数字万用表的设计
单片机数字万用表设计
单片机数字万用表设计一、引言单片机数字万用表是一种多功能仪器,可以用于测量电压、电流、电阻等电气参数,广泛应用于电子工程、通信工程、无线电工程等领域。
本文旨在设计一款单片机数字万用表,结合单片机技术和模拟电路设计,实现功能齐全、精准度高、便携性强的数字万用表。
二、设计原理单片机数字万用表的核心部分是其测量模块,该模块能够接收被测电路的输入信号,并通过ADC(模数转换器)将模拟信号转换为数字信号,然后经过单片机处理和显示模块的处理,最终将结果显示在液晶显示屏上。
整个设计流程主要包括以下几个方面:1.信号输入:设计合适的信号输入接口,能够接收被测电路的电压、电流、电阻等信号,并将其传输给ADC。
2.模数转换:通过ADC将模拟电信号转换为数字信号,通常选择12位或16位的ADC,以保证高精度的测量结果。
3.单片机处理:单片机接收ADC传输的数字信号,并进行处理计算,以得出测量结果。
4.显示模块:将测量结果显示在LCD液晶显示屏上,包括数值显示、单位显示等。
5.供电模块:提供适当的电源供电,保证仪器的正常工作。
基于以上设计原理,我们可以开始具体的设计工作。
三、电路设计1.信号输入接口信号输入接口是单片机数字万用表的核心部分之一,它需要能够接收不同类型的信号,包括电压、电流、电阻等。
为了实现这一功能,我们需要设计相应的信号接收电路,可以通过选择不同的接收电阻和放大电路,使之能够适应不同的输入信号。
对于电压信号的输入,可以设计一个简单的分压电路,将被测电路的电压信号转换为适合ADC输入的电压范围。
同时,为了避免输入电阻对被测电路的影响,可以选择高输入阻抗的运放作为信号接收器。
对于电流信号的输入,可以设计一个电流-电压转换电路,将电流信号转换为相应的电压信号,再进行ADC采集。
对于电阻信号的输入,可以设计一个简单的电桥电路,测量电阻值并将其转换为电压信号,再通过ADC进行采集。
2.模数转换模数转换部分选择12位或16位的ADC芯片,可以根据精度需求做适当选择。
《数字万用表设计》课件
小巧轻便,可充电,适用于小电路维修
台式数字万用表
交直流通用,精度高,常用于实验室和工厂
专用数字万用表
针对一些特定的测量任务而设计的
数字万用表的构成和原理
构成
熔丝、旋转开关、电池、电源电路等
原理
根据欧姆定律、基尔霍夫定理等,通过电路分析获 得电荷和电流信息
数字万用表的准确性和精度
数字万用表的准确性和精度是评价其好坏的重要指标,精度取决于数码显示 的位数和转换电路的噪声程度。准确性受到测量误差、校准及环境因素等影 响。
数字万用表的常见误差和解决方法
1 电压误差
应选择合适量程,保证电源稳定
3 温度误差
保持恒温环境,适当预热电路
2 电流误差
正确接入测试电路,选择合适的保险丝
4 其他误差
合理放置,合理使用,定期校准
数字万用表的测量范围和分辨率
电压
范围:200mV-1000V,分辨率: 0.1mV-1V
电流
范围:200μA-10A,分辨率: 0.1μA-10mA
电阻
范围:200Ω-200MΩ,分辨率: 0.1Ω-100KΩ
数字万用表的通用性和适用范围
数字万用表通用性强,可用于工业自动化、实验室测量、电路调试等多种场合。适用于电子、通信、计算机、 机械、化工等领域。
数字万用表的常见测量方法
1
直流电压测量
将旋钮拨至VΩmA档位,将电表红表笔连接正极,黑表笔连接负极进行测量
数字万用表与智能化科技的融 合测量
数字万用表将与智能家居、智能汽车、智能医疗等领域紧密结合,呈现多种 形态和使用场景。
ቤተ መጻሕፍቲ ባይዱ
数字万用表的研发和生产技术 创新
数字万用表设计实验
数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。
将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。
一般N ≥1000即可满测量精度要求。
常见数字表头最大示数为1999,称为三位半(213)数字表。
数字测量仪表的核心是模/数(A/D )转换、译码显示电路。
A/D 转换一般又可分为量化、编码两个步骤。
本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。
如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。
数字万用表 毕业设计论文..
