2高光谱遥感成像系统.ppt

合集下载

高光谱遥感的概念

高光谱遥感的概念

遥感的发展趋势 (1)随着热红外成像、机载多极化合成孔径雷达、高分辨力表层穿透雷达和星载合成孔径 雷达技术日益成熟,遥感波谱域从最早的可见光向近红外、短波红外、热红外、微波方向发 展,波谱域的扩展将进一步适应各种物质反射、辐射波谱的特征峰值波长的宽域分布。
(波段范围扩展从可见光、近红外、发展到中 远红外、微波)
(6)建立适用于遥感图像自动解译的专家系统,逐步实现遥感图像专题信息提取自动化。 (遥感图像自动解译的专家系统)
(7)3S一体化
(8)随着高空间分辨力新型传感器的应用,遥感图像空间分辨率从1KM、500m、250m、 80m、30m、20m、10m、5m发展到1m,军事侦察卫星传感器可达到15cm或者更高的分辨 率。空间分辨率的提高,有利于分类精度的提高,定位和目标识别,但也增加了计算机分类 的难度。
总结起来,高光谱分辨率遥感信息的分析与处理,侧重于从光 谱维角度对遥感图像信息进行展开和定量分析,其图像处理模式的 关键技术,例如:
(1) 光谱重建,即:成像光谱数据的定标、定量化和大气纠正模 型与算法,恢复地物光谱的真实面目;
一些针对传统遥感数据的图像处理算法和技术,如:特征选择与提取、图像分类等技术 面临挑战。如:用于特征提取的主分量分析方法,用于分类的最大似然法、用于求植被 指数的NDVI算法等等,不能简单地直接应用于高光谱数据。
3、如何处理高光谱遥感数据?
高光谱遥感技术的发展来自于成像技术的不断完善,成像光谱仪有其独特的优越性,但同时 海量数据也给应用和分析带来了不便。
➢ 常规遥感的局限:波段太少;光谱分辨率太低;波段宽一般>100nm;波段在光谱上不连续, 不能覆盖整个可见光至红外光(0.4~2.4nm)光谱范围。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光成像光谱仪(AVIRIS)记录这一波 段范围内的光谱信息用10个以上数据点。

高光谱遥感080705(2)

高光谱遥感080705(2)

2. 高光谱遥感成像技术——光谱成像
色散型成像光谱仪
光谱图像立方体
λ
前置光学 干涉型成像光谱仪 前置光学 干涉成像 光电转换 分色成像 光电转换
ΔL
干涉图像立方体
FFT
光谱图像立方体
2. 高光谱遥感成像技术——光谱成像 (1)棱镜、光栅色散型成像光谱仪
Grating spectrometer
衍射光栅
飞机最高飞行地速要求:
V
≤ 像元分辨率 × 遥感器行扫描速率
1. 引言
(8)信噪比 (SNR): 信噪比是遥感器采集到的信号和噪声的比,信噪比和图像的空间分 辨率、光谱分辨率是相互制约的 。
Vs D02ωτ aτ 0 Dλ = X T ΔT VN 4 AD Δf
D0为成像仪光学系统的有 效口径,
2. 高光谱遥感成像技术——空间成像 摆扫型成像光谱仪的优点:
(1) FOV大; (2) 像元配准好; (3) 探测元件定标方便,数据稳定性好; (4) 进入物镜后再分光,光谱波段范围可以 做得很宽。
摆扫型成像光谱仪的不足之处:
像元凝视时间短,提高光谱和空间分辨率以及 信噪比相对困难。
2. 高光谱遥感成像技术——空间成像 (2)推扫型成像光谱仪(Pushbroom) 推扫型成像光谱仪采用一个面阵探测器,其垂直于运动方向在飞 行平台向前运动中完成二维空间扫描;平行于平台运动方向,通 过光栅和棱镜分光,完成光谱维扫描。
GR=2×tg(IFOV/2) ×altitude
r
α
L
L α = rad r
1. 引言 2.1 基本概念
(5)空间分辨率(Spatial Resolution):
1 IFOV = rad = 1mrad 1000

