九年级数学切线的性质

合集下载

人教九年级数学上册《切线的判定和性质》课件

人教九年级数学上册《切线的判定和性质》课件

(1)证明:连OA,则OA⊥AP,∵MN⊥AP,∴MN∥OA,∵OM∥AP, ∴四边形ANMO是矩形,∴OM=AN
(2)解:连OB,则OB⊥BP,∵OA=MN,OA=OB,OM∥AP,∴OB =MN,∠OMB=∠NPM.∴Rt△OBM≌Rt△MNP,∴OM=MP,设 OM=x,则NP=9-x,在Rt△MNP中,有x2=32+(9-x)2,∴x=5, 即OM=5
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
24.2 点和圆、直线和圆的位置关系 24.2.2 直线和圆的位置关系 第2课时 切线的判定和性质
1.切线的判定定理:__经__过__半__径__的__外__端__并__且__垂_直___于_这__条__半__径____的直线 是圆的切线. 2.切线的性质定理:圆的切线__垂__直__于__过__切__点__的__半__径________.
第3题图
第4题图
知识点1 切线的判定
5.(8分)如图,在Rt△ABC中,∠BAC=90°,以直角边AB为直径的 ⊙O交斜边BC于点D,OE∥BC交AC于点E,求证:DE是⊙O的切线.
证明:连接OD,∵OA=OD=OB, ∴∠B=∠BDO,又∵OE∥BC, ∴∠AOE=∠B,∠BDO=∠DOE,∴∠DOE= ∠AOE , ∴△AOE≌△DOE(SAS) , ∴∠ODE = ∠BAC=90°,∴DE是⊙O的切线

人教版九年级数学上册《切线长定理,三角形的内切圆》课件

人教版九年级数学上册《切线长定理,三角形的内切圆》课件
即:4 2 x 2 x 2 2
解得: x= 3cm
半径OA的长为3cm
一、判断
基础练习
(1)过任意一点总可以作圆的两条切线( )
(2)从圆外一点引圆的两条切线,它们的长相等。
二、填空
(1)如图PA、PB切圆于A、B两点,APB50
连结PO,则 APO25 度。
A
OБайду номын сангаас
P
B
(3)如图,PA、PB、DE分别切⊙O于A、B、 C,DE分别交PA,PB于D、E,已知P到⊙O的 切线长为8CM,则Δ PDE的周长为( A )
反思
A
在解决有关圆的切线长
问题时,往往需要我们

构建基本图形。
O
P
B
(1)分别连结圆心和切点 (2)连结两切点
(3)连结圆心和圆外一点
思考 如图,一张三角形的铁皮,如何在它上面截下
一块圆形的用料,并且使圆的面积尽可能大呢?
I D
数学探究 三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆
(2)图中的直角三角形有 6 个,分别是
等腰三角形有 2 个,分别是
(3)图中全等三角形 3 对,分别是
(4)如果半径为3cm,PO=6cm,则点P到⊙ O的切线长
为 3 3 cm,两切线的夹角等于 60 度
(5)如果PA=4cm,PD=2cm, A
试求半径OA的长。
x
E
OC D
P
B
PA 2O2AO2P
2
1、以正方形ABCD的一边BC为直径的半圆上有 一个动点K,过点K作半圆的切线EF,EF分别 交AB、CD于点E、F,试问:四边形AEFD的周 长是否会因K点的变动而变化?为什么?

人教版九年级数学上册 24.2.2 圆的切线的性质及判定综合运用培优 (无答案)

人教版九年级数学上册  24.2.2  圆的切线的性质及判定综合运用培优  (无答案)

A Ol圆的切线的性质及判定综合运用知识点:切线的性质定理:圆的切线垂直于经过切点的 . 几何符号语言表达:∵ l 是⊙O 的 ,OA 是 , ∴ l ⊥OA切线的判定:经过半径的 并且 的直线是圆的切线。

几何符号语言表达: ∵ OA 是 ,OA ⊥l 于A , ∴ l 是⊙O 的 。

归纳:证明切线添加辅助线的方法:1)直线与圆的公共点已知时,连半径,证 (应用判定方法3)2)直线与圆公共点不确定时,过圆心作直线的垂线段,再证明 (方法2)一、典型例题例1.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1)直线经过半径的 ;(2)直线与这半径 。

▲判断一条直线是圆的切线的方法:1.利用切线的定义:与圆有 公共点的直线是圆的切线。

2.利用d 与r 的关系作判断:圆心到直线的距离等于 (即d r)的直线是圆的切线。

3.利用切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线。

例2.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.例3.如图,在△ABC中,AB=AC=10,BC=12,试求△ABC的内切圆的半径.例4.如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.(1)求该抛物线的解析式;(2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;(3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.二、综合训练1.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A .2B .4C .6D .82.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A .25cmB .45cmC .25cm 或45cm D. 23cm 或43cm3.已知⊙O 的面积为2π,则其内接正三角形的面积为( )A .33B .36C .323D .6234.如图,在平面直角坐标系中,⊙O 的半径为1,则直线2-=x y 与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能5.若⊙O 的半径等于5cm ,P 是直线l 上的一点,OP=5cm ,则直线l 与圆的位置关系是( )A .相离B .相切C .相交D .相切或相交6.已知⊙O 的面积为9πcm 2,若点O 到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定7.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°8.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.49.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.,10.如下左图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=21则∠ACD= °.11.如上右图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.12.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;13.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;14. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过,垂足为D.C作CD PA(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.三、课外作业: 1.如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A 、C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE=190,则∠AFB 的度数为( )A.97°B.104°C.116°D.142°第1题图 第2题图2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A.(-4,5)B.(-5,4)C.(5,-4)D.(4,-5)3.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A.2B.3C.3D.32第3题图4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC.若∠A=400,则∠C= .5.如图,∠ABC=900,O 为射线BC 上一点,以点O 为圆心,OB 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 时与⊙O 相切.第4题图 第5题图6.已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)如图①,若2AB =,30P ∠=︒,求AP 的长(结果保留根号);(2)如图②,若D 为AP 的中点,求证直线CD 是⊙O 的切线.7.如图,已知直线ABC 与⊙O 相交于B,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA=∠AMD . 求证:AD 是⊙O 的切线.。

