生物反应工程(知识点参考)

合集下载

生物反应工程重点

生物反应工程重点

⽣物反应⼯程重点⽣物反应⼯程重点1.⽣物反应研究的内容?A. ⽣物反应动⼒学动⼒学——研究⼯业⽣产中⽣物反应速率问题;影响⽣物反应速率的各种因素以及如何获得最优的反应结果。

本征动⼒学(微观动⼒学)反应器动⼒学(宏观动⼒系学)B. ⽣物反应器传递特性——传质、传热和动量传递设计与放⼤——选型、操作⽅式、计算优化与控制——优化操作与优化设计、反应参数测定与控制2.均相酶促反应动⼒学见打印(均相酶促反应动⼒学)ppt3. 固定化酶催化反应过程动⼒学A.本征动⼒学概念:本征动⼒学:⼜称微观动⼒学,它是指没有传递等⼯程因素影响时,⽣物反应固有的速率。

该速率除反应本⾝的特性外,只与反应组分的浓度、温度、催化剂及溶剂性质有关,⽽与传递因素⽆关。

B.外扩散因⼦、内扩散因⼦见打印(外扩散因⼦、内扩散因⼦)pptC.分⼦扩散、努森扩散分⼦扩散:⽓体在多孔固体中扩散,当固体的孔径较⼤时,分⼦的扩散阻⼒主要是由于分⼦间的碰撞所致,这种扩散就是通常所说的分⼦扩散或容积扩散。

努森扩散:⽓体在多孔固体中扩散时,如果孔径⼩于⽓体分⼦的平均⾃由程(约0.1um),则⽓体分⼦对孔壁的碰撞,较之⽓体分⼦间的碰撞要频繁得多,这种扩散,称为Knudsen扩散。

D.曲节因⼦没找到4.细胞反应动⼒学A.细胞的⽣长曲线见书86页B.各种⽐速率见书81页C.细胞⽣长速率及各种⽐速率Monod⽅程与⽶⽒⽅程的区别是什么?答:monod⽅程与⽶⽒⽅程的区别如下表所⽰。

Monod⽅程:⽶⽒⽅程:描述微⽣物⽣长描述酶促反应经验⽅程理论推导的机理⽅程⽅程中各项含义:µ:⽣长⽐速(h-1)µmax:最⼤⽣长⽐速(h-1)S: 单⼀限制性底物浓度(mol/L)K S:半饱和常数(mol/L)⽅程中各项含义:r:反应速率(mol/L.h)r max:最⼤反应速率(mol/L.h)S:底物浓度(mol/L)K m:⽶⽒常数(mol/L)适⽤于单⼀限制性底物、不存在抑制的情况适⽤于单底物酶促反应不存在抑制的情况D.得率系数菌体得率常数:F.呼吸商呼吸商:G.产物⽣成与细胞⽣长的相关模型相关模型:产物的⽣成与细胞的⽣长相关,产物是细胞能量代谢的结果,产物的⽣成和细胞⽣长同步。

生物反应工程原理总复习

生物反应工程原理总复习

(5-89) (5-90)
KS D PX = DYX / S (CS0 − ) µ max − D
当PX为最大时,相应的稀释率称为最佳稀释率DOPt:
DOPt
⎡ KS = µ max ⎢1 − K S + CS0 ⎢ ⎣
⎤ ⎥ ⎥ ⎦
(5-92)
反应器中细胞浓度为
C X ,OPt = YX / Y CS0 + K S − K S (CS0 + K S )
1 dnp rp = v dt
rp = k + 2 ⋅ C[ES]
rp , max = k +2 ⋅ CE 0
Km = k
− 1
+ k
+ 1
+ 2
k
k = Ks + k
+ 2 + 1
2.3 有抑制的酶催化反应动力学
不可逆抑制:如果抑制剂与酶的基团成共价结合,则 此时不能用物理方法去掉抑制剂。此类抑制可使酶永 久性地失活。例如:重金属离子对酶的抑制作用。 可逆抑制: 可用诸如透析等物理方法把抑制剂去掉而 恢复酶的活性,此时酶与抑制剂的结合存在着解离平 衡的关系。包括:竞争性抑制,非竞争性抑制,反竞 争性抑制,混合型抑制,底物抑制和产物抑制。
τ
P
=

C
s
s0
C
dC S rs
5.4.4 CPFR与CSTR的性能比较
本章中所讨论的生化反应器的浓度·时间(c-t)、 浓度—空间(C—z)分布曲线如图5—26所示。
(1)酶催化反应过程 (2)细胞反应过程
1/rs
τm
CX0 CX1
τp
Cx,opt
CX2