高光谱遥感卫星及轨道参数ppt实用资料

高光谱遥感卫星及轨道参数ppt实用资料

高光谱遥感卫星及轨道参数
EOS-AM1 EOS-PM1 高光谱遥感卫星及轨道参数 近年发射的高光谱类卫星 近年来发射的高光谱类卫星
02 高光谱遥感卫星轨道参数 12 2000.
高光谱遥感卫星及轨道参数 高光谱遥感卫星轨道参数 主要特点是采用高分辨率成像光谱仪,波段数为36~256个,光谱分辨率为5~10nm,地面分辨率为30~1000m。 高光谱遥感卫星轨道参数 高光谱遥感卫星轨道参数 近年来发射的高光谱类卫星 高光谱遥感卫星及轨道参数 主要特点是采用高分辨率成像光谱仪,波段数为36~256个,光谱分辨率为5~10nm,地面分辨率为30~1000m。 主要特点是采用高分辨率成像光谱仪,波段数为36~256个,光谱分辨率为5~10nm,地面分辨率为30~1000m。 目前这类卫星大多数是军方发射的,民用高光谱卫星较少,这类卫星主要用于大气、海洋和陆地探测。 高光谱遥感卫星轨道参数
14Bands 0.4~2.5μm
E近O年S-A来M发1 射EO的S-P高M光E1 O谱-类1 卫星
美国
Hyperion
min10nm
233~309Bands
0.4~2.5μm
ARIES-1
澳大利亚
ARIES
min10nm
64Bands
HJ-1A
中国
高光谱 成像仪
0.45~0.95 110~128Bands
发射时间 1999.12 2000.12
1999.12 2000 2000 2008.9
THANKS 谢谢聆听
主讲人:赵柯柯 黄河水利职业技术学院
美国
MODIS
min5~10nm
高光谱遥感卫星轨P道M参1 数 12 2000.
36Bands

高光谱遥感的发展PPT课件.ppt

高光谱遥感的发展PPT课件.ppt
(4)基于光谱数据库的地物光谱匹配识别算法; (5)混合光谱分解模型; (6)基于光谱模型的地表生物物理化学过程与参数的识别和反演算

24
高光谱影像分析技术:
国内外关于成像光谱仪的遥感应用研究中,所采用 的分析方法可归纳为两大类:
一、 基于纯像元的分析方法 (1)。。。 (2)。。。
二、基于混合像元的分析方法
14
历史:
• 20世纪80年代兴起的新型对地观测技术——高光谱遥感技 术,始于成像光谱仪(Imaging Spectrometer)的研究计划。 该计划最早由美国加州理工学院喷气推进实验室(Jet Propulsion Lab,JPL)的一些学者提出。
• 1983年,世界第一台成像光谱仪AIS-1在美国研制成功, 并在矿物填图、植被生化特征等研究方面取得了成功,初 显了高光谱遥感的魅力。
➢ 成像光谱仪为每个像元提供数十个至数百个窄波段的光谱信 息,每个像元都能产生一条完整而连续的光谱曲线。这就是 高光谱遥感与常规遥感的主要区别。
➢ 如一个TM波段内只记录一个数据点,而航空可见光/红外光 成像光谱仪(AVIRIS)记录这一波段范围内的光谱信息用10个 以上数据点。
7
8
• 成像光谱技术则把遥感波段从几个、几十 个推向数百个、上千个。高光谱遥感数据 每个像元可以提供几乎连续的地物光谱曲 线,使我们利用高光谱反演陆地细节成为 可能。
28
高光谱的应用
• 由于高光谱图像具有很高的光谱分辨率,因而能够提 供更为丰富的地物细节,有利于地物物理化学特性的 反演。
(1)海洋遥感方面。 • 由于中分辨率成像光谱仪具有光谱覆盖范围广、分辨
率高和波段多等许多优点,因此已成为海洋水色、水 温的有效探测工具。它不仅可用于海水中叶绿素浓度、 悬浮泥沙含量、某些污染物和表层水温探测,也可用 于海冰、海岸带等的探测。

