直观图教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书

人教A版必修2

第一章第2节:

1.2.3 空间几何体的直观图

宁夏大学附属中学

张海军

2018年5月5日

《1.2.3空间几何体的直观图》教学设计

一、教学目标

1.知识与技能

(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力

2.过程与方法

学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观

(1)提高空间想象力与直观感受能力,培养探究精神和意识。

(2)体会对比转化在学习中的作用,以及化归的数学思想方法.

(3)感受几何作图在生产活动中的应用

二、教学重点、难点

重点、空间几何体直观图的画法--斜二测画法:能由直观图想出其对应的几何体,并能由几何体的三视图画出其直观图,顺利由三视图到空间几何体再到直观图的互化.

难点:用斜二测画法画空间几何值的直观图时,如何选择合适的坐标系。

三、教法与教学用具

1.教法:学生通过自主探究作图感受图形直观感,研讨探究斜二测画法画空间几何体的步骤与过程。

2.教学用具:三角板、圆规、多媒体

四、教学思路

引入:让学生画正六边形的直观图,并提出如何画空间几何体的直观图?

五、教学过程设计

(一)创设情景,激发探究

三视图能从细节上刻画空间几何体的结构,我们可以得到一个精确的几何体,在工程制图中被广泛采用,但三视图的直观性较差,且作图方法比较复杂,又不易度量。那么有没有一种画法,既能对空间几何体整体刻画,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系,怎样画呢?教师指出课题:直观图.

因此在立体几何中通常采用斜投影的方法来画空间图形的直观图.把空间图形画在纸上,是用一个平面图形来表示空间图形,这样表达的不是空间图形的真实形状,而是它的直

观图.

(二)理清概念

1.什么叫直观图 ?

把空图间形画在平面内,使得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形.

2.实例导入

例1:用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

3.变式训练

(1).画水平放置的等边三角形、正方形的直观图.

(2.)关于“斜二测画法”,下列说法不正确的是()

A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变

1

B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的

2

C.在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°

D.在画直观图时,由于选轴的不同,所得的直观图可能不同

分析:在画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′也可以是135°,所以C不正确.

(3).用斜二测画法画水平放置的圆的直观图

教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

(三)熟悉斜二侧画法

例2:用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事,画几何体的直观图的步骤:

1°在已知图形所在的空间中取水平平面,作互相垂直的轴Ox、Oy,再作Oz轴,使∠xOy=90°,∠yOz=90°.

2°画出与Ox、Oy、Oz对应的轴O′x′、O′y′、O′z′,使∠x′O′y′=45°,∠y′O′z′=90°,x′O′y′所确定的平面表示水平平面.

3°已知图形中,平行于x轴、y轴和z轴的线段,在直观图中分别画成平行于x′轴、y′轴和z′轴的线段,并使它们在所画坐标轴中的位置关系与已知图形中相应线段和原坐标轴的

位置关系相同.

4°已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.

5°擦除作为辅助线的坐标轴,就得到了空间图形的直观图.

练习:画边长等于5的正方形的直观图

(四)综合应用

例3 如图4,已知几何体的三视图,用斜二测画法画出它的直观图.

图4

活动:让学生由三视图还原为实物图,并判断该几何体的结构特征.教师分析:由几何体的三视图知道,这个几何体是一个简单组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.

解:画法:

(1)画轴.如图5(1),画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.

(1) (2)

图5

(2)画圆柱的两底面,仿照例2画法,画出底面⊙O.在z轴上截取O′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x′与O′y′画出底面⊙O′(与画⊙O一样).

(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.

(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图〔图5(2)〕. 点评:空间几何体的三视图与直观图有着密切的联系,我们能够由空间几何体的三视图得到它的直观图.同时,也能够由空间几何体的直观图得到它的三视图.

相关文档
最新文档