生物反应工程

生物反应工程

⽣物反应⼯程第⼀章1、⽣物反应⼯程定义:⽣物反应⼯程是⼀门以研究⽣物反应过程中带有共性的⼯程技术问题的学科2、⽣物反应⼯程研究的内容:它以⽣物反应动⼒学为基础,将传递过程原理、设备⼯程学、过程动态学及最优化原理等化学⼯程学⽅法与⽣物反应过程的反应特性⽅⾯的知识相结合,进⾏⽣物反应过程分析与开发,以及⽣物反应器的设计、操作和控制等。

⽣物反应⼯程主要研究⽣物反应过程中带有共性的⼯程技术问题。

第⼆章:1、根据酶所催化的反应类型可以将酶分为六⼤类2、酶的不同形式:单体酶(monomeric enzyme) 寡聚酶(oligomeric enzyme) 多酶体系(multienzyme system) 多功能酶(multifunctional enzyme)或串联酶(tandem enzyme)3、辅酶 (coenzyme):与酶蛋⽩结合疏松,可⽤透析或超滤的⽅法除去。

辅基(prosthetic group):与酶蛋⽩结合紧密,不能⽤透析或超滤的⽅法除去。

4、酶的活性中⼼:或称活性部位(active site),指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。

5、酶促反应的特异性相对和绝对酶的特异性:⼀种酶仅作⽤于⼀种或⼀类化合物,或⼀定的化学键,催化⼀定的化学反应并⽣成⼀定的产物。

酶的这种选择性称为酶的特异性或专⼀性。

绝对:酶只作⽤于特定结构的底物,进⾏⼀种专⼀的反应,⽣成⼀种特定结构的产物相对:酶作⽤于⼀类化合物或⼀种化学键。

6、酶促反应的机理,两个学说(⼀)酶-底物复合物的形成与诱导契合假说酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,进⽽相互结合。

(⼆)锁钥学说:特指对酶反应机制的⼀种描述。

底物与酶结合形成复合体,酶上的结合部位(即活性部位)在结构上与底物互补以致底物与酶吻合,正如钥匙和锁吻合⼀样。

7、⽶⽒⽅程及意义:⽅程:v=Vmax×[S]/(Km+[S]),当 = 1/2 Vm,Km = [S]意义:Km 可以近似地代表E与S的亲和⼒Km越⼩,代表E与S亲和⼒越⼤8、抑制的类型概念:抑制剂与酶活性中⼼必需基团共价结合,不能⽤透析、超滤等物理⽅法将其除去分类:可逆性抑制(竞争性抑制作⽤、⾮竞争性抑制作⽤、反竞争性抑制作⽤)不可逆抑制(专⼀性抑制[巯基酶抑制剂,丝氨酸酶抑制剂]、⾮专⼀性抑制剂)9、动⼒学特点第三章:1、酶在⾷品⽅⾯的应⽤级举例⽣物技术在⾷品⼯业中应⽤的代表就是酶的应⽤,⽬前已经有⼏⼗种酶成功⽤于⾷品⼯业。

生物反应工程复习资料

生物反应工程复习资料

生物反应工程复习资料(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除生物反应工程原理复习资料生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。

生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。

酶和酶的反应特征酶是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。

酶的来源:动物、植物和微生物酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶酶的性质:1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常数。

2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件 易变性和失活3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等固定化酶的性质固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。

与游离酶的区别:游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用)固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,“再生”活性)固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH 值和最适温度变化、动力学参数的变化单底物均相酶反应动力学米氏方程快速平衡法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑这个可逆反应(3) 为快速平衡, 为整个反应的限速阶段,因此ES 分解成产物不足以破坏这个平衡稳态法假设:(1)CS>>CE ,中间复合物ES 的形成不P E ES +←ES S E ⇔+P E ES +→0=dtdC ES会降低CS (2)不考虑 这个可逆反应(3)中间复合物ES 一经分解,产生的游离酶立即与底物结合,使中间复合物ES 浓度保持衡定,即双倒数法(Linewear Burk ): 对米氏方程两侧取倒数得 以 作图 得一直线,直线斜率为 ,截距为根据直线斜率和截距可计算出Km 和rmax抑制剂对酶反应的影响:失活作用(不可逆抑制)抑制作用(可逆抑制 ):竞争抑制 、反竞争抑制 、非竞争抑制 、 混合型抑制竞争抑制反应机理:非竞争抑制反应机理:可逆抑制各自的特点:P37多底物均相酶反应动力学 (这里讨论:双底物双产物情况)强制有序机制顺序机制 西-钱氏机制 双底物双产物反应机制:随即有序机制乒乓机制注意在工业级反应中, 反应速度一般是由改变所用酶浓度和(或)反应时间,而不是改变底物浓度来控制的,并且要测定的最重要参数是可测的转化率,而不是反应速度酶失活的因素有哪些?酶会由于种种因素发生失活。