高光谱遥感第二章ppt课件

高光谱遥感第二章ppt课件

第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
第二章 高光谱遥感成像机理与 成像光谱仪
我校现有设备 Headwall
- 成像光谱仪的光谱与辐射定标技术
第二章 高光谱遥感成像机理与 成像光谱仪
- 成像光谱信息处理技术
海量数据非失真压缩技术 高速化处理技术 辐射量的定量化和归一性 图像特征提取及三维谱像数据的可视化
第二章 高光谱遥感成像机理与 成像光谱仪
5 成像光谱仪的空间成像方式 高光谱遥感成像包括空间维成像和光谱维成
第二章 高光谱遥感成像机理与 成像光谱仪
1 基本概念
光谱学 成像技术
成像 光谱学
第二章 高光谱遥感成像机理与 成像光谱仪
(1) 光谱分辨率 —指探测器在波长方向上的记录宽度,又称为
波段宽度。
第二章 高光谱遥感成像机理与 成像光谱仪
(2) 空间分辨率—对于成像光谱仪,其空间分辨率 是由仪器的角分辨力,即仪器的瞬时视场角 (IFOV)决定的。
第二章 高光谱遥感成像机理与 成像光谱仪
- 二元光学元件成像光谱技术
二元光学元件沿轴向色散,利用面阵CCD 探测器沿光轴方向对所需波段的成像范围进行 扫描,每一位置对应相应波长的成像区。
- 三维成像光谱技术
三维成像光谱仪是在光栅色散型成像光谱 仪的基础上改进而来的,其核心是一个像分割 器,将二维图像分割转换为长带状图像。
(3)仪器的视场角(FOV)—指仪器的扫描镜在空中 扫过的角度。
第二章 高光谱遥感成像机理与 成像光谱仪

高光谱遥感

高光谱遥感

高光谱遥感器
OMIS系统部分参数 128波段 波段 波长 光谱分辩率 64(64,32,16) 0.4-1.1um 10nm 16(8,1) 1.1-2.0um 60nm 32(32,1) 2.0-2.5um 15nm 8(8,1) 3.0-5.0um 250nm 8(8,1) 8.0-12.5um 500nm IFOV 3.0,1.5mrad FOV > 70 degree
VNIR: 32 波段 (0.44~1.08um) 光谱分辨率: 20nm SWIR: 32 波段 (1.5~2.45um) 光谱分辨率: 25nm TIR: 7 波段 (8.0~11.6) 光谱分辨率: 0.45um IFOV: 3.0mrad FOV: 90 degree scanning : 10-20(line/second) digitizer: 12bit
高光谱遥感的基本概念
高光谱遥感起源于20世纪70年代初的多光谱遥 感,它将成像技术与光谱技术结合在一起,在对目标 的空间特征成像的同时,对每个空间像元经过色散 形成几十乃至几百个窄波段以进行连续的光谱覆 盖,这样形成的遥感数据可以用“图像立方体”来形 象的描述.同传统遥感技术相比,由于其所获取的图 像包含了丰富的空间,辐射和光谱三重信息。
2 5.0 表 1.1,国际上部分成像光谱仪一览表(陈述彭等,1997) 500-980 32 2 0.0-71.0
遥感器 PLI-PMI CASI SFSI AIS-1 AIS-2 AVIRIS (20km) ASAS 改进 ASAS GERIS
光谱范围 (nm) 403-805 430-870 1200-2400 900-2100 1200-2400 800-1600 1200-2400 400-2450 455-873 400-1060 400-100 1000-2000 2000-2500

