴阳离子是书写电荷守恒式的重点,需要联合电解质电离及盐类的水解知识,特别是对多级电离或多级水解,不可以有所遗漏。

如Na2CO3溶液中存在以下电离和水解均衡:Na2CO3==2Na++CO32-;CO32-+H2OHCO3-+OH;-HCO3—+H2OH2CO3+OH—;H2OH++OH—。

因此溶液中阳离子有:Na+、H+,阴离子有:CO32—、HCO3—、OH—。

2.联合阴阳离子的数目及其所带的电荷可以写出:N(Na+)+N(H+)=2N(CO32 —)+N(HCO3—)+N(OH—)3.将上式两边同时除以NA得:n(Na+)+n(H+)=2n(CO32—)+n(HCO3—)+n(OH—);再同时除以溶液体积V得:C(Na+)+C(H+)=2C(CO32—)+C(HCO3—)+C(OH—),这就是Na2CO3溶液的电荷守恒式。

高中化学溶液离子水解与电离中三大守恒详解

高中化学溶液离子水解与电离中三大守恒详解

电离与水解电解质溶液中有关离子浓度的判断是近年高考的重要题型之一。

解此类型题的关键是掌握“两平衡、两原理”,即弱电解质的电离平衡、盐的水解平衡和电解质溶液中的电荷守恒、物料守恒原理。

首先,我们先来研究一下解决这类问题的理论基础。

一、电离平衡理论和水解平衡理论1.电离理论:⑴弱电解质的电离是微弱的,电离消耗的电解质及产生的微粒都是少量的,同时注意考虑水的电离的存在;⑵多元弱酸的电离是分步的,主要以第一步电离为主;2.水解理论:从盐类的水解的特征分析:水解程度是微弱的(一般不超过2‰)。

例如:NaHCO3溶液中,c(HCO3―)>>c(H2CO3)或c(OH― )理清溶液中的平衡关系并分清主次:⑴弱酸的阴离子和弱碱的阳离子因水解而损耗;如NaHCO3溶液中有:c(Na+)>c(HCO3-)。

⑵弱酸的阴离子和弱碱的阳离子的水解是微量的(双水解除外),因此水解生成的弱电解质及产生H+的(或OH-)也是微量,但由于水的电离平衡和盐类水解平衡的存在,所以水解后的酸性溶液中c(H+)(或碱性溶液中的c(OH-))总是大于水解产生的弱电解质的浓度;⑶一般来说“谁弱谁水解,谁强显谁性”,如水解呈酸性的溶液中c(H+)>c(OH-),水解呈碱性的溶液中c(OH-)>c(H+);⑷多元弱酸的酸根离子的水解是分步进行的,主要以第一步水解为主。

二、电解质溶液中的守恒关系1、电荷守恒:电解质溶液中的阴离子的负电荷总数等于阳离子的正电荷总数,电荷守恒的重要应用是依据电荷守恒列出等式,比较或计算离子的物质的量或物质的量浓度。

如(1)在只含有A+、M-、H+、OH―四种离子的溶液中c(A+)+c(H+)==c(M-)+c(OH―),若c(H+)>c(OH―),则必然有c(A+)<c(M-)。

例如,在NaHCO3溶液中,有如下关系:C(Na+)+c(H+)==c(HCO3―)+c(OH―)+2c(CO32―)书写电荷守恒式必须①准确的判断溶液中离子的种类;②弄清离子浓度和电荷浓度的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电荷守恒--即溶液永远是电中性的,所以阳离子带的正电荷总量=阴离子带的负电荷总量。

例:NH4Cl溶液:c(NH4+)+ c(H+)= c(Cl-)+ c(OH-)
写这个等式要注意2点:
1)要判断准确溶液中存在的所有离子,不能漏掉。

2)注意离子自身带的电荷数目。

如:
Na2CO3溶液:c(Na+)+ c(H+)= 2c(CO32-)+ c(HCO3-)+ c(OH-)
NaHCO3溶液:c(Na+)+ c(H+)= 2c(CO32-) + c(HCO3-)+ c(OH-)
NaOH溶液:c(Na+) + c(H+) = c(OH-)
Na3PO4溶液:c(Na+) + c(H+) = 3c(PO43-) + 2c(HPO42-) + c(H2PO3-) + c(OH-)
总结:电荷守恒式即溶液中所有阳离子的物质的量浓度与其所带电荷数乘积之和等于所有阴离子的物质的量浓度与其所带电荷数乘积之和。

2、物料守恒--溶液中某一组分的原始浓度等于它在溶液中各种存在形式的浓度之和,也就是元素守恒,即变化前后某种元素的原子或原子团个数守恒。

物料守恒实际属于原子个数守恒和质量守恒。

例:
NH4Cl溶液:化学式中N:Cl=1:1,即得到,c(NH4+)+ c(NH3•H2O) = c(Cl-)
Na2CO3溶液:Na:C=2:1,即得到,c(Na+) = 2c(CO32- + HCO3- + H2CO3)
NaHCO3溶液:Na:C=1:1,即得到,c(Na+) = c(CO32-)+ c(HCO3-) + c(H2CO3)
写这个等式要注意,把所有含这种元素的粒子都要考虑在内,可以是离子,也可以是分子。

3、质子守恒——即H+守恒,溶液中酸失去H+总数等于碱得到H+总数,利用物料守恒和电荷守恒推出。

1)Na2CO3溶液:
水电离出的c(H+)=c(OH-),在碳酸钠水溶液中水电离出的氢离子以H+、HCO3-、
H2CO3三种形式存在。

所以
c (OH-)= c(HCO3-) + 2c(H2CO3) + c(H+)水电离出的c(H+)=c(OH-)
在碳酸钠水溶液中水电离出的氢离子以(H+,HCO3-,H2CO3)三种形式存在,其中1mol碳酸分子中有2mol水电离出的氢离子
所以c(OH-)=c(H+)+c(HCO3-)+2c(H2CO3)
此外质子守恒也可以用电荷守恒和物料守恒两个式子相减而得到(电荷守恒-物料守恒=质子守恒)
2)NaHCO3溶液
方法一:由电荷守恒和物料守恒联立得到。

C(H+)+C(Na+)=C(HCO3-)+2C(CO32-)+C(OH-) 这个式子叫电荷守恒
C(Na+)=C(HCO3-)+ C(CO32-)+C(H2CO3) 这个式子叫物料守恒
两式相减得:
C(H+)+C(H2CO3)=C(CO32-)+C(OH-。

相关文档
最新文档