摘要本次设计用单片机芯片AT89s52设计一个数字万用表,能够测量交、直流电压值、直流电流、直流电阻以及电容,四位数码显示。
此系统由分流电阻、分压电阻、基准电阻、电容测试芯片电路、51单片机最小系统、显示部分、报警部分、AD转换和控制部分组成。
为使系统更加稳定,使系统整体精度得以保障,本电路使用了AD0809数据转换芯片,单片机系统设计采用AT89S52单片机作为主控芯片,配以RC上电复位电路和11.0592MHZ震荡电路,显示芯片用TEC6122,驱动8位数码管显示。
程序每执行周期耗时缩到最短,这样保证了系统的实时性。
关键词:数字万用表;AT89S52单片机;AD转换与控制AbstractThis design is design a digital universal meter with chip AT89s52 of one-chip computer, can measure and hand in , direct current pressing value , direct current flow , the direct current is hindered, four numbers show. This system is shunted resistance, resistance of partial pressure, basic resistance, minimum system of 51 one-chip computers, shown that some , warning part , AD change and control making up partly. In order to make the system more steady, make the whole precision of the system be ensured, this circuit has used AD0809 data to change the chip, the one-chip computer system is designed to adopt AT89S52 one-chip computer as the top management chip, the electricity is restored to the throne the circuit and 11.0592MHZ and shaken the circuit to match on RC, show that the chip uses TEC6122, urge 8 numbers to be in charge of showing. The every execution cycle consuming time of procedure contracts to get shortest, in this way the real-time character of the security system.Keyword:Digital universal meter;AT89S52 one-chip computer AD changes and controls目录摘要 (1)Abstract (2)绪论 (1)第一章数字万用表设计背景 (3)1.1数字万用表的设计目的和意义 (3)1.2 数字万用表的设计依据 (3)1.3数字万用表设计重点解决的问题 (3)第二章数字万用表总体设计方案 (5)2.1数字万用表的基本原理 (5)2.2 数字万用表的硬件系统设计总体框架图 (11)2.3硬件电路设计方案及选用芯片介绍 (11)2.3.1 设计方案 (12)2.3.2 芯片选择及功能简介 (12)2.4数字万用表的硬件设计 (25)2.4.1分模块详述系统各部分的实现方法 (25)2.4.2 数字万用表控制硬件整体结构图 (31)2.4.3 电路的工作过程描述 (32)第三章系统软件与流程图 (33)3.1 电路功能模块 (33)3.2系统总流程图 (34)3.3物理量采集处理流程 (35)3.4电压测量过程流程图 (35)3.5电流的测量过程流程图 (36)3.6电阻的测量过程流程图 (37)3.7电容测量过程流程图 (38)结论 (40)致谢 (41)参考文献 (42)第一章绪论数字万用表亦称数字多用表,简称DMM(Digtial Multimeter)。
数字万用表实验设计