《高光谱遥感的发展》课件

《高光谱遥感的发展》课件

高光谱遥感技术的发展趋势
提高数据获取能力
未来将进一步提高高光谱传感器的性 能,提高数据获取的精度和稳定性。
加强数据处理能力
未来将进一步发展人工智能、机器学 习等技术,提高数据处理的速度和精 度。
拓展应用领域
未来将进一步拓展高光谱遥感技术的 应用领域,如城市规划、资源调查、 灾害监测等。
加强技术交流与合作
从分割后的图像中提取地物的光谱特征,包括光谱曲线、谱带宽度 、谱带深度等。
地物分类与识别
利用提取的光谱特征,对地物进行分类和识别,常用的方法包括监 督分类、非监督分类和支持向量机等。
03
高光谱遥感技术发展现状
高光谱遥感传感器的发展
高光谱成像技术进步
随着技术的不断进步,高光谱成像传 感器在空间分辨率、光谱分辨率和辐 射分辨率等方面取得了显著提升,为 地物精细识别提供了有力支持。
新型传感器研发
科研人员正致力于开发新型的高光谱 传感器,如多角度高光谱传感器和热 红外高光谱传感器,以拓宽遥感的应 用领域。
高光谱数据处理技术的发展
数据处理算法优化
针对高光谱数据的处理,算法不断优 化以提高数据处理速度和准确性,例 如支持向量机、神经网络等机器学习 方法在高光谱分类和识别中的广泛应 用。
3
城市规划与管理
在城市规划与管理方面,高光谱遥感为城市发展 提供了丰富的空间和环境信息,有助于实现精细 化管理和可持续发展。
04
高光谱遥感技术面临的挑战与展 望
高光谱遥感技术面临的挑战
数据获取难度大
数据处理复杂度高
高光谱遥感技术需要获取大量的高光谱数 据,但受到传感器性能、天气条件等多种 因素的影响,数据获取难度较大。
资源调查与利用

高光谱成像ppt课件

高光谱成像ppt课件
•空间分辨率和光谱分辨率
由于像元凝视时间增强,空间分辨率和光谱分辨 率也得到提高。
• 仪器体积
由于没有光机扫描运动设备,仪器的体积较小。
二、成像光谱仪的空间成像方式
2.推扫型成像光谱仪
不足
•视场角
由于探测器件尺寸和光学设计的困难,总视场角不可 能很大,一般只能达到30度左右。
•定标
一次需要对上万个探测器元件进行定标,增加了处理 负荷和不稳定因素。
光谱仪成像仪辐射计之间的关系一高光谱成像的基本概念一高光谱成像的基本概念光谱仪成像仪辐射计光谱维信息空间维信息辐射能信息光谱分辨能力二维成像能力辐射分辨能力大理石在不同观测天顶角发射率的变化情况0203040506070809101112波长um7560453015一高光谱成像的基本概念一高光谱成像的基本概念光谱仪光谱信息成像仪空间信息辐射计辐射信息成像光谱仪光谱辐射仪成像辐射仪2
仪器的视场角是仪器扫描镜在空中扫过的 角度,它与系统平台高度决定了地面扫描幅宽 (Ground Swath,GS)
4.仪器的视场角
line
GS = 2 . tg(FOV/2) . H
H
Ground Swath
4.仪器的视场角 因此,在仪器设计时,FOV和IFOV是必须
考虑的重要参数。
• 仪器的视场角(FOV)较大,可以获得较宽的 地面扫描幅宽。
1.棱镜、光栅色散型成像光谱仪
• 色散型成像光谱技术出现较早,技术比较成熟。
• 入射的辐射能经过光学系统准直后,经棱镜和 光栅狭缝色散,由成像系统将色散后的光能按照波 长顺序成像在探测器的不同位置上。
三、成像光谱仪的光谱成像方式
1.棱镜、光栅色散型成像光谱仪 • 摆扫条件下光谱色散原理