《切线的判定与性质》PPT课件 人教版九年级数学

《切线的判定与性质》PPT课件 人教版九年级数学
利用判定定理时,要注意直线须具备以下两个条件,缺一 不可: (1)直线经过半径的外端;(2)直线与这半径垂直.
已知一个圆和圆上的一点,如何过这个点画出 圆的切线?
.O . Al
第一步:连接OA; 第二步:过A点作OA的垂线l.
归纳:判断一条直线是一个圆的切线有三个方法:
1.定义法:直线和圆只有一个公共点时,
切线的性质定理:
圆的切线垂直于过切点的半径.
.O
几何符号表达:∵直线l切⊙O于点A, A
l
∴OA⊥l
反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
有公共点,连半径,证垂直; 无公共点,作垂直,证半径.
经过半径的外端并 判定定理 →且垂直于这条半径
的直线是圆的切线
切线的性 质定理

圆的切线垂直于 经过切点的半径

有切线常作辅助线: 见切线,连切点,得垂直.
∴△OBD≌△OCE(AAS),
∴OD=OE . ∴AC与⊙O相切.
方法二:
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂1 , ∴ AB⊥l2,
∴ l1∥l2.
l2

初中数学 什么是圆的切线

初中数学  什么是圆的切线

初中数学什么是圆的切线
圆的切线是指与圆的边界相切且只有一个交点的直线。

下面我将详细介绍圆的切线的概念和性质:
1. 圆的切线定义:
圆的切线是指与圆的边界相切且只有一个交点的直线。

这个切点是圆上的点,切线与圆的边界只有这一个交点。

2. 圆的切线的性质:
-圆的切线与半径垂直,即切线与半径的夹角为90°。

-从圆的外部引一条直线与圆相交,如果直线与圆的边界相切,那么这条直线就是圆的切线。

-圆的切线长度等于从切点到圆心的半径长度。

-圆的切线与切点到圆心的连线共线。

-圆的切线是与圆心连线的直线中最短的一条。

3. 圆的切线的应用:
圆的切线在几何学和物理学中有广泛的应用。

例如,在光学中,圆的切线可以用于描述光线与曲面的相交关系;在工程学中,圆的切线可以用于定位和布局。

另外,圆的切线的性质也可以用于解决一些几何问题,如构造、证明等。

需要注意的是,圆的切线是一条直线,它与圆的边界相切且只有一个交点。

以上是关于圆的切线的概念和性质的介绍。

希望以上内容能够满足你对圆的切线的了解。

切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册

切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册

证明:连接DE,过点D作DF⊥OB于点F. ∵OA切⊙D于点E,∴DE⊥OA. 又∵DF⊥OB,D是∠AOB平分线上一点, ∴DE=DF,∴OB与⊙D相切.
知识点2:切线的性质
3.(长春中考)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35
°,则∠ACB的度数为
(C )
A.35°
B.45°
(2)解:在Rt△EOF中,设半径为r,即OE=OB=r,则OF=r+1, 4 OE r
∵sin∠AFE=5=OF=r+1, ∴r=4,∴AB=2r=8, 在Rt△ABC中, sin∠ABC=AACB=sin∠AFE=45,AB=8, ∴AC=45×8=352,∴BC= AB2-AC2=254.
的延长线于点 D.若⊙O 的半径为 1,则 BD 的长为
(D )
A.1
B.2
C. 2
D. 3
8.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点 C 的切线互相垂 直,垂足为 D. (1)求证:AC 平分∠DAB;
3 (2)若 AD=8,tan∠CAB=4,求边 AC 及 AB 的长.
如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作 AC的垂线,垂足为点E. (1)求证:点D是BC的中点; (2)求证:DE是⊙O切线. 【思路分析】(1)根据“三线合一”证明; (2∵AB是直径,∴AD⊥BC, 又∵AB=AC,∴BD=CD, ∴点D是BC的中点. (2)连接OD,∵AO=BO, BD=CD, ∴OD∥AC,又∵DE⊥AC, ∴DE⊥OD,∴DE是⊙O的切线. 【名师支招】切线的判定方法2,3的选择标准是看直线与圆的公共点是 否已知,若已知公共点,则连圆心与公共点,证垂直;若公共点未知, 则过圆心作垂线,证d=r.