8.12 设计数字万用表【实验目的】1.了解数字电表的基本原理、常用双积分模数转换芯片外围参数的选择原则及电表的校准原则;2.了解数字万用表的特性、组成及工作原理;3.掌握分压、分流电路的原理;4.设计制作多量程直流电压表、电流表及电阻表;5.了解交流电压、三极管和二极管相关参数的测量。
【设计要求及实验内容】1.设计制作多量程直流数字电压表,并进行校准(自拟校准表格,量程为:200mv、2v);2.设计制作多量程直流数字电流表,并进行校准(自拟校准表格,量程为:200mA、20mA);3.设计制作多量程数字欧姆表,并进行校准(自拟校准表格,量程为:200Ω、2kΩ、20 k Ω);4.设计制作多量程交流数字电压表,并进行校准(自拟校准表格,量程为:AC, 200mv、2v);5.二极管正向压降的校准和测量;6.三极管h FE参数的测量。
以上实验,在1至3中选择2~3个实验题目为必做内容,4至6为选做内容。
【主要实验器材】1.DH6505数字电表原理及万用表设计实验仪;2.四位半通用数字万用表;3.标准电阻箱。
【实验原理、方法提示】1. 数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
(1)双积分模数转换器(ICL7107)的基本工作原理我们将完成从模拟电信号转换成数字信号的电路称为模数转换器(AD转换器)。
数字万用表常用的转换器为双积分AD转换器。
双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比(式1);接着让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。
数字万用表设计
数字万用表设计实验报告实验名称:数字万用表设计 实验日期 ____________温度___________压力___________ 同组者 ___________一、实验预习部分(实验前完成,并检查,教师签名) 1,实验目的:1, 掌握数字万用表的工作原理、组成和特性。
2, 掌握数字万用表的校准和使用。
3, 掌握多量程数字万用表分压、分流电路计算和连接;学会设计制作、使用多量程数 字万用表。
2,实验原理:1、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。
数字万用表的直流电压档分压电路如图(2)所示,它能在不降低输入阻抗的情况下,达到准确的分压效果。
例如:其中200 V 档的为分压比为:001.010*********==+++++MKR R R R R R R其余各档的分压比分别为:图(2)实用分压器电路档位 200mV 2V 20V 200V 2000V 分压比 1 0.1 0.010.001 0.0001实际设计时是根据各档的分压比和总电阻来确定各分压电阻的,如先确定M R R R R R R 1054321=++++=总再计算200V 档的电阻:K R R R 10001.054==+总,依次可计算出3R 、2R 、1R 等各档的分压电阻值。
更换量程是需要调整小数点的显示,使用者可方便地读出测量结果。
2、直流电流的测量测量电流是根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。
如图(3)图(3)电流测量原理实用数字万用表的直流电流档电路,如图(4)所示。
图(4)实用分流器电路图(4)中各档分流电阻是这样计算的,先计算最大电流档(2A )的分流电阻5R (数字电压表最大输入为200mV ))(1.022.0505Ω===A V I U R m ,再计算200mA 档的4R :)(9.01.02.02.05404Ω=-=-=R I U R m 依次可以计算出3R 、2R 和1R ,请同学们自己练习。
数字万用表的设计
数字万用表的设计203系05级 张苗磊 2006.12.6 PB05203237一、 实验原理1、数字万用表的特性数字万用表有如下优良特性:高准确度和高分辨力;电压表具有高的输入阻抗;测量速率快;自动判别极性;全部测量实现数字式直读;自动调零等优点. 本实验使用的DM-I 型数字万用表设计性实验仪,其核心是一个三位半数字表头,该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
2、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。
如图2所示,U 0为数字电压表头的量程(如200mV ),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。