生物反应工程原理复习题答案

生物反应工程原理复习题答案

生物反应工程原理复习题答案一、选择题1. 生物反应器的基本类型包括:A. 搅拌槽式B. 填充床式C. 流化床式D. 所有以上选项2. 微生物生长的四个阶段包括:A. 滞后期B. 对数生长期C. 稳定期D. 衰减期E. 所有以上选项3. 以下哪个不是生物反应器操作模式?A. 批式操作B. 连续操作C. 半连续操作D. 周期性操作二、填空题1. 生物反应器的设计通常需要考虑_________、_________和_________三个主要因素。

2. 在生物反应器中,_________是用来描述微生物生长速率的参数。

3. 微生物的代谢途径可以分为_________代谢和_________代谢。

三、简答题1. 简述批式操作和连续操作的区别。

2. 描述生物反应器中氧气传递的重要性及其影响因素。

四、计算题1. 假设一个生物反应器的体积为1000升,其中微生物的浓度为5克/升。

如果微生物的比生长速率为0.2/小时,计算1小时内生物量的增长量。

2. 给定一个流化床生物反应器,其气体流量为1000升/分钟,气体中氧气的体积分数为21%。

如果反应器的体积为5立方米,计算在30分钟内氧气的总传递量。

五、论述题1. 论述生物反应器中混合和传质的重要性,并举例说明如何优化这些过程。

2. 分析在工业生产中,为什么需要对生物反应器进行规模放大,并讨论规模放大过程中可能遇到的挑战。

六、案例分析题1. 某制药公司使用生物反应器生产抗生素。

在生产过程中,他们发现微生物的生长速率突然下降。

请分析可能的原因,并提出解决方案。

2. 一个废水处理厂使用活性污泥法处理工业废水。

请根据活性污泥法的原理,分析废水处理过程中可能出现的问题,并提出改进措施。

七、实验设计题1. 设计一个实验来评估不同搅拌速度对微生物生长速率的影响。

2. 设计一个实验来测定生物反应器中氧气的溶解度。

八、结束语通过本复习题的练习,希望能够帮助学生更好地理解和掌握生物反应工程的原理,为进一步的学习和研究打下坚实的基础。

生物反应工程期末总结

生物反应工程期末总结

绪论1.生物技术产品的生产过程主要由哪四个部分组成?(1)原材料的预处理;(2)生物催化剂的制备;(3)生化反应器及其反应条件的选择和监控;(4)产物的分离纯化。

2.什么是生化反应工程,生化反应工程的研究的主要内容是什么?定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。

主要内容:生物反应动力学和生物反应器的设计,优化和放大3. 生物反应过程的主要特点是什么?1.采用生物催化剂,反应过程在常温常压下进行,可用DNA重组及原生质体融合技术制备和改造2.采用可再生资源3.设备简单,能耗低4.专一性强,转化率高,制备酶成本高,发酵过程成本低,应用广,但反应机理复杂,较难控制,反应液杂质较多,给提取纯化带来困难。

4. 研究方法经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。

第1章1. 酶作为生物催化剂具有那些催化剂的共性和其独特的催化特性?谈谈酶反应专一性的机制。

催化共性:降低反应的活化能,加快生化反应的速率;反应前后状态不变.催化特性:高效的催化活性;高度的专一性;酶反应需要辅因子的参与;酶的催化活性可被调控;酶易变性与失活。

机制:锁钥学说;诱导契合学说2. 什么叫抑制剂?某些物质,它们并不引起酶蛋白变性,但能与酶分子上的某些必需基团(主要是指活性中心上的一些基团)发生化学反应,因而引起酶活力下降,甚至丧失,致使酶反应速率降低,能引起这种抑制作用的物质称为抑制剂。

3. 简单酶催化反应动力学(重点之重点)4.酶动力学参数的求取方法(L-B法、E-H法、H-W法和积分法)L-B法: E-H法:H-W法:积分法:抑制百分数:竞争性抑制:非竞争性抑制:反竞争性抑制:kd 可称为衰变常数。

kd 的倒数称为时间常数td 。

t1/2称为半衰期第2章得率系数对底物的细胞得率系数:消耗1g 基质生成细胞的克数称为细胞得率或称生长得率Yx/s非结构模型:把细胞视为单组分,不考虑细胞内部结构,则环境变化对细胞组成的影响可忽略,在此基础上建立的模型。