高光谱成像系统组成和成像原理

高光谱成像系统组成和成像原理

高光谱成像系统组成和成像原理
高光谱成像系统是一种能够获取物体高分辨率光谱信息的成像技术。

它由多个组件构成,并且基于特定的成像原理工作。

高光谱成像系统的组成一般包括以下部分:
1. 光源:提供照明物体的光线,通常使用可见光或近红外光。

2. 分光器:将入射光分解成不同波长的光,并将其投射到物体上。

3. 成像传感器:用于捕捉物体反射或透射的光信号,并将其转换为数字信号。

4. 计算机:用于处理和分析获取到的高光谱数据。

5. 软件:对数据进行处理、分析和可视化的工具。

高光谱成像的原理是通过对物体在不同波长下的反射或透射光谱进行测量,从而获得物体的光谱特征信息。

系统中的分光器将光源发出的光分解成一系列狭窄的波长带,每个波长带对应一个特定的光谱通道。

这些光谱通道同时照射到物体上,物体对不同波长光的反射或透射程度不同,从而形成了物体的高光谱图像。

高光谱图像包含了丰富的光谱信息,通过对这些信息的分析,可以获得物体的化学成分、物理结构和特征等信息。

高光谱成像技术在农业、环境监测、地质勘探、医疗诊断等领域有广泛的应用。

需要注意的是,实际的高光谱成像系统可能会根据具体应用和需求而有所差异,但以上描述提供了一般的组成和原理。

高光谱遥感理论基础.pptx

高光谱遥感理论基础.pptx
30
地物反射率:主要在可见光、近红外波段反射太阳的辐射, 反射率等于物体的反射辐射通量与入射辐射通量之比
E
E
反射波谱特性曲线:是某物体的反射率(或反射辐射能)随 波长变化的规律,以波长为横坐标,反射率为纵坐标所得的 曲线即称为该物体的反射波谱特性曲线。
31
1.岩矿
高光谱遥感最早是人们研究岩石和矿物的光谱特性时提 出来的,因此,地质是高光谱遥感应用中最广泛的领域 之一。
33
2)分子振动产生光谱特征 晶体结构不同,受到外来能量的时候,发生振动 而产生的光谱特性并不一致。
3)除此之外,还受到温度和矿物粒度的影响,温度升高,向短 波方向移动。
34
岩石
野外的岩石光谱是矿物光谱的混合而成,可 见光和红外只有几厘米的穿透率,因此,分析岩石 表面情况很重要: (1)风化,水化物的影响 (2)岩石表面结构:颗粒减小,反射率增大 (3)岩石表面颜色:铁,碳的影响 (4)大气环境
26
• 野外光谱测量的光源主要来自三个方面:太阳直射,太阳散射和周围物体的散射光源。
27
光谱地面测量
以美国ASD公司生产的野外光谱分析仪 FieldSpec Pro为例,它是一种测量可见光到近 红外波段地物波谱的有效工具。它能快速扫描地 物,光纤探头能在毫秒内得到地物单一光谱。 可以测量:相对反射率,辐射照度与辐射亮度。
镜面反射(…) 清 ➢反地澈射水物近体在似可不漫达同反10波0射m段,的的深但反度各。射个率方是向不反同射的的。能量大小不同。 主 ➢地反要表集射物吸中率体收在是太的长阳可波反辐以,射射即测满后6定足μ具m的有反以。约射上3定0的0热律K红的,外温入区度射段,角。从而等形于成反自射身角的热。辐只射有,在其反峰值射波波长射为出9.6的6 μ方m向, ➢才时荧反能很光射探暗,率测,物也体到就被与电是单地磁这一物波个波的,原长表辐水因射面面造照颜是成射色近的而、似。发粗射的出糙镜另度面外和反一湿射种度波,长等在辐有遥射关感的。图现象像。上比水如面硫有化物时,很亮,有 ➢地物的反射光谱曲线:反射率随波长变化的曲线。

高光谱遥感

高光谱遥感

EO-1
Landsat-7
1
mi
n
29 min
Terra
表 Hyperion主要技术参数
中国的环境与减灾1号卫星高光谱成像仪
• 高光谱遥感信息成像机理
➢ 高光谱遥感器接收到入瞳辐射后通过探测器产生电信号,在经过增益和模数转 换(A/D)产生遥感影像数值(DN)。遥感器的空间响应、光谱响应和辐射响应决 定了输出图像的信息特征。进入传感器的辐射量通过光学系统后,由分光器件分成 不同的光谱段后到达探测器焦平面转换为测量值。该测量值的大小直接与探测器的 光谱响应率相关,从而又与光学系统的透过率和探测器的光谱灵敏度相关联。
三、高光谱遥感器的发展
❖ 70年代末,美国加州理工学院喷气推进实验室(JPL)
学者提出。
❖ 1983年,世界上第一台成像光谱仪问世,AIS-1
(Airborne Imaging Spectrometer)问世,64波段。
❖ 1987年,航空可见光/红外成像光谱仪AVIRIS,224波段 ❖ 2000年第一台星载高分辨率成像光谱仪 HYPERION升空。 ❖ 1991年,中国第一台航空成像光谱仪(MAIS)运行
➢ 第一代成像光谱仪称航空成像光谱仪AIS(Airborne
Imaging Spectrometer),64个通道,光谱覆盖范围从990nm-2400nm, 光谱分辨率9.3nm。
➢ 第二代成像光谱仪称航空可见光、近红外成像光谱仪
AVIRIS(Airborne Visible/Infrared Imaging Spectrometer),224个通道, 光谱范围410nm-2450nm,光谱分辨率10nm。
❖多光谱遥感(Multirspectral Remote Sensing),光谱分 辨率为波长 的1/10数量级范围(几十个至几百个nm);