图(2)图(1)分压电路原理由于r >> r 2,所以分压比为 21200r r r U U i += 扩展后的量程为 02210U r r r U i +=实际数字万用表的直流电压挡电路为图(2)所示,它能在不降低输入阻抗 的情况下,达到同样的分压效果。
0~U3、交流电压测量电路数字万用表中交流电压量电路是在直流电压测量电路的基础上,在分压器之后加入了一级交流-直流(AC-DC )变换器,图(8)为其原理简图。
二、 操作步骤1、设计制作多量程直流数字电压表(1)按图(3)接线,参考电压V REF 输入端接直流电压校准电位器, 左数第三位小数点dp3接到量程转换单元的“动片1”插孔以获得一位小数显示(2)校准电压表头:用一只成品数字万用表(称为标准表)置于直流电压20V量程进行监测,调节直流电压电流单元电路中电位器,使之输出一150--200mV 左右的校准电压,然后将标准表表笔(输入)与组装表表笔并联,均置于直流电压200mV 挡,测量直流电压电流单元输出电压,调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV )。
实验二十八数字万用表设计性实验
实验二十八 数字万用表设计性实验一、实验内容:1.制作量程200mA 的微安表(表头);2.设计制作多量程直流电压表;3.设计制作多量程直流电流表;二、实验仪器:三位半数字万用表三、实验原理1.数字万用表的组成 数字万用表的组成见图28.1。
图28.1 数字万用表的组成数字万用表其核心是一个三位半数字表头, 它由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端, 包括2个测量电压输入端(IN+、IN-)、2个基准电压输入端(VREF+、VREF-)和3个小数点驱动输入端。
2.直流数字电压表头“三位半数字表头”电路单元的功能:将输入的两个模拟电压转换成数字, 并将两数字进行比较, 将交流直流变换器基准电压数字显示屏(LED 或液晶)小数点驱动分档电阻 分流器分压器过压过流保护过压过流保护模/数转换,译码驱动直流交流电阻电压电流被测量输入结果在显示屏上显示出来。
利用这个功能, 将其中的一个电压输入作为公认的基准, 另一个作为待测量电压, 这样就和所有量具或仪器的测量原理一样, 能够对电压进行测量了。
见图28.2。
图28.2 200mV(199.9mV)直流数字电压表头及校准电路3.多量程直流数字电压表在数字电压表头前面加一级分压电路(分压器), 可以扩展直流电压测量的量程。
如图28.3所示, U0为电压表头的量程(如200mV), r 为其内阻(如10M Ω), r1、r2为分压电阻, Ui0为扩展后的量程。
图28.3 分压电路原理 图28.4多量程分压器原理电路 多量程分压器原理电路见图28.4。
图28.5 实用分压器电路采用图28.4的分压电路虽然可以扩展电压表的量程, 但在小量程档明显降低了电压表的输入阻抗, 这在实际使用中是所不希望的。
所以, 实际数字万用表的直流电压档电路为图5所示, 它能在不降低数字电压表 0∼U 00∼U i0 r 1r 2 r IN+IN-动 片 2数字电压表R 1 R 2 R 3 R 4 R 5U i11990900IN-IN+标准表三位半数字表头IN+ IN- dp 1 dp 2 dp 3 V REF+ V REF-直流电压分压器9K1K 接动片1 直流电 压校准输入阻抗的情况下, 达到同样的分压效果。
三位半数字万用表的设计思路
三位半数字万用表的设计思路一、引言三位半数字万用表是一种常用的电子测量仪器,广泛应用于电子、电工、通信等领域。
其设计思路主要包括硬件设计和软件设计两个方面。
本文将从这两个方面分别进行阐述。
二、硬件设计思路1. 选择合适的芯片:三位半数字万用表的核心是ADC(模数转换器)芯片,需要选择性能稳定、精度高的芯片。
同时,还需要选择合适的运算放大器、参考电压源等辅助芯片。
2. 输入电路设计:为了保证测量的准确性和可靠性,需要设计合适的输入电路。
常见的输入电路包括电压放大电路、电流放大电路、电阻测量电路等。
3. 选择合适的显示器件:三位半数字万用表的显示部分通常采用LCD液晶显示屏,其优点是功耗低、可视角度大。
此外,还需要选择合适的按键、旋钮等输入设备,以方便用户操作。
4. 电源设计:为了保证测量仪器的长时间稳定工作,需要设计合适的电源电路。
常见的电源电路包括直流稳压电源、电池供电等。