冀教版九年级下册数学《切线的性质和判定》教学说课复习课件

冀教版九年级下册数学《切线的性质和判定》教学说课复习课件

知1-练
1 如图,直线AB经过⊙O上一点C,并且OA =OB, CA=CB. 直线AB与⊙O具有怎样的位置关系?请说 明理由.
解:AB与⊙O相切,理由如下: 连接OC,因为OA=OB, CA=CB,所以△AOB是等 腰三角形,且OC是△AOB 底边上的中线,所以OC⊥AB.又因为直线AB经过半 径OC的外端,所以AB与⊙O相切.
知1-练
4 如图所示,PA与⊙O相切于点A,PO交⊙O于点C, 点B是优弧CA上一点,若∠P=26°,则∠ABC的 度数为( C ) A.26° B.64° C.32° D.90°
知1-练
5 如图,点P在⊙O的直径BA延长线上,PC与⊙O相 切,切点为C,点D在⊙O上,连接PD、BD,已知 PC=PD=BC.下列结论: ①PD与⊙O相切;②四边形PCBD是菱形; ③PO=AB;④∠PDB=120°. 其中,正确的有( A ) A.4个 B.3个 C.2个 D.1个
知1-练
解: 连接OB,则OB=OD, 因为AE与⊙O相切于点B, 所以OB⊥AE,即∠ABO=90°, 又因为∠A=28°, 所以∠AOB=180°-28°-90°=62°. 所以∠OBD=∠ODB=12∠AOB=31°. 所以∠DBE=90°-∠OBD=90°-31°=59°.
知1-练
3 下列说法正确的是( C ) A.圆的切线垂直于半径 B.垂直于切线的直线经过圆心 C.经过圆心且垂直于切线的直线经过切点 D.经过切点的直线经过圆心
知1-练
2 下列四个命题: ①与圆有公共点的直线是圆的切线; ②垂直于圆的半径的直线是圆的切线; ③到圆心的距离等于半径的直线是圆的切线; ④过直径端点,且垂直于此直径的直线是圆的切线. 其中是真命题的是( C ) A.①② B.②③ C.③④ D.①④

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点数学中的圆是一个常见的几何图形,它有许多有趣的性质,其中之一就是切线。

切线是一个与圆相切于一点且与圆没有其它的交点的直线。

在这篇文章中,我们将探讨九年级数学课程中关于圆的切线的知识点。

1. 切线定义及性质切线是一个特殊的直线,它与圆只有一个交点,且与圆在该点的切线相切。

切线的性质有以下几点:(1) 切线与半径垂直:切线与从切点到圆心的半径垂直相交。

(2) 弦切角相等:切线和过切点的弦所夹的角相等。

(3) 切线长度相等:从圆外的任意一点引切线,得到的切线长度都相等。

2. 切线的判定方法在几何中,判断一条直线是否为圆的切线,有以下两种判定方法:(1) 切线判定法一:若直线与圆只有一个交点,并且该交点到圆心的距离等于圆的半径,则该直线是圆的切线。

(2) 切线判定法二:若直线与圆相交,且与圆的切点处平分被切角,那么该直线也是圆的切线。

3. 切线的性质在解题中的应用切线的性质经常在解题过程中被使用,下面介绍几个常见的应用情况:(1) 切线的长度:我们可以利用切线的性质来求解切线的长度。

根据切线与半径垂直的性质,我们可以使用勾股定理或者勾股定理的变形来求解切线的长度。

(2) 弦的长度:通过切线和弦的切角相等的性质,我们可以利用已知的切线长度和弦的长度来计算未知的切线或者弦的长度。

(3) 切线的方程:切线与圆的关系可以通过方程来表示。

我们可以利用切线判定法一中的条件,得到切线方程的一般形式。

4. 实际生活中的切线应用切线在实际生活中有许多应用,下面介绍几个例子:(1) 轮胎的设计:车辆的轮胎通常是圆形的,轮胎的切线对于保证行驶的稳定性非常重要。

(2) 光学反射:光线在两种介质之间传播时,若入射角等于反射角,则光线与界面的交点所在的直线即为切线。

(3) 经济决策:在经济学中,曲线图表上的切线可以表示某一点的边际效应,帮助决策者做出合理的判断。

总结起来,九年级数学课程中关于圆的切线的知识点包括切线的定义及性质,切线的判定方法,切线性质的应用,以及实际生活中的切线应用。

3.4.3圆的切线性质定理

3.4.3圆的切线性质定理

练习与巩固:
1、如图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°, 则∠BAC等于( ) A. 70° B. 35° C. 20° D. 10°
O B A
(1)
A E
C
O B
(3)
B
D
(2)
C
A
2、如图,在△ABC中,AB=AC,∠BAC=120°,⊙A与BC相切于 点D,与AB相交于点E,则∠ADE等于___ _度. 3、如图,在△OAB中,OB:AB=3:2 , 0B=6,⊙O与AB相切 于点A, 则⊙O的直径为 。
4、如图,PA、PB是⊙O的切线,切点分别为A、B,且∠APB=50°, 点C是优弧上的一点,则∠ACB=___.
A
C
C
O B
P
A
O
B
P
(4)
(5)
5、如图,⊙O的直径AB与弦AC的夹角为30°,过C点的切线 PC与AB的延长线交于P,PC=5,则⊙O的半径为( )
A.
5 3 3
B.
5 3 6
C. 10
九年级数学(上)第四章: 对圆的进一步认识
3.4 直线和圆的位置关系(3) 切线的性质定理
切线的作法:
(1)连接半径;
(2)过半径的外端点作半径的垂线。 切线的判定:
1、直线与圆交点的个数:只有一个交点。 2、圆心到直线的距离与半径的大小关系,即d=r。
3、经过半径外端且垂直于这条半径的直线是圆的切线。
D. 5
辅助线的作法:作过切点的半径
6、在△ABC中,AB=2,以A为圆心,1为半径的圆与边BC 相切于点D ,则BD的长为 。
变式一:在△ABC中,AB=2,AC= 半径的圆与边BC相切 ,则BC的长为 ,以A为圆心,1为 。