高光谱遥感影像混合像元分解.pptx

高光谱遥感影像混合像元分解.pptx

(3)几何光学模型。
• 该模型适用于冠状植被地区,它把地面看成由树及其投射的阴影组成。从而地面 可以分成四种状态:光照植被面(C)、阴影植被面(T)、光照背景面(G)、 阴影背景面(Z)。像元的反射率可以表示为:
R ( Ac Rc AT RT AG RG AZ RZ ) / A
(4)随机几何模型
• 如果是进行混合像元分解,则需要将输出端的概率转化为每一种类别的组分比,并保证组分比的和相加等 于1,把得出的每一种类别的组分比信息显示在最后的结果图像上。
BP神经网络:
• 将其利用于混合像元分解中来,首先对以上分类模型进行改进,改进的主要部分 在输出节点层。
混合像元分解模型示意图
• 本实验数据选取分辨率为30m的TM影像。该影像区域为湖北省武汉市,大小为 400像素×400像素,获取时间为1998年10月26日
8.1 混合分解的定义:
1)混合像元在高光谱遥感影像中普遍存在。 2)求解每一混合像元的覆盖类型组分比例 值,也就是求取端元百分含量(丰度)。 3)解决了因混合像元的归属而产生的错分、 误分问题,分类将更加精确。
线性光谱混合
非线性光谱混合
8.2 混合像元分解技术
• 把像元的反射率表示为端元组分的光谱特征和它们的面积百分比 (丰度)的函数。Charles 在1996年将像元混合模型归结为以下五 种类型:
• 在线性混合模型中,每一光谱波段中单一像元的反射率表示为它的端元组分特征 反射率与它们各自丰度的线性组合。
• 从遥感图像的像元光谱信号可以提取像元整体的表观光谱信息,其表观光谱信息 光谱辐亮度L( )是端元光谱辐亮度Lj( j)的线性组合。
植被
混合 像元
reflectance
水体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