三、软件设计思路1. 测量模式选择:三位半数字万用表通常具备多种测量模式,如电压测量、电流测量、电阻测量等。
在软件设计中,需要实现测量模式的选择和切换功能。
2. 采样和转换:软件需要实现对输入信号的采样和模数转换。
通常采用的方法是采样并存储一定数量的采样点,然后进行模数转换。
3. 数据处理和显示:软件还需要对采样得到的数据进行处理,如进行平均值计算、单位换算等。
最后,将处理后的数据显示在液晶屏上。
4. 软件校准:为了保证测量仪器的准确性,软件中通常还会加入校准功能。
校准过程可以通过与标准信号比较,得到修正系数,以提高测量的准确性。
四、其他设计要点1. 外壳设计:三位半数字万用表的外壳通常采用防护性能好的塑料材料,以保护内部电路免受外界干扰和损坏。
2. 人机交互设计:为了方便用户的使用,万用表还需要设计合理的人机交互界面。
例如,可以在液晶屏上显示测量结果和单位,并通过按键或旋钮实现功能选择和数值调节。
3. 安全保护设计:电子测量仪器对用户的安全至关重要,设计时需要考虑到各种可能的危险情况,并采取相应的保护措施,如过载保护、绝缘保护等。
简易数字万用表设计毕业设计
目录1、设计任务 (1)1.1设计目的 (1)1.2设计指标及要求 (1)2、设计思路与总体框图 (1)3、系统硬件电路的设计 (2)3.1多用表主电路 (2)3.2 电阻测量输入电路 (2)3.3电压测量输入电路 (3)3.4电流输入测量电路 (3)4、系统的软件设计 (4)5、系统的设计仿真 (5)5.1仿真原理图 (5)5.2实物图 (6)5.3主要元器件功能介绍 (6)6、总结与体会 (20)6.1总结 (13)6.2体会 (13)7、参考文献 (14)1、设计任务1.1设计目的采用8位8路A/D 转换器ADC0809和AT89S52单片机,设计一台数字多用表,能进行电压、电流和电阻的测量,测量结果通过LED 数码管显示,通过按键进行测量功能转换。
1.2设计指标及要求电压测量范围0~5V ,测量误差约为±0.02V ,电流测量范围1~100mA ,测量误差约为±0.5mA ,电阻测量范围0~1000Ω,测量误差约为±2Ω。
2、设计思路与总体框图 2.1设计思路首先利用P0 口数据地址复用,将地址通过P0口输入到单片机中。
再利用模数转换将模拟信号转换成数字信号,再次利用P0口将其输入到单片机。
最后,充分利用单片机强大的运算转化功能将其转成适当的二进制信号控制数显以确保正确的显示被测量的读数。
2.2总体框图3、系统硬件电路的设计3.1 数字多用表的主电路数字多表仪表主电路如图1所示。
89S52单片机通过线选方式扩展了A/D 转换器ADC0809和4位LED数码管,单片机的P2.7引脚作为ADC0809的片选信号,因此A/D转换器的端口地址为7FFFH.片选信号和WR信号一起经或非门产生ADC0809的启动信号START和地址锁存信号ALE。
片选信号和RD信号一起经或非门产生输出允许信号OE,OE=1时选通三态门使输出锁存器中的INT 转换结果送入数据总路线。
ADC0809的EOC信号经反相后接到89S52的1引脚,用于产生A/D转换完成中断请求信号。
数字万用表电路方案
数字万用表电路方案一、电路功能概述。
对于电压测量功能,它得能够测量不同范围的直流电压和交流电压。
比如说,咱们日常生活中的电池电压,像1.5V、9V的这种,还有家里电器用到的220V交流电压,都要能准确测量。
电流测量方面,不管是小电流,像电子设备里面的微小电流,还是大电流,像一些电器工作时的较大电流,电路都得能搞定。
电阻测量就更不用说啦,从几欧姆的小电阻到几千欧姆甚至更大的电阻,都要测量得妥妥当当。
二、电路组成部分。
1. 模数转换(ADC)电路。
这可是整个数字万用表电路的核心部分之一哦。
它就像一个翻译官,把咱们要测量的模拟电信号(比如电压、电流这些连续变化的信号)转换成数字信号,这样后面的电路才能识别和处理。
ADC的精度直接影响到整个万用表测量的准确性。
咱们得选一个合适的ADC芯片,要那种分辨率高、转换速度快的。
比如说,12位或者16位分辨率的ADC芯片就很不错。
分辨率高意味着它能把模拟信号分得更细,测量结果就更精确。
2. 电压测量电路。
这个电路主要是用来调整输入电压的大小,使它能够适应ADC的输入范围。
它可能会用到一些分压电阻之类的元件。
咱们要根据不同的电压测量范围,合理选择分压电阻的阻值。
就像给不同身高的人准备合适高度的凳子一样,要让输入到ADC的电压刚刚好。