生物反应工程共38页

生物反应工程共38页

以上海交大为例,生物技术专业旨在培养具有扎实的现代生命科学理论基础和
熟练的操作技能与工程基础知识、掌握计算机以及外语的高级专业人才。研究方向为生
物大分子的结构与功能、基因分子生物学、人类与动物分子遗传学、微生物代谢与调控
以及植物基因工程等。
该专业主要学习与基因工程、蛋白质工程等相关的基础理论和操作技能。主要课程有: 普通生物学、生物化学、神经生物学、微生物学、微生物原理、基因工程原理与方法、 细胞工程、生化工程、酶与酶工程、发酵工程、计算机在生命科学中的应用、生命科学 信息与情报、生命科学基础讲座等。
物和微生物细胞本身;
1.2生物工程
1.2. 1生物工程的定义 人们以现代生命科学为基础,结合先进的
工程技术手段和其他基础学科的科学原理,按 照预先的设计改造生物体或加工生物原料,为 人类生产出所需产品或达到某种目的。
1.2.2. 生物工程的分类:
基因工程(Gene engineering) 细胞工程(Cell engineering) 酶工程(Enzyme engineering) 发酵工程(Fermentation engineering) 蛋白质工程(Protein engineering)
抗生素——青霉素
罗伯茨(W. Roberts,1874)首次报道微生物的颉 颃(xie hang)现象(antagonism)灰绿青霉生 长旺盛的液体会使人工感染细菌困难
廷德尔(J.Tyndall,1876)青霉菌与细菌液体培养 中有颉颃现象
巴斯德和朱伯特(J.F.Joubert,1877)用炭疽芽孢 杆菌培养物感染动物
以清华大学为例,生物科学与技术系是培养在生物科技领域从事科学研究、教学和
应用开发工作的高水平人才的专门系科。现设有生物科学和生物技术两个本科专业,为 了拓宽人才培养口径,招生时按生物科学一个专业招生。虽然分为两个专业,但课程安 排和教学内容上并没有什么区别,只是在写毕业论文时各有侧重。生物科学专业主要涉 及生物化学、分子生物学、生物物理学、结构生物学和细胞发育生物学等学科领域。生 物技术专业主要包括生物芯片技术、微生物发酵工程、藻类技术、细胞工程及酶工程和 生态环境工程。

生物反应工程原理总复习

生物反应工程原理总复习

扩散效应 传质机理仅为
常数 扩散系数视为
5、底物分配系数是1。
6、固定化酶颗粒处于稳态之下。
7、底物和产物的浓度仅沿r方向而变化。 数学模型简化
第四章 细胞反应过程动力学
4.1 细胞反应的主要特征
1. 细胞是反应的主体。 2. 细胞反应过程的本质是复杂的酶催化反应体系。 3. 细胞反应与酶催化反应也有着明显的不同。
生物反应工程的研究方法
用数学模型方法进行研究: 机理模型:或称结构模型,从过程机理出发推导得到的。 半经验模型:对过程机理有一定了解基础上结合经验数据 得到 经验模型:在完全不了解或不考虑过程机理的情况下,仅 根据一定条件下的实验数据进行的数学关联。
2.1.1 酶的催化共性
它能降低反应的活化能,加快生化反应的速率;但它不能 改变反应的平衡常数,而只能加快反应达到平衡的速率。 酶在反应过程中,其立体结构和离子价态可以发生某种变 化,但在反应结束时,一般酶本身不消耗,并恢复到原来状 态。
2.2 简单的酶催化反应动力学
1、什么是简单的酶催化反应动力学 2、活性中间复合物学说 3、简单的酶催化反应机理 4、推导方程的假设条件 5、“平衡”假设、“拟稳态”假设 6、米氏方程的参数及其物理意义
k +1 + E+S ⎯2 ES ⎯ k⎯→ E + P k −1
1 dns rs = − v dt
4.3.2 分批培养时细胞生长动力学
1、生长历程 2、Monod方程
目前,常使用确定论的 非结构模型是 Monod 方程 µ max ⋅C S µ= ( 3 − 34 ) K S + CS
第五章 生化反应器的设计与分析
间歇操作搅拌槽式反应器 Batch Stir Tank Reactor (BSTR) 连续操作的搅拌槽式反应器 Continuous Stir Tank Reactor (CSTR) 连续操作的管式反应器 continuous plug Flow Reactor (CPFR)

《生物反应工程》课程笔记

《生物反应工程》课程笔记

《生物反应工程》课程笔记第一章绪论1.1 定义、形成与展望生物反应工程,简称BRE(Bioreaction Engineering),是一门应用化学工程原理和方法,研究生物反应过程和生物系统的科学。