44
Terra卫星上的另外一个传感器是热辐射及反 射探测器(ASTER),获取的数据广泛地应 用与反演陆面温度、比辐射率、反射率以及高 程信息等。
45
2、Hyperion/EO-1
地球观测1号(Earth Observing-1)卫星系统 在2000年发射。
地球观测1号卫星将与LandSat-7覆盖相同的地 面轨道,两颗卫星对同一地物目标以几乎相同 的时间进行观测,从而可以对LandSat-7中的 ETM+及EO-1中的三台主载荷获取的数据进 行对比。
46
EO-1中的三台主载荷分别为先进陆地成像仪 (Advanced Land Imager,ALI),高光谱成像仪 (Hyperion)以及高光谱大气校正仪(Linear etalon imaging spectrometer array Atmospheric Corrector,LAC)。
Band centre (NM)
1 412.5
2 442.5 3 490 4 510 5 560 6 620
7 665
8 681.25
9 708.75
10 753.75 11 760.625 12 778.75 13 865 14 885 15 900
Bandwidth
(NM)
10
10 10 10 10 10
其中Hyperion用于地物波谱测量和成像、海洋水 色要素测量以及大气水汽/气溶胶/云参数测量等, 其性能比EOS Terra卫星上的MODIS要好的多。
47
48
49
3.CHRIS卫星/Proba
50
51
4、MERIS卫星/Envisat
52
53
MERIS的15个波段的技术指标与应用目的
不成 像”的历史问题。
6
特点1:高光谱分辨率高
光谱分辨率:遥感器能分辨的最小波长间隔, 是遥感器的性能指标。比如图中纵坐标(y轴) 表示探测器的光谱响应,横坐标(x轴)代表波 长,那么光谱分辨率被定义为仪器达到光谱响 应最大值的50%的波长宽度。
7
空间分辨率:成像光谱仪的一个瞬间视场,即 在一瞬间遥感系统探测单元所对应的瞬间视场 (IFOV)。IFOV以毫弧度(mrad)计量,其 对应的地面大小被称为地面分辨率单元 (Ground Resolution Cell,GR)它们的关系 为:
新的成像光谱系统不仅继续在地质和固体地球领域研究中发挥作用, 而且在生物地球化学效应研究、农作物和植被的精细分类、城市地物 甚至建筑材料的分类和识别方面都有很好的结果。
4
5
二.成像光谱仪的特点
与地面光谱辐射计相比,成像光谱仪不是在“点”上的光谱测 量,
而是在连续空间上进行的光谱测量,因此它是光谱成像的,与 传统多光谱遥感相比,其波段不是离散的而是连续的,因此从 它的每个像元均能提取一条光滑而完整的光谱曲线,如图所 示。成像光谱仪解决了传统科学领域“成像无光谱”和“光谱
aviris data
/html/aviris.freedata.html
33
近年来,有代表性的新产品
34
热红外成像光谱仪
35
几种常见的航空高光谱成像仪
36
37
38
2)航天成像光谱仪
在经过航空试验和成功运行应用之后,90年代末期终于迎来了高 光谱遥感的航天发展。1999年美国地球观测计划(EOS)的Terra 综合平台上的中分辨率成像光谱仪(MODIS),欧洲环境卫星 (ENVISAT)上的MERIS,以及欧洲的CHRIS卫星相继升空,宣 告了航天高光谱时代的来临。
研究大气、海洋、土壤等的辨别能力大有裨益。这就是人类最早的 多光谱成像(Multispectral imaging)。 1980年高光谱成像技术(Hyperspectral Imaging)诞生了,它最早 是机载的成像光谱仪(Airborne Imaging Spectrometer),如今已 拓展到先进的可见和红外成像光谱仪(AVIRIS),这两种最早都诞 生在NASA的JPL中心(NASA:美国国家航天航空管理局)。
GR = 2*tan(IFOV/2)*H
8
时间分辨率:对同一地点进行遥感采样的时 间间隔,即采样时间的频率。
信噪比(SNR):signal to noise ratio,遥感 器采集的信号和噪声之比。信噪比的高低直 接影响了图像分类和图像识别等处理效果。
在实际应用中,空间分辨率和光谱分辨率以 及信噪比是相互制约的,两种分辨率的提高 都会降低信噪比,那么必须综合考虑这三个 方面的指标,进行取舍。
54
5.澳大利亚ARIES卫星
55
6.日本ADEOS卫星
56
其他大气环境探测专用航天成像光谱仪
57
六、我国成像光谱仪的发展
1)航空成像光谱仪