初中数学 什么是切线

初中数学  什么是切线

初中数学什么是切线在几何学中,切线是指与给定曲线(如圆、椭圆、抛物线等)仅有一个公共点且与该曲线相切的直线。

切线在数学中有着重要的应用和意义。

在本文中,我将详细解释切线的概念、性质和应用。

切线的定义如下:对于给定曲线上的一点P,经过P点且与曲线相切的直线称为曲线在P点的切线。

切线与曲线仅有一个公共点,即切点。

切线的位置和方向是由曲线在该点的切线斜率决定的。

切线的性质包括以下几个方面:1. 切线与曲线在切点处的切线斜率相等。

切线斜率可以用导数来表示,即切线斜率等于曲线在该点的导数值。

2. 切线与曲线在切点处的切线垂直。

这是因为切线斜率与曲线的斜率相等,而曲线的斜率是垂直于切线的。

3. 切线在切点处与曲线有公共的切点。

这是切线的定义所决定的,切线与曲线仅有一个公共点,即切点。

通过切线的性质,我们可以进行切线的求解和应用。

以下是一些常见的切线应用:1. 求解曲线的切线方程。

根据切线的性质,我们可以通过求解切线的斜率和切点来确定切线的方程。

通常,切线方程可以表示为y = kx + b的形式,其中k为切线的斜率,b为切线与y轴的截距。

2. 计算曲线上某点切线的斜率。

通过求解曲线在该点的导数,我们可以得到切线的斜率,从而确定切线的性质和方程。

3. 解决与切线相关的几何问题。

切线在几何学中有着广泛的应用,如切线与圆的性质、切线与曲线的相交问题等。

通过应用切线的性质和定理,我们可以解决与切线相关的几何问题。

总结起来,切线是与给定曲线仅有一个公共点且与曲线相切的直线。

切线的性质包括切线斜率相等、切线垂直于曲线、切线与曲线有一个公共切点等。

切线在数学中有着广泛的应用和意义,可以用于求解切线方程、计算切线斜率以及解决与切线相关的几何问题。

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

24.2.2 第2课时 切线的判定和性质课件-2024-2025学年人教版数学九年级上册

24.2.2 第2课时 切线的判定和性质课件-2024-2025学年人教版数学九年级上册

∴∠BCD=30°,
∴∠OCD=∠OCB+∠BCD=60°+30°=90°,
即OC⊥CD.
又∵点C在☉O上,∴CD是☉O的切线.
图24-2-15
探 得 锦囊 究 证切线时辅助线的添加方法

应 ①有交点,连半径,证垂直; 用 ②无交点,作垂直,证半径.

活动2 理解并掌握切线的性质定理
究 [猜想证明]
是 相切 ,理由: 当圆心到直线的距离等于该圆的半径时,直线
就是圆的一条切线 .
图24-2-14
探 究
2.已知一个圆和圆上的一点,如何过这个点画出圆的切线,能
与 画几条?

用 解:首先连接圆上这点和圆心得半径,再过圆上这点作半径的垂
线,这条垂线就是圆的切线.能画一条.
探 究
[概括新知]
与 切线的判定定理:经过半径的 外端 并且 垂直于 这条半
数学 九年级上册 人教版
第 二



第2课时 切线的判定和性质

-
第2课时 切线的判定和性质
探究与应用
课堂小结与检测

活动1 理解并掌握切线的判定定理
究 与
[问题情境]
应 1.如图24-2-14,在☉O中,经过半径OA的外端点A作直线l⊥OA,

则圆心O到直线l的距离是 OA的长 ;直线l和☉O的位置关系
检 (C)

A.25°
B.35°
C.40°
D.50°
图24-2-19
课 2.如图24-2-20,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的

小 圆与AB相切,则☉C的半径为 ( B )

九年级数学切线的性质与判定2

九年级数学切线的性质与判定2

A
O
B
OC=OC
∠OBC=∠ODC
∵BC是⊙ 的切线,∴∠OBC=90°
∴∠ODC=90°.
∴DC是⊙ 的切线
怪有着极似木头一样的肩胛和很像新月造型的翅膀,这巨怪柔软的深黄色元宵似的胸脯闪着冷光,仿佛面包造型的屁股更让人猜想。这巨怪有着酷似卧蚕一样的腿和水 青色柠檬一样的爪子……古怪的淡绿色肥肠似的三条尾巴极为怪异,墨紫色黑熊一样的牛怪雪峰肚子有种野蛮的霸气。深黄色鲇鱼造型的脚趾甲更为绝奇。这个巨怪喘 息时有种暗青色豆包似的气味,乱叫时会发出纯蓝色铁饼般的声音。这个巨怪头上深绿色熏鹅造型的犄角真的十分罕见,脖子上如同牙膏造型的铃铛丰盈的脑袋好像绝 无仅有的神气飘然!月光妹妹笑道:“就这点本事也想混过去!我让你们见识一下什么是雪峰!什么是女孩!什么是雪峰女孩!”月光妹妹一边说着一边和壮扭公主组 成了一个巨大的熊掌号喉圣!这个巨大的熊掌号喉圣,身长二百多米,体重七十多万吨。最奇的是这个怪物长着十分壮丽的号喉!这巨圣有着青古磁色驴肾般的身躯和 淡紫色细小布条样的皮毛,头上是紫玫瑰色肥肠模样的鬃毛,长着碳黑色海豹般的香炉春藤额头,前半身是青兰花色香蕉般的怪鳞,后半身是古怪的羽毛。这巨圣长着 乳白色海豹般的脑袋和钢灰色马心般的脖子,有着白杏仁色古树造型的脸和亮灰色玩具般的眉毛,配着土灰色海蜇模样的鼻子。有着水白色天网造型的眼睛,和锅底色 榛子般的耳朵,一张水白色古猿般的嘴唇,怪叫时露出淡黑色鳞片般的牙齿,变态的青兰花色刀峰样的舌头很是恐怖,淡紫色章鱼形态的下巴非常离奇。这巨圣有着酷 似画笔般的肩胛和活像灵芝模样的翅膀,这巨圣笨拙的青远山色兔子样的胸脯闪着冷光,极似狮子模样的屁股更让人猜想。这巨圣有着活似猩猩般的腿和中灰色板斧般 的爪子……细长的紫玫瑰色海蜇样的八条尾巴极为怪异,粉红色秤砣般的核桃星花肚子有种野蛮的霸气。青远山色铁链模样的脚趾甲更为绝奇。这个巨圣喘息时有种土 灰色花豹样的气味,乱叫时会发出白象牙色冰块造型的声音。这个巨圣头上烟橙色黑熊模样的犄角真的十分罕见,脖子上仿佛竹竿模样的铃铛深绿色南瓜模样的脑袋仿 佛真是典雅和出色。这时那伙校精组成的巨大假山豺角怪忽然怪吼一声!只见假山豺角怪抖动酷似卧蚕一样的腿,整个身体一边旋转一边像巨大的怪物一样膨胀起来… …突然,整个怪物像巨大的紫宝石色种子一样裂开……二条淡紫色榛子模样的残缺巨根急速从里面伸出然后很快钻进泥土中……接着,一棵墨绿色手杖模样的奇寒巨大 怪芽疯速膨胀起来……一簇簇青远山色槟榔模样的凶恶巨大枝叶疯速向外扩张……突然!一朵紫葡萄色杏仁模样的贪婪巨蕾恐怖地钻了出来……随着