它涉及到生物学、化学、物理学、数学等多个学科,是一门典型的多学科交叉领域。

生物反应工程的研究对象包括微生物、细胞、酶等生物催化剂,以及它们在生物反应器中的行为和相互作用。

生物反应工程的形成和发展与生物技术的快速崛起密切相关。

生物技术是指利用生物系统和生物体进行物质的生产、加工和转化的技术。

随着生物技术的不断发展,生物反应工程逐渐成为生物技术领域的一个重要分支,为生物制品的生产提供了重要的理论支持和实践指导。

展望未来,生物反应工程将继续在生物技术领域发挥重要作用。

随着科学技术的进步和生物产业的发展,生物反应工程将不断完善和发展,为人类的生产和生活带来更多的便利和福祉。

特别是随着合成生物学、系统生物学等新兴学科的发展,生物反应工程将面临新的机遇和挑战,有望在生物制造、生物医药、生物能源等领域取得更大的突破。

1.2 生物反应工程的主要内容生物反应工程的主要内容包括以下几个方面:(1)生物反应动力学:研究生物反应过程中反应速率、反应机理和反应物质量的变化规律。

包括酶促反应动力学、微生物反应动力学、细胞反应动力学等。

(2)生物反应器设计:根据生物反应的特性和要求,设计合适的生物反应器,使其能够高效、稳定地进行生物反应。

包括反应器类型的选择、反应器尺寸的确定、反应器内部构件的设计等。

(3)生物反应器操作:研究生物反应器中生物反应的运行规律,优化操作条件,提高生物反应的效果。

包括分批式操作、流加式操作、连续式操作等。

(4)生物反应器优化:通过对生物反应器的设计和操作进行优化,提高生物反应的产率和质量。

包括过程优化、参数优化、控制策略优化等。

(5)生物反应器控制:研究生物反应过程中的控制策略和方法,实现对生物反应过程的稳定控制。

生物反应工程复习重点(无习题)

生物反应工程复习重点(无习题)

1.生物反应工程的定义:一生物反应动力学为基础,将传质过程原理、设备工程学、过程动态学及最优化原理等化学方法生物过程方面的知识相结合,进行生物反应过程分析与开发,以及生物反应器的设计、操作和控制。

2.生物反应动力学:主要研究生物反应速率和各种因素对反应速率的影响。

生物反应器的研究内容:(1)生物反应器中的传递特质即传质、传热及动量;(2)生物器的设计与放大;(3)生物反应器的优化与控制,包括优化操作与优化设计。

3.生物反应器的研究内容(1-34)(1)生物反应器中的传递特性。

(2)生物反应器的设计与放大。

(3)生物反应器的优化与控制。

3.酶促反应中竞争性抑制动力学方程4.酶促反应中非竞争性抑制动力学方程5.酶促反应中反竞争性抑制动力学方程6.判断酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制曲线竞争型非竞争型反竞争型7.比较酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制Km、rmax的变化8.双底物酶催化反应的机理有哪些?随机机制:两个底物S1和S2随机地与酶相结合,产物P1和P2也随机地释放出来。

许多激酶类的催化机制属于此种。

顺序机制:两个底物S1和S2与酶结合形成复合物是有顺序的,酶先与底物S1结合形成ES1复合物,然后ES1再与S2结合形成具有催化活性的ES1S2。

乒乓机制:最主要的特点是底物S1和S2始终不同时与酶结合,其机理式。

转氨酶9.固定化酶的优点:(1) 可连续稳定地生产产物;(2) 反应产物地纯度高、质量好;(3) 生产的副产物少;(4) 反应的动力学常数、反应的最佳pH和反应温度可能按意愿经固定化调整;(5) 固定化酶、细胞在使用时可以再生或回收,可反复使用;(6) 容易实现连续自动控制,节约劳动力;(7) 可大大提高酶、细胞的比生产能力10.酶固定化的方法:(1)载体结合法:将酶或细胞利用共价键或离子键、物理吸附等方法结合于水不溶性载体上的一种固定化方法。

水不溶性载体:纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等。

生物反应工程知识点总结

生物反应工程知识点总结

生物反应工程知识点总结生物反应工程是一门交叉学科,结合了生物学、化学工程和生物化学等多个学科的知识,旨在利用微生物、酶和其他生物体系进行生产、治疗和环境保护等方面的工程应用。