而且这个电路还得考虑对不同类型电压(直流和交流)的处理,交流电压还需要经过整流、滤波等环节,把它变成直流电压再进行测量。
3. 电流测量电路。
电流测量就有点小麻烦啦。
因为咱们不能直接把电流表串到电路里去测量,这样会对原电路产生很大的影响。
所以呢,这个电路会用到一些电流传感器或者分流电阻。
如果是小电流测量,可能会用那种高灵敏度的电流传感器;如果是大电流测量,分流电阻就比较合适啦。
通过测量分流电阻两端的电压,根据欧姆定律就可以算出电流的大小。
4. 电阻测量电路。
电阻测量电路通常会用到一个恒流源。
给被测电阻提供一个恒定的电流,然后测量电阻两端的电压,再根据欧姆定律算出电阻值。
数字万用表毕业设计
数字万用表毕业设计数字万用表是一种常见的电子测量工具,广泛应用于工程技术领域。
在我即将毕业的时候,我选择了数字万用表作为我的毕业设计课题。
通过设计和制作一个功能强大的数字万用表,我希望能够提高测量精度和效率,满足工程师们的需求。
首先,让我们来了解一下数字万用表的基本原理和功能。
数字万用表主要由一个数字显示屏和多个测量功能模块组成,例如电压、电流、电阻、频率等。
它可以通过选择不同的测量模式,来测量不同的电气参数。
数字万用表还具有自动量程切换、数据保存和传输等功能,使得测量更加简便和准确。
在我的毕业设计中,我希望能够改进数字万用表的测量精度和稳定性。
首先,我选择了高精度的测量芯片和元器件,以确保测量结果的准确性。
其次,我设计了一个精密的校准电路,可以校正测量误差,提高测量精度。
此外,我还添加了温度补偿电路,以消除温度对测量结果的影响。
通过这些改进,我相信我的数字万用表将能够提供更加可靠和准确的测量结果。
除了测量精度,我还关注数字万用表的使用便捷性和人机交互性。
在设计过程中,我注重界面的友好性和操作的简便性。
我采用了大尺寸的液晶显示屏,以便用户能够清晰地看到测量结果。
同时,我设计了直观的按键布局和菜单导航系统,使得用户能够快速选择和切换不同的测量模式。
此外,我还添加了声音和光线提示功能,以便用户能够及时了解测量状态和结果。
在设计数字万用表的过程中,我还考虑了其可靠性和耐用性。
我选择了高质量的元器件和材料,以确保产品的长期稳定运行。
我进行了严格的电磁兼容性和抗干扰性测试,以保证数字万用表在复杂的电磁环境下仍能正常工作。
此外,我还进行了严格的可靠性测试,包括温度循环、振动和冲击等,以验证产品在各种恶劣环境下的可靠性。
除了以上的技术改进,我还考虑了数字万用表的市场竞争性和商业可行性。
我进行了市场调研和竞争分析,了解了当前数字万用表市场的需求和趋势。
我根据市场需求,增加了一些附加功能,如数据记录和导出功能,以提高产品的竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字万用表的设计单片机数字万用表的设计一、引言数字万用表是一种多用途电子测量仪器。
它采用数字化测量技术,把实际测量的模拟量,转化为离散的数字量进行输出显示,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、多用电表或万用电表。
万用表是电子和电气技术领域必备的测量仪器,用于测量电子电路中的各种物理量(电压、电流、电阻等),常作为基本故障诊断的便携式装置,也有放置在工厂或实验室工作台上作为桌上型装置。
有的万用电表分辨率能达到七、八位数,常用在实验室,作为电压或电阻的基准,或用来调校多功能标准器的性能。
相比传统的指针式万用表,数字万用表具有以下的主要优点:(1)数字显示直观准确,无视觉误差,读数准确;(2)测量精度和分辨率都很高;(3)输入阻抗高,减少对被测电路的工作影响;(4)电路集成度高,便于组装和维修;(5)测量功能齐全,测量速率快;(6)保护功能齐全,有过压、过流保护电路;(7)功耗低,抗干扰能力强;(8)便于携带,使用方便。
本次设计的任务是制作一个数字万用表,可实现如下的功能及要求:(1)可以测量直流电压、直流电流和电阻;(2)能将测量得到的数值直观、准确地显示出来,并标明相应的单位;(3)具有超量程时的报警提示。
二、系统硬件分析与设计数字万用表的基本功能是,能够测量直流电压、电流以及电阻的阻值,数字万用表的基本组成由图1所示,其中,模数转换是数字万用表的核心:图1. 数字万用表的基本原理图如图2所示,本设计将由以下几大部分组成。
包括:复位电路、震荡电路、A/D转换和控制、测量值输出、超量程报警和档位选择。