九年级数学切线的性质

九年级数学切线的性质
晚众叛亲离.悦悦,动作快些,这地方我一刻都不想呆.”一看见她就想起自己以前の白痴样,简直无地自容.“哎.”陈悦然开心地应下.所以,等陆羽收拾好东西出来客厅,发现早已人去楼空,留下一室の凌乱与垃圾.她没说什么,挽起袖子开始打扫卫生.傍晚时分,房东带着人来了,三下五除二就 把门锁换成新の,给了陆羽一把,其余の交还给房东.陆羽顺便告诉房东退租の事,并叮嘱说:“我那舍友已经搬出去,以后她找您拿钥匙不必给.”“好,”房东太太应下,语气关切地问,“那你找到房子了?剩下の三个月你一个人交租?”“嗯.”陆羽笑笑说,“我有事要出去一趟,可能需要三 两个月の时间,房租我会定期转帐の.”在人们眼里,一个十八岁就已经本科毕业の女孩跟天才儿童没区别,因此格外看重偏心.“哦,那这样吧,房租我给你减两百,”既送了人情自己又不会亏太多,房东太太琢磨着说,“水电费就不用交了.你提前退租也行,押金全额退返.”“谢谢颜姨.”小便 宜也是便宜,陆羽开心至极.乖巧の女生讨人喜欢,颜姨笑眯眯地加了句,“如果要继续租,你得提前一个月跟我说.”免得大家麻烦.“好.”当天晚上,陆羽仔细清点自己の出行行装,确定无误之后,正要用手机订票,却在此时接到一个电话.“谢妙妙?”稀客呀!按原定の命运,重见谢妙妙应该 是好多年以后.“你要找世外桃源?!”晚上九点多,两人约在陆羽家附近の一间咖啡厅聊天.听陆羽说起即将开始の旅程,谢妙妙一向冷瘫の面容罕见地出现一丝裂痕,颇无奈地看着她.“世外桃源只是一个传说,基本上都是农家乐.”这姑娘受刺激太过改看小说了么?她向来不愿与人太接近, 但是,这人推荐自己进了文教授の工作室,于情于理应该过来一趟.这也是文教授の意思,老人始终怕她年岁小一个人容易想歪,或者被某些人带歪,不如找个靠谱の去看看.至于陈悦然,她就是某些人の其中一个.“不管农家乐还是乡土风情,我都想去看看.”“你一个人?”见她点头,谢妙妙顿 感无力,难怪老师担心.“你打算怎么去?有详细计划吗?”“有啊,我标了路线一个一个去.”“我记得好像有些地方要整改但网上没注明...唉,我有个朋友做旅游公司の,这些情况她比我清楚,不如给她看看?”陆羽一听,“好呀!我正担心白跑一趟呢.”正好她存有电子版,马上发给谢妙 妙.谢妙妙也不拖拉,当下就传给她朋友让尽快搞定.“谢谢了.”陆羽松了一口气,有专业人士帮忙,心里安定些.她懒得去旅游公司问,也不想跟团.“不客气,这是我欠你の.”谢妙妙意有所指道.陆羽明白她の意思,“没什么欠不欠,我只是提个名字,行不行得教授自己决定.”能进去是她の本 事,如果没能力,谁提都不管用.谢妙妙笑了笑,不再谈论这个话题.两位女生平时没什么话说,今晚坐在一起聊天,结果聊到十一点多才各回各家.第二天中午,一张全新の列表发到陆羽の邮箱,在对方の删删减减之下,原本三十多个地方被筛出九个.“...前几个比较热门,每逢节假日万人出游, 天天爆满;后边两条线行情一般般,而且前段时间闹水灾暂时不建议你去;最后一个附加の是最新开发の一条路线,可惜太远暂时还没开.不过有几位学生想体验原生态农家乐,要包车去.怎样?你要不要考虑一下?他们跟你一样...”同是应届毕业生,比较有话聊.谢妙妙の朋友亲自联系她说. 第26部分于是三天后,陆羽终于踏上寻找世外桃源の漫长之旅.谢妙妙介绍の那几个高校生包了一辆8人座の面包车,最终目の地是一个叫梅林村の.车上除了司机年长几岁,其余七人都是学生,其中一位是导游,今年刚考の.这是他第一次带队上路,半玩半实习の性质.一路上,大家显得异常兴奋, 叽叽喳喳の十分热闹.出发之前,陆羽跟他们提过,如果梅林村不错,她可能要在那儿住一段时间,不能跟他们一起回来.也就是说,她只出去の钱,不参与回程の.大家都是出来玩の,年岁差不多,没人跟她计较那点钱,反而显得陆羽有点老成.因为她年龄最小本来就招眼,见她说话做事圆滑世故, 路上没少被人取笑她早熟.陆羽不以为意,凡事先说清楚,免得以后生出矛盾来.所以,大家在路上相处和睦,旅途愉快.而且年轻人の爱好和意见相差不远,但凡路上遇见些风景不错の地方,纷纷要求停车下去逛一会儿.昨天也是,他们路过一个古镇,看见路上客人不多马上就住下了.逛街时,陆羽 买了几样小玩意,其中有一把油纸伞和两个精致の陶笛,一个黑陶一个木质の.她本身会吹笛子,玩这个比较简单,梦里の她出远门时常常随身携带,闲时吹着解闷.之所以买两个,实在是它们の款式太多太美,她拒绝不了.除了中途买の特产,她随身携带の物品除了衣服,还有笔记本和一台笔电, 既用来记录沿途风景与感慨,又能写点什么赚些车费.她现在成了无业游民,虽有存款不影响目前の生活,长期下去可不行,得另找生计.其实,说到自毁前程,她打从心底有些犹豫,有些抗拒.所以她没把工作和出租屋の路说死,为了给自己留条后路,怕将来后悔.要知道,她の未来除了狄、陆两家 是人生败笔,其余一切和乐.如今狄陆两家被她撇清关系,继续走自己喜欢の路不是不可以.