生物反应工程在农业、食品工业、医药、环保等领域具有广泛的应用价值。

本文将围绕生物反应工程的基本概念、发展历程、相关技术和应用领域等方面进行总结。

一、基本概念1.生物反应生物反应是生物体在特定条件下对外界刺激产生的一系列生化反应的总称。

生物反应包括呼吸、发酵、光合作用等,这些反应都是生物体为了维持生命活动而进行的基本生化过程。

2.生物反应工程生物反应工程是利用生物体系进行生产、治疗和环境保护等方面的工程应用的学科。

它主要研究生物反应的基本原理、工程方法和技术手段,旨在发展出高效、经济、环保的生化工艺和技术。

3.微生物微生物是一类单细胞生物,包括细菌、真菌、藻类等。

它们在生物反应工程中扮演着重要的角色,可以用于生产酶、抗生素、酒精等化学品,也可以用于处理废水、废气和固体废弃物。

4.酶酶是生物反应中的一种催化剂,可以促进生化反应的进行,具有高效、特异性和温和的特点。

在生物反应工程中,酶的应用范围非常广泛,如制糖、酿酒、生物柴油生产等方面都有重要应用。

二、发展历程生物反应工程作为一个新兴的交叉学科,其发展经历了以下几个阶段:1.早期阶段生物反应工程的萌芽可以追溯到19世纪末20世纪初。

当时,人们开始意识到微生物在发酵过程中的重要作用,并开始尝试利用微生物制备酒精、乳酸和醋等产品。

2.发展阶段20世纪50年代后,随着生物技术的发展,生物反应工程逐渐形成了自己的理论体系和技术手段。

在这一阶段,人们开发了大量的酶工程和发酵工程技术,并将其应用于制药、食品、农业等领域。

3.成熟阶段近年来,随着基因工程、蛋白工程等技术的不断进步,生物反应工程进入了一个快速发展的阶段。

人们可以通过改变微生物菌种的遗传信息,使其具有更高的产酶性能,从而实现高效生产。

生物反应工程 第二章

生物反应工程 第二章

2.2 均相酶促反应动力学 2.2.1 酶促反应动力学基础 可采用化学反应动力学方法建立酶促反应动力学方程。 对酶促反应 ,有:
式中, k:酶促反应速率常数; r:酶促反应速率; rA:以底物A的消耗速率表示的酶促反应速率; rP:以产物P的生成速率表示的酶促反应速率。
对连锁的酶促反应,
2.2.2 单底物酶促反应动力学 2.2.2.1 米氏方程 根据酶-底物中间复合物假说,对 单底物酶促反应 ,其反应机制可 表示为:
根据以上假设,可建立如下方程组
解之,得
令 则
米氏方程 r
rmax
rmax/2
Km
CS
图2-1 酶浓度一定时底物浓度对反应速率的影响
对米氏方程的讨论: • 当CS<<Km时, ,属一级反应。
• 当CS>>Km时,
,属零级反应。
• 当CS=Km时, 。Km在数量上 等于反应速度达到最大反应速度一 半时的底物浓度。
解之,得
式中:
稳态法推导动力学方程:
解之,得
式中:
可见,产物抵制属于竞争性抵制
底物抑制:对于某些酶促反应,当底物浓 度较高时,反应速率呈下降趋势,称为底 物抑制。 r
CS
CS
底物抑制反应机理:
快速平衡法推导动学方程:
解之,得
式中:
双倒数法(Linewear Burk): 对米氏方程两侧取倒数,得
,以 作图,得一直线, 直线斜率为 ,截距为 ,根据直线 斜率和截距可计算出Km和rmax。
1/r
1/rmax
斜率-Km/rmax
-1/Km
1/CS
图2-2 双倒数法求解Km和rmax
2.2.2.2 抑制剂对酶促反应速率的影响 失活作用 抑制作用 竞争性抑制 非竞争性抑制

生物反应工程 重点

生物反应工程 重点

生物反应工程重点1.生物反应研究的内容?A. 生物反应动力学动力学——研究工业生产中生物反应速率问题;影响生物反应速率的各种因素以及如何获得最优的反应结果。

本征动力学(微观动力学)反应器动力学(宏观动力系学)B. 生物反应器传递特性——传质、传热和动量传递设计与放大——选型、操作方式、计算优化与控制——优化操作与优化设计、反应参数测定与控制2.均相酶促反应动力学见打印(均相酶促反应动力学)ppt3. 固定化酶催化反应过程动力学A.本征动力学概念:本征动力学:又称微观动力学,它是指没有传递等工程因素影响时,生物反应固有的速率。

该速率除反应本身的特性外,只与反应组分的浓度、温度、催化剂及溶剂性质有关,而与传递因素无关。

B.外扩散因子、内扩散因子见打印(外扩散因子、内扩散因子)pptC.分子扩散、努森扩散分子扩散:气体在多孔固体中扩散,当固体的孔径较大时,分子的扩散阻力主要是由于分子间的碰撞所致,这种扩散就是通常所说的分子扩散或容积扩散。

努森扩散:气体在多孔固体中扩散时,如果孔径小于气体分子的平均自由程(约0.1um),则气体分子对孔壁的碰撞,较之气体分子间的碰撞要频繁得多,这种扩散,称为Knudsen扩散。

D.曲节因子没找到4.细胞反应动力学A.细胞的生长曲线见书86页B.各种比速率见书81页C.细胞生长速率及各种比速率Monod方程与米氏方程的区别是什么?答:monod方程与米氏方程的区别如下表所示。

Monod方程:米氏方程:描述微生物生长描述酶促反应经验方程理论推导的机理方程方程中各项含义:μ:生长比速(h-1)μmax:最大生长比速(h-1)S: 单一限制性底物浓度(mol/L)K S:半饱和常数(mol/L)方程中各项含义:r:反应速率(mol/L.h)r max:最大反应速率(mol/L.h)S:底物浓度(mol/L)K m:米氏常数(mol/L)适用于单一限制性底物、不存在抑制的情况适用于单底物酶促反应不存在抑制的情况D.得率系数菌体得率常数:F.呼吸商呼吸商:G.产物生成与细胞生长的相关模型相关模型:产物的生成与细胞的生长相关,产物是细胞能量代谢的结果,产物的生成和细胞生长同步。