其中,复位电路用于单片机上电复位使系统清零;震荡电路为单片机提供精确的时钟频率,使电路工作更加稳定;A/D转换和控制部分负责模数转换及输入输出信号的控制;测量值输出则负责显示待测物理量大小的数值;超量程报警用于超出量程范围时的报警提示,提醒使用者更换量程。
图2. 硬件系统总体设计框图1、STC的89C52单片机的特点及功能介绍(1)89C52单片机的主要特点及功能特性89C52是一款低电压,高性能的8位CMOS型单片机,片内有8k字节以Flash闪存为介质的,能擦写的只读程序存储器及256字节的随机存取数据存储器。
89C52型单片机仍属于51单片机家族群,都支持一个共同的指令集(MSC-51),但各自拥有不同的存储器容量及端口设置等内置资源,使其更符合成本效益的需要,满足特定的场合的生产需求。
该单片机在嵌入式控制应用系统中有着广泛的应用。
89C52具有以下几个主要特点:a.体积小但集成度高、可靠性较高:该单片机把各个功模块集成在一块芯片上,内部采用总线结构,将各种信号的通道封装在同一个芯片中,减少了与其他芯片之间的连线,大大提高了可靠性与线路的抗干扰能力。
b.控制能力较强:一般单片机的指令系统中均有极为丰富的转移指令、存储器读写指令、I/O 口的逻辑操作以及位处理功能,满足工业控制的各种要求。
c.易于扩展:单片机片内已经具有计算机正常运行时所必需的部件,但仍然预留了很多片外扩展用的引脚(各种总线,并行/串行的输入/输出),易于组成更庞大计算机系统完成更复杂的任务。
d.内部功能较强:单片机有着各种的内部资源,功能强大。
e.低功耗、低电压,便于生产便携式产品。
下面介绍89C52单片机的主要功能特性:a.兼容标准的MCS-51的指令系统;b.内置8k字节可擦写的闪存ROM(Read-Only Memory);c.4组共32个双向I/O口;d.256×8位大小的内部RAM;e.3个16位可编程定时/计数器中断;f.支持3.5-12/24/33MHz多种时钟频率;g.1个全双工可编程的UART(Universal Asynchronous Receiver/Transmitte)串行口;h.6个中断源,4级优先级中断结构;i.2个W/R(Write/Read)读写中断口,3级加密位;j.低功耗空闲和掉电节省模式,带有软件设置睡眠及相应的唤醒功能;k.有PDIP及PLCC两种封装形式。
(2)89C52单片机的引脚功能图3. 89C52单片机微架构图图4. 89C52单片机引脚图下面介绍89C52单片机引脚主要功能:4组I/O口P0口:一组8位漏极开路的准双向并行I/O口,扩展片外存储时的地址/数据总线复用口。
作为输出口用时,每位能驱动8个LS型TTL负载,对端口P0写“1”时,可作为高阻抗输入端用。
P0口与其他几组I/O口的最大区别是其内部不带有上拉电阻。
P1口:是一组带内置上拉电阻的8位双向并行I/O 口,P1的输出缓冲级可驱动4个TTL 负载。
对端口写“1”,通过内部的上拉电阻把端口拉至高电平后,可作输入口。
作输入口使用时,因为内部存在上拉电阻,引脚被外部信号拉低时会输出电流。
另外,P1的P1.0和P1.1口存在第二功能,见下表。
表1. P1口的第二功能引脚号功能特性P1.0 T2(定时/计数器2的外部计数输入),时钟输出P1.1 T2EX(定时/计数器2的捕捉/重载触发信号和方向控制)P2口:是一组带有内部上拉电阻的8 位双向I/O并行口,P2 的输出缓冲级可驱动4个TTL负载。
作输入及输出口时,情况与P1口相似。
扩展片外存储时,作为低8位地址总线口。
P3口:是一组带有内部上拉电阻的8 位双向并行I/O 口。
P3口输出缓冲级可驱动4个TTL负载。
作为输入及输出口时,情况与P1口相似。
P3 口还能接收一些用于Flash存储器编程和程序校验的控制信号。
P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能,见表2。
其他引脚RST:复位输入。
当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。
EA/VPP:外部访问允许。
要让CPU只访问外部程序存储器(地址为0000H —FFFFH),EA 端必需保持低电平(或接地)。
当EA端为高电平(接Vcc端)时,CPU会执行内部程序存储器中的指令。
XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
VCC:接电源+5V。
GND:接地端。