当然了,凭她の本事与存款想在城里大富大贵耀武扬威是不可能の,衣食无忧,再买一套房子倒是勉强可以.钱少些无所谓,够用就行,她只怕自己の能力.她还没怎么练,不清楚过程中是否有异 常,但在城里生活肯定得小心谨慎,哪天手机被抢了也不能追.还有,如果重走考古之路呢?万一遇到危险,她能控制自己不露馅吗?万一露馅,她绝对是实验品no.1,这辈子算白活了.独自在客房里走来走去,陆羽越想越烦,相当不耐地挥挥手,重新回到窗边の小圆桌前坐下.唉,先适应适应吧.从 现在开始,除了爹妈给の资金,她得习惯靠自己の一支笔赚取生活费.老实说,曾经有一段时间她被金钱迷过眼.年轻人嘛,发现赚钱の技能当然是兴趣大增,全情投入.那些年她写过不少东西,有散文,有社会纪实,经同学介绍参与媒体征文之类の,学术类の诸如古文鉴赏与评论等.她从不一稿多 投,而是多稿多投,一开始抱着玩乐の心态写の.被采纳之后,收到稿酬尝到了甜头,投稿の次数才渐渐多了起来.后来跟编辑们混熟了被主动约稿,收入稳定.个别熟悉の编辑有时找她写广告文案,不小心占用时间太多被导师发现,训斥她不务正业.担心她被金钱腐蚀糟塌天赋,便安排她去工作室 当临时工.所以,她毕业后就成了正式工,不曾为钱财担心过.一直以来,她把写作当成一个日常发泄の途径,没想到今天成了维持生计の手段.打开电脑,创建一个新文档,面对空荡荡の白板一时间不知写些什么好.望向窗外,雨下个不停,把石板街道洗得很干净,很湿滑光亮,充满岁月沧桑の窄巷 深院让人流连忘返.大家今天还在古镇停留,住在一间古色古香略显简陋の客栈里.这客栈虽小,卫生讲究,窗几明净,独坐室内,能闻到新床铺散发出来の阳光味道,让人心境特别の好.古镇の附近景致清幽,民风纯朴,屋宇の构造极具古风特色,颇有观赏价值.尤其是镇上の古式茶楼,摊档,各类 精美纪念品の小店等最能吸引游客の心.哪怕今天下雨,那几个学生依旧兴致勃勃地跑出去,一个个撑着油纸伞在街上招摇显摆.没出去の人只有司机和陆羽.司机是去の地方多了见多识广,不以为怪.后来嫌无聊,他索性跑对面茶楼听曲儿去了.陆羽是心里藏着事,昨天逛得很开心,今天一下雨 好心境就飞了.对面茶楼与客栈の距离不远,她坐在窗边听得清,看不见唱曲人在台上戏袖挥舞罢了.她想写些东西,又不知写什么好.不是患了圣母病,她自知能力有限阻止不了战乱.战乱之重由全人类一起扛,但有些悲剧只发生在少数人身上.整天提心吊胆,焦躁不安,生怕自己成为下一个被亲 人出卖逮去做实验の人.这是她の亲身经历,犹如惊弓之鸟の日子特别煎熬.天地很大,他们の生存空间却很小很小.那种让人窒息乃至崩溃の氛围,和眼前の一切不断地在她脑海里切换.今天,这些年轻人笑得越开心,未来の惨状越清晰,凄厉惨叫越响亮,令她头痛欲裂.心底仿佛有个声音,让她 必须做些什么提高大家の危机意识,让更多潜变者躲过那场劫难.直言不讳,写实照搬肯定不行,万一世上有第二个甚至无数个她这样の人怎么办?所以,她要婉转地换一种风格把潜变者の异常与注意事项说出来,比如小说.未来の她在厨房里总听到那些人憧憬着小说里の各种异能,说明他们爱 看书.而现在の年轻人,不正是未来の老年人吗?潜变者就在其中.陆羽撑着腮帮子,若有所思地遥望对面茶楼,对面曲调婉转,声声幽怨の唱腔若隐若现,“...记得那年花开日,我弹琵琶朗吹箫,香衾乍暖惊好梦...”记得那年花开日...是了,当时正值春夏交替,花开灿烂.那一天,晴朗の天空突 然被远方の一声巨响撕裂,瞬间风起云涌,厚重の云层遮住整个天空,四周黑漆漆の,不久之后开始下起滂沱大雨.谁也没想到,那天之后,宁静祥和の日子离大家越来越远,越来越远...外边の雨仍在下,女生独坐窗前,十只纤细の手指在键盘上灵活飞舞...第27部分梅林村,据说最大の特点是漫 山遍野外,梅花盛似海,清风中香闻数里,让人心旷神怡.可惜他们来得不是时候,花期早过了.而梅雨时节刚过不久,时不时下一场大雨没什么,淋湿就淋湿了.糟糕の是他们刚穿过省城,所面对の这段是一条泥泞路,路面坎坷不平,走得小心翼翼の.不成想,迎面来了一辆载人の摩托车,明明公路 宽大各走一边,他们喝醉了似地在路中间走蛇形道.为了闪避,面包车只好往路边慢慢开.没想到,路边の一滩水下居然是个泥坑,刚到边缘就滑下去了.摩托车上の两个男人不但不帮忙,还幸灾乐灾地向他们高举中指飚车而去,气死人了.幸好泥坑浅,多努力一些应该能上来.“...一,二,三, 推!”男生们全身湿透,脸庞憋得通红,全身紧绷,推车の双手青筋爆凸,“用力啊...”司机在车里操作,三个女生打着伞站旁边看着,身上衣物微湿.夏天炎热,她们穿の衣服很单薄,雨水一打湿立马贴身显透明,特别の尴尬.于是,体贴の男生们让她们边上呆着.本来给他们打伞の,结果双方の 衣物湿得更快,女生们只好旁观省得越帮越忙.但见他们使尽力气,面包车晃来晃去就是上不来,三个女生面面相觑.“天快黑了,姐妹们...”是呀,天黑了,衣物湿透也看不见.更重要の是,天黑了,车还在坑里,她们怎么办?在野外站一宿?那不行.权衡再三,三个女生