生物反应工程(知识点参考)

生物反应工程(知识点参考)

⽣物反应⼯程(知识点参考)名词解释1,返混:不同停留时间的物料的混合。

2,双膜理论:作为界⾯传质动⼒学的理论,该理论较好地解释了液体吸收剂对⽓体吸收质吸收的过程。

⼀种关于两个流体相在界⾯传质动⼒学的理论3,构象改变:在分⼦⽣物学⾥,⼀个蛋⽩质可能为了执⾏新的功能⽽改变去形状;每⼀种可能的形状被称为构象,⽽在其之间的转变即称为构象改变。

4,分配效应:分配的马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的⼀种现象。

5,酶的固定化技术:酶固定化技术是通过物理或化学的⽅法将酶连接在⼀定的固相载体上成为固定化酶,从⽽发挥催化作⽤。

固定化后的酶在保持原有催化活性的同时,⼜可以同⼀般催化剂⼀样能回收和反复使⽤,可在⽣产⼯艺上实现连续化和⾃动化,更适应⼯业化⽣产的需要。

6,结构模型:就是应⽤有向连接图来描述系统各要素间的关系,以表⽰⼀个作为要素集合体的系统的模型.7,固定化酶:⽔溶性酶经物理或化学⽅法处理后,成为不溶于⽔的但仍具有酶活性的⼀种酶的衍⽣物。

在催化反应中以固相状态作⽤于底物。

8,停留时间:⼜称寄宿时间,是指在稳定态时,某个元素或某种物质从进⼊某物到离开该物所度过的平均时间。

9,恒化器:⼀种微⽣物连续培养器。

它以恒定的速度流出培养液,使容器中的微⽣物⽣长繁殖始终低于最快⽣长速度。

这种容器反映的是培养基的化学环境恒定。

⽽恒浊器反映的是细胞浊度(浓度)的恒定。

10,恒浊器:⼀种连续培养微⽣物的装置。

可以根据培养液中的微⽣物的浓度,通过光电系统观控制培养液的流速,从⽽使微⽣物⾼密度的以恒定的速度⽣长。

11,⽣物反应⼯程:⼀个由⽣物反应动⼒学与化学反应⼯程结合的交叉分⽀学科。

着重解决不同性质的⽣物反应在不同型式的⽣物反应器中以不同的操作⽅式操作时的优化条件12,连续灭菌:就是将配制好的培养基在通⼊发酵罐时进⾏加热,保温,降温的灭菌过程,也称连消。

13,间歇灭菌:在100℃条件下,灭菌30分钟,间隔24⼩时再重复操作三次。

生化反应工程原理知识点

生化反应工程原理知识点

生物反应工程原理复习资料1 生物反应工程:生物反应工程是一门以研究生物反应过程中带有共性的工程技术问题的学科。

是以生物学、化学、工程学、计算机与信息技术等多学科为基础的交叉学科。

2 生物反应过程:是指将实验室的成果经放大而成为可供工业化生产的工艺过程,包括实现工业化生产过程的高效率运转,或者说提高生产过程效率。

4 生物反应器:是指以活细胞或酶为生物催化剂进行细胞增殖或生化反应提供适宜环境的设备或者场所。

5 生物反应过程的缩小:根据生产实际,在实验室中使用小型反应器来模拟生产过程,以进行深入研究。

6 转化率:某反应物的转化浓度与该反应物起始比值的百分比7 收率:指按反应物进行量计算,生成目的产物的百分数。

用质量百分数或者体积百分数表示8 流加操作:是指先将一定量基质加入反应器内,在适宜的条件下将微生物菌种接入反应器中,反应开始,反应过程中将特定的限制性基质按照一定要求加入到反应器中,以控制限制性基质浓度保持一定,当反应结束时取出反应物料的操作方式。

9 指数流加操作:通过采用随时间呈指数变化的方式流加基质,维持微生物细胞对数生长的操作方式。

10 非结构模型:在确定论模型的基础上,不考虑细胞内部结构的不同,即认为细胞为单一组分,在这种理想状态下建立起来的动力学模型。

13Da准数:最大反应速率和最大传质速率之比。

14 分批发酵:是指将新鲜的培养基一次性加入发酵罐中,在适宜的条件下接种后开始培养,培养结束后,将全部发酵液取出的培养方法。

15 连续培养发酵连续式操作(continuousoperation):是指以一定的速率不断向发酵罐中供给新鲜的培养基,同时等量地排出发酵液,维持发酵罐中液量一定的培养方法。