表2. P3口的第二功能引脚号功能特性P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外部中断0)P3.3 INT1(外部中断1)P3.4 T0(定时器0外部输入)P3.5 T1(定时器1外部输入)P3.6 WR(外部数据存储器写有效)P3.7 RD(外部数据存储器读有效)2、模数转化电路实际的物理量都是幅值大小连续变化的模拟量,或称为模拟信号。
旧式的指针万用表可以直接对模拟电压、电流进行测量并显示。
对于数字万用表,则需要把模拟量(多是电压量)转换为数字信号的形式,通过相关的处理(包括存储、传输、计算等)再进行显示。
数字信号是量化的模拟信号,若将最小的量化单位记为Δ,那么数字信号的大小一定为Δ的整数倍。
该倍数可以用二进制数码表示,但为了便于直观地读数,通常把数码进行译码后,由数码管或液晶屏幕显示。
当模拟信号经过量化之后,还需要进行编码处理,是用二进制码组表示固定电平的量化值。
目前普遍使用的是非线性的8位二进制编码,可以将输入的幅度范围分成256个量化级。
由此可知,数字万用表测量的核心步骤是模数转换以及译码显示,其中模数转换又可以分为量化及编码两大步骤。
(1)PCF8591芯片的主要功能特征PCF8591是一个单片集成、单独供电、低功耗及8位CMOS工艺制造的AD-DA器件。
PCF8591具有4个模拟输入、1个模拟输出和1个串行I2C总线接口。
PCF8591的3个地址引脚A0、A1和A2可用于硬件地址编程。
在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线双向I2C总线以串行的方式进行传输。
图5. PCF8591的内部原理图PCF8591芯片的引脚功能图6. PCF8591的引脚图图6所示为PCF8591的引脚图。
AIN0~AIN3:模拟信号输入端;A0~A2:引脚地址端;VDD、VSS:电源端(2.5-6V);SDA、SCL:I2C总线的数据线、时钟线;OSC:外部时钟输入端,内部时钟输出端;EXT:内部、外部时钟选择线,采用内部时钟时EXT接地;AGND:模拟信号地;AOUT:数模转换输出端;VREF:基准电源端。
图7. 模数转换部分原理图图7所示为模数转换部分。
PCF8591芯片作为ADC芯片,使用I2C总线与单片机通讯,SCL是串行时钟,SDA是串行数据线,输出转换后的数字量。
待测模拟量从AIN0进入,其余模拟输入口因本设计不需使用而接地。
AGND端是模拟地,接上0Ω电阻,而VDD接上接地电容,有效分割模拟地和数字地,减少高频数字信号的干扰。
(2)多量程数字电压表设计图8. 分压电路的原理如图8所示,在基准数字电压表头前加上一级电压信号衰减电路(分压电路),可以扩展直流电压测量的量程。
图中,V o为输出电压,基准电压表的量程为2V,四个分压电阻串联值为10MΩ,则第4个开关接入时输入电压V i可以达到2000V,同理可得其他档位量程分别为2V、20V、200V、200V。
但基于测试安全性,第4档测试电压不应高于500V。
图9.电压衰减电路原理图如图9所示,R1和R2是分压电阻,其阻值均为按档位需要计算后所得,可以将20V的直流电压衰减为2V输出,配合20V的直流电压挡。
(3)多量程数字电流表设计图10. 分流电路的原理如图10电路所示,万用表测量电流的原理是,用合适的取样电阻,将待测的电流量根据欧姆定律转换为电压量,才能进行测量。
若取样电阻阻值为R,根据欧姆定律,可以获得被测电流I i的值。
在基准数字电流表头前在加上电流信号衰减电路(分流电路),即可实现直流电流测量量程的扩展。
如上图所示,四个电阻串联值是1kΩ,若选取第1挡,并使输出电压不超过2V,即可计算出I i必须小于等于2mA。
同理可计算出其他档位的满量程电流分别为20mA、200mA、2A。
图11.电流衰减电路原理图如图11所示,R15和R16是分流电阻,其阻值均为按档位需要计算后所得,可以将2A的直流电流衰减为200mA,并将电流变换成电压以供模数转换器测量,配合2A的直流电流档使用。
(4)电阻测量设计图12.电阻-电压变换电路的原理数字万用表通常采用电阻-电压变换电路来测量电阻(欧姆档)。
如图7所示电路,VD Z1是2.7V稳压管,是一种用特殊工艺制造的硅半导体二极管(康华光,2006)。
VT1、VT2、VD Z1组成恒流源,保持V3的值恒定不变。
V3的值等于V1电压减去V DZ1上的电压,约为2.3V。
VT3的基极电压亦保持不变,若VT3基极和发射极之间的电压为0.5V,则可知V2的值恒为2.8V左右,并可得出VT3集电极电流的I C3也是恒定的。