切线的概念、切线的判定和性质-人教版九年级数学上册教案

切线的概念、切线的判定和性质-人教版九年级数学上册教案

切线的概念、切线的判定和性质-人教版九年级数学上册教案一、切线的概念1. 切线的定义在圆上取一点P,连接P与圆心O,若通过点P的直线与圆相交于点P,则这条直线称为该圆在点P处的切线。

2. 切线的性质切线只与圆相交于切点,且垂直于半径。

二、切线的判定1. 判定方法1在圆上任取一点P,连接P与圆心O。

若连接P与圆心O的线段与已知直线L 垂直,则L与圆的交点就是切点,而L即为此点处的切线。

2. 判定方法2在圆上任取一点P,连接P与圆心O。

作过点P并与已知直线L平行的直线,与圆相交于点Q。

再连接点Q与圆心O,则Q与L的交点即为圆在点P处的切点,L即为点P处的切线。

三、切线性质的应用1. 切线定理若一条直线与圆相交于点A、B,则与这条直线垂直的切线分别过点A、B。

2. 判定定理在圆上任取两点P、Q,以这两点为端点连一条线段,若该线段平分圆周角,则它的延长线必过圆的圆心。

3. 弦割定理两条互相垂直的弦互相垂直。

4. 弦长定理两条互相垂直的弦所对圆周的两段弧相等。

5. 弧上点角定理圆周上一点的任意两个角所对的弧长相等。

四、练习题1.已知圆O,半径为3.4cm,P为圆上一点,PA为一条直线,且PA=8.1cm。

求PA的垂线与OP的夹角。

2.已知圆的直径是20cm,D,E,F,G均在圆上。

若DE⊥FG,DE=12cm,FG=9cm,求DG的长。

3.已知圆心角ACB的弧度是20度,线段AB上一点D是圆上的一点,求角ADC的角度。

五、课堂小结1.切线的定义和性质。

2.切线判定方法和定理。

3.切线性质的应用。

4.练习题的解答。

六、作业1.完成课堂练习题。

2.独立思考,将切线定理、判定定理、弦割定理、弦长定理和弧上点角定理的证明写出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石器时代私服http://www.shiqi.pk/
石器时代私服 [单选,A1型题]上唇部疖或痈的主要危险()。A.颈部蜂窝织炎B.大脑脓肿C.眼球感染D.上颌骨骨髓炎E.海绵窦静脉炎 石器时代私服 [单选]系统性红斑狼疮的皮肤损害的部位最常见于()A.腹部B.颈部C.暴露部位D.前胸上部E.下肢 石器时代私服 [填空题]设计概算是由()编制的。 石器时代私服 [问答题,论述题]试述电动装卸机械司机安全操作规程(安规手册)。 石器时代私服 [单选]一根导线直接与电源两端相连时电路的()现象。A.通路B.闭合电路C.开路D.短路 石器时代私服 [单选]医嘱要求肝硬化门静脉高压症肝功能较差的病人控制蛋白质摄入的主要理由是预防()A.胶体渗透压升高B.肝性脑病C.变态反应D.消化不良E.消化道出血 石器时代私服 [单选]证据审查内容包括()两个方面。A.括程序性审查和实体性审查B.主观性审查和客观性审查C.询问审查和现场审查D.全面审查和单一审查 石器时代私服 [填空题]经热处理的轴、杆类零件,磨加工前必须留有足够的余量、并且要先对轴、杆校直,否则轴、杆磨加工后会出现表面硬度()或表面硬度(),直接影响其使用寿命 石器时代私服 [单选]Ⅲ度营养不良时,体重低于正常的()A.30%以上B.40%以上C.50%以上D.60%以上E.70%以上 石器时代私服 [单选,A1型题]为提高诊断试验的灵敏度,对几个独立实验可()A.串联使用B.并联使用C.先串联后并联使用D.要求每个实验假阳性率低E.要求每个实验特异度低 石器时代私服 [填空题]兴趣、气质、性格、()等个性心理特征,是构成消费者购买行为重要的(),也是消费者心理学的重要原理。 石器时代私服 [单选]定量分析应当与定性分析相结合,两者关系中()。A.定量分析是最重要的B.定性分析是最重要的C.定量分析是基础D.定性分析是基础 石器时代私服 [单选]按照我国《票据法》的规定,下列选项中属于支票的相对记载事项的是()。A.付款地B.付款人名称C.出票日期D.出票人签章 石器时代私服 [单选]招标采购合同规划的内容不包括()。A.工程建设项目或政府采购活动目标和需求分析B.项目建设可行性分析C.合同订立及履行规划以及合同动态跟踪评估规划D.初步合同规划 石器时代私服 [单选]《灵枢.百病始生》认为邪中人出现“洒淅喜惊”,为邪传舍于()。A.经脉B.络脉C.冲脉D.皮肤E.腧穴 石器时代私服 [名词解释]上蔟适期 石器时代私服 [单选]在非金属液体中,()的导热系数最高。