高中数学必修一函数的基本性质知识点复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一函数的基本性质知识点复习高中数学函数的基本性质知识点
函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域.
注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.
定义域补充
能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:
1 分式的分母不等于零;
2 偶次方根的被开方数不小于零;
3 对数式的真数必须大于零;
4 指数、对数式的底必须大于零且不等于 1.
5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 .
6指数为零底不可以等于零
构成函数的三要素:定义域、对应关系和值域
再注意:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备
值域补充
1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 .
2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 .
3 . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .
3. 函数图象知识归纳
1 定义:在平面直角坐标系中,以函数y=fx , x ∈A中的 x 为横坐标,函数值 y 为纵坐标的点 Px , y 的集合 C ,叫做函数 y=fx,x ∈A的图象.
C 上每一点的坐标 x , y 均满足函数关系 y=fx ,反过来,以满足 y=fx 的每一组有序实数对 x 、 y 为坐标的点 x , y ,均在 C 上 . 即记为 C={ Px,y | y= fx , x ∈A }
图象 C 一般的是一条光滑的连续曲线或直线 , 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .
2 画法
A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 x,y 为坐标在坐标系内描出相应的点 Px, y ,最后用平滑的曲线将这些点连接起来 .
B、图象变换法请参考必修4三角函数
常用变换方法有三种,即平移变换、伸缩变换和对称变换
3 作用:
1 、直观的看出函数的性质;
2 、利用数形结合的方法分析解题的思路。提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念
1区间的分类:开区间、闭区间、半开半闭区间;2无穷区间;3区间的数轴表示.
5.什么叫做映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B 为从集合A到集合B的一个映射。记作“f:A B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f
是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的
对应关系一般是不同的;③对于映射f:A→B来说,则应满足:Ⅰ集合A中的每一个元素,在集合B中都有象,并且象是唯一的;Ⅱ集合A中不同的元素,在集合B中对应的象可以
是同一个;Ⅲ不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:
函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个
图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有
代表性,应能反映定义域的特征.
注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函
数值
补充一:分段函数参见课本P24-25
在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须
把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值
几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.1分段函数是一个函数,不要把它误认为是几个函数;2分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
补充二:复合函数
如果y=fu,u ∈M,u=gx,x∈A,则 y=f[gx]=Fx,x∈A 称为f、g的复合函数。
感谢您的阅读,祝您生活愉快。