80年代,研制和发展了新型模块化航空成像光谱仪(MAIS)。这一 成像光谱系统在可见—近红外—短波红外—热红外多光谱扫描仪集成 使用,从而使其总波段达到70—72个。
3
历史发展
全色(黑白)--彩色摄影—多光谱扫描成像—高光谱遥感 1960年人造地球卫星围绕地球获取地球的图片资料时,成像就成为
研究地球的有利工具。 在传统的成像技术中,黑白图像的灰度级别代表了光学特性的差异
因而可用于辨别不同的材料。 对地球成像时,选择一些颜色的滤波片成像对于提高对特殊农作物、
40
1. MODIS/Terra
中等分辨率成像光谱仪MODIS(moderate resolution Imaging Spectro-radiometer)是美国 宇航局发射的EOS-TERRA和EOS- AQUA卫星上 最重要的星载仪器。
MODIS从可见光到热红外有36个波段,波长覆盖 范围从0.4μm到14.4μm。
时间
噪声
输出图像
探测器
通道1
+
通道2
+
场景
通道K
+
20
了解两个概念: 视场角:仪器在空中所扫描的角度,它决定
了地面的扫描幅宽。 凝视时间:仪器视场角扫过地面单元所持续
的时间。凝视的时间越长,进入探测器的能 量越多。光谱响应和图像的信噪比越高。
21
空间维成像
通过飞行平台的平动和飞行平台上成像光谱仪的工作 模式来决定,常用的工作模式为摆扫型和推扫型。
高光谱仪器的研制成功,为中国遥感科学家提供了新的技术手段。通 过在我国西部干旱环境下的地质找矿试验,证明这一技术对各种矿物 的识别以及矿化蚀变带的制图十分有利,成为地质研究和填图的有效 工具。
此后,中国又自行研制了更为先进的推帚式成像光谱仪(PHI)和实 用型模块化成像光谱仪(OMIS)等。
1983年,世界第一台成像光谱仪AIS-1在美国研制成功,并在矿物 填图、植被生化特征等研究方面取得了成功,初显了高光谱遥感的魅 力。
在美国宇航局(NASA)的支持下,相继推出了系列成像光谱仪产品。 如:机载航空成像光谱仪(AIS)系列;航空可见光/红外成像光谱仪 (AVIRIS);高分辨率成像光谱仪(HIRIS)等。
31
80年代早期高光谱航天成像光谱仪
32
AVIRIS
航空可见光/红外成像光谱仪AVIRIS。 80年代后期,美国喷气推进研究室(JPL) 制成机载可见红外成像光谱仪(AVIRIS) 的完整样机。该成像光谱仪可在0.4μm~ 2.45μm的波长范围获取224个连续的光谱 波段图像。波段宽度10nm。当飞机在20km 高空飞行 时,图像地面分辨率可达20m。
28
29
2)干涉成像光谱仪
30
五、高光谱成像光谱仪
1)航空成像光谱仪
20世纪80年代兴起的新型对地观测技术——高光谱遥感技术,始于成 像光谱仪(Imaging Spectrometer)的研究计划。该计划最早由美国加 州理工学院喷气推进实验室(Jet Propulsion Lab,JPL)的一些学者 提出。
39
美国对航天成像光谱技术的研究一直遥遥领先,但是发展之路也并非一 帆风顺,全球第一个星载高光谱成像器于1997年在NASA随着Lewis卫星 发射升空,它包含了384个波段涵盖了400-2500nm波段,不幸的是这颗 卫星控制出现问题,失去了动力,升空一个月后就偏离了轨道。2001年 的Orbview-4卫星发射失败,但是经过多年的努力,如今也有一些比较有 代表性的高光谱卫星。下面主要介绍美国及其他发达国家在高光谱遥感 卫星的情况:
为了给用户一个直观和形象的认识,通常我们在二维 图象信息的基础上,添加光谱维,形成一个三维的坐 标空间。
15
OXY平面:与传统的图象平面相同,表示黑白单波 段图象,反应一个波段的信息。
OXZ平面:y方向的光谱切面 OYZ平面:x方向的光谱切面
它们代表一条直线上的光谱信息。
16
17
MODIS的两个通道空间分辨率可达250 m,5个通 道为500 m,29个通道为1000 m,可同时获取地 球大气、海洋、陆地、冰川雪盖等多种环境信息, 有助于建立有关大气、海洋和陆地的动态模型, 以及建立预测全球变化的模型。
41
MODIS技术指标表:
42
MODIS波段分布和主要应用:
43
18
Envi里面的实践环节
19
四.光谱成像的方式
完成成像方式是一个集探测技术,精密光学机械,微弱信 号探测,计算机技术及信息处理技术等为一体的综合性技 术。其中硬件技术的成熟会不断推动成像光谱技术的提高, 因此有必要对于成像光谱的硬件技术进行了解。
高光谱遥感的成像包括空间维成像和光谱维成像。
1)摆扫型成像光谱仪 摆扫型成像光谱仪由光机左右摆扫和飞行平台向 前运动完成二维空间成像,其中线列探测器完成 每个瞬时视场像元的光谱维获取。
相关文档
最新文档