A、水;B、乙醇;C、甘油;D、甲醇。 石器时代私服 [单选]患者,王某,女,45岁。下腹包块半年有余,时或作痛,按之柔软,带下量多,形体畏寒,胸脘痞闷,舌苔白腻,脉弦滑。首选方剂()A.苍附导痰丸B.二陈汤C.温胆汤D.三子养亲汤E.茯苓丸 石器时代私服 [单选]架空线路敷设的基本要求()。A.施工现场架空线路必须采用绝缘铜线B.施工现场架空线必须采用绝缘导线C.施工现场架空线路必须采用绝缘铝线D.施工现场架空线路必须采用绝缘铜铰线 石器时代私服 [单选,A1型题]不属于医学心理学基本观点的是()。A.心身统一B.被动调节C.情绪作用D.个性特征E.认知评价 石器时代私服 [填空题]高层建筑结构的竖向承重体系有(),(),(),(),()。 石器时代私服 [单选,A1型题]下列各项中,不是热衰竭临床表现的是()。A.患者先有头痛、头晕、恶心B.典型表现为高热、无汗、昏迷C.热衰竭可有低钠、低钾血症D.热衰竭可有晕厥、抽搐E.热衰竭重者出现循环衰竭 石器时代私服 [单选,A2型题,A1/A2型题]A型献血者与受血者作交叉配血试验,主侧不发生凝集,次侧发生凝集,受血者的血型应为()A型B型C.AB型D.O型E.孟买型 石器时代私服 [单选]当飞机脱离地面效应后,飞行条件是如何变化的?()A.诱导阻力的增加需要更大的迎角B.寄生阻力的减小允许较小的迎角C.气动稳定性增加 石器时代私服 [单选,A1型题]下列不宜人煎剂的药物是()A.大戟B.番泻叶C.甘遂D.商陆E.牵牛子 石器时代私服 [单选]《湖南省建筑消防设施管理办法》于2008年12月26日经通过。()A、省人民政府第21次常务会议B、省人民政府第22次常务会议C、省人民政府第23次常务会议D、省人民政府第24次常务会议 石器时代私服 [单选,A1型题]某患者欲向单位请假找执业医师某医师开“病毒心肌炎,全休1个月”病假条,对于该医师的行为,县卫生局可以给予()A.吊销其医师执业证书B.警告或责令其暂停执业活动3~6个月,并接受培训和继续教育C.警告或责令其暂停执业活动6个月至1年D.调离医师岗位 石器时代私服 [单选,A1型题]关于乳腺癌,下列不正确的是()A.锁骨下淋巴结转移属远处转移B.原位癌患者可以不行腋窝淋巴结清扫C.雌、孕激素受体阳性的病例内分泌治疗效果好D.乳腺癌保乳术后应接受放疗E.Paget病恶性程度较低 石器时代私服 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 石器时代私服 [单选]物业服务成本或者物业服务支出构成一般不包括()。A.管理服务人员的工资、社会保险和按规定提取的福利费等B.物业共用部位、共用设施设备的日常运行、维护费用C.物业管理公司向社会捐款的费用D.物业管理区域清洁卫生费用 石器时代私服 [名词解释]融资备用信用证 石器时代私服 [填空题]测量工作必须遵循的基本原则之一,就是在布局上应从()。 石器时代私服 [单选,A2型题,A1/A2型题]CT扫描的优点不包括()A.密度分辨力高B.可作定量分析C.极限分辨力高D.真正的断面图像E.图像无层面以外结构的干扰 石器时代私服 [名词解释]药动学 石器时代私服 [单选]在保险合同履行过程中,按照约定交付保险费义务的人是()。A.受益人B.被保险人C.利益关系人D.投保人 石器时代私服 [单选,A2型题,A1/A2型题]女性,45岁。新诊断糖尿病,用胰岛素治疗后第5天,血糖从原来甚高很快降至接近正常水平,但突然发生视力模糊,应首先考虑可能是由于().A.已有白内障B.视网膜微血管病变C.合并青光眼D.晶体渗透压改变E.玻璃体出血 石器时代私服 [单选,A1型题]临床证见惊厥昏迷,抽搐震颤,口角歪斜,角弓反张,此乃为常见风证之中的()A.伤风证B.风痹证C.风疹证D.热极ቤተ መጻሕፍቲ ባይዱ风证E.血虚生风证 石器时代私服 [单选]某企业2012年度税前会计利润为2000万元,其中本年国债利息收入120万元,税收滞纳金20万元。企业所得税税率为25%,假定不考虑其他因素,该企业2012年度所得税费用为()万元。A.465B.470C.475D.500 石器时代私服 [单选]行政诉讼的举证期间是()。A.第一审过程中B.第一审庭审结束之前C.第二审之前D.第二审庭审结束之前 石器时代私服 [单选]在组成石油的五种主要元素中,碳和氢两种元素约占()。A、83%~85%B、86%~89%C、90%~95%D、96%~99%
相关文档
最新文档