16 稀释率:培养液流入速度和反应器内培养液的体积之比,他表示连续反应器中物料的更新快慢程度。

17 得率系数;是对碳元素等物质生成细胞或是其他产物的潜力进行定量评价的重要参数。

18 细胞得率:消耗1克基质生成细胞的克数称为细胞得率或是生长得率。

生物反应工程基本内容

生物反应工程基本内容

生物反应工程基本内容生物反应工程是一门综合应用生物学、化学、工程学等多学科知识,对生物体进行利用和改造的学科。

它主要研究利用微生物、酶和细胞等生物体进行生物转化过程的优化和控制,以达到工业生产的需求。

生物反应工程的基本内容包括:1. 微生物培养与酶工程:生物反应工程的基础是对微生物的培养和酶的研究。

通过优化培养基的配方、培养条件的控制以及酶的筛选和改造等手段,提高微生物和酶的产量和活性,以满足工业生产的需要。

2. 反应器设计与工艺优化:生物反应器是进行生物反应的关键设备,其设计和优化对反应效果有着重要影响。

通过研究反应器的物质传递、能量转化和动力学等特性,确定最佳的反应器类型、参数和运行条件,以提高反应效率和产量。

3. 代谢工程与基因工程:代谢工程是通过改造生物体的代谢途径和调控基因表达,使其产生特定的化合物或物质。

基因工程则是通过改变生物体的基因组,引入新的基因或改变现有基因的表达,以增强其产物合成能力。

这些技术在生物反应工程中被广泛应用,用于提高产量、改善产物质量和调控代谢途径。

4. 应用于生物药物生产:生物反应工程在生物药物生产中有着广泛的应用。

通过选择合适的生产菌株,优化培养条件和生产工艺,可以实现大规模的生物药物的生产。

此外,生物反应工程还可以用于生物药物的质量控制和产物纯化等环节。

5. 生物过程监测与控制:生物反应工程中,对生物体内部代谢过程的监测和控制是至关重要的。

通过建立合适的传感器和监测系统,可以实时监测关键参数如温度、pH值、氧气浓度和代谢产物浓度等。

同时,通过建立反馈控制系统,实现对反应过程的自动调节和优化。

总之,生物反应工程是一门涉及多学科知识的学科,通过优化微生物、酶和细胞等生物体的利用和改造,以实现工业生产的需求。

它不仅在生物药物生产中有着重要的应用,还可以用于环境保护、农业生产和能源开发等领域。

随着科技的不断进步,生物反应工程的研究与应用前景将越来越广阔。

化学工程中的生物反应工程

化学工程中的生物反应工程

化学工程中的生物反应工程生物反应工程是化学工程中一门重要的学科,它以生物反应为研究对象,主要涉及到微生物代谢、发酵工程等方面的内容。

随着生物技术的不断发展,生物反应工程在医药、食品、化妆品、生态环境等领域都有着重要应用。

下面,我们将从生物反应工程的定义、主要内容和应用等方面进行探讨。

一、生物反应工程的定义生物反应工程是以规范的微生物发酵过程作为研究对象,研究生物反应系统中的生物过程、化学过程、传质过程及系统操作控制等问题的学科。

生物反应系统可通过添加适当营养成分而使微生物代谢,产生所需的物质或产生有用生物学成分,实现各种用途。

在生物反应工程中,经常需要对生物学功效进行修饰或加工,以获得更好的效果。

二、生物反应工程的主要内容(一)微生物代谢微生物代谢是生物反应工程的核心内容之一,它包括微生物生长、能量代谢、合成代谢等方面。

微生物代谢的特点是脆弱易变、条件苛刻、基因突变等,在实际应用过程中,需要掌握微生物代谢的规律,选择适合的微生物菌株,以及优化培养条件等。

(二)发酵工程发酵工程是微生物代谢的一部分,其主要目的是通过微生物发酵过程来生产某种物质。

发酵过程包括各种生物反应、传质以及控制的过程。

对这些过程的研究和优化,将直接影响到生产过程的稳定性和产品的质量。

(三)生物传质学生物传质学是研究生物反应系统中传质和扩散过程的科学。

在生物反应过程中,物质的扩散和传输将直接影响微生物的代谢和生长,因此必须对传质规律和传质过程进行深入研究。

(四)生物过程的建模和仿真生物过程的建模和仿真是了解生物反应过程的关键步骤之一。

模型的建立可以提高研究的效率和准确性,为更加精细的优化提供了有力的支持。

与此同时,生物过程的仿真也可以通过计算机模拟等方法,不仅可以预测生物反应系统的动态行为,还可以进行控制策略的设计和优化。

三、生物反应工程的应用生物反应工程的应用非常广泛,主要集中在医药、食品、化妆品、生态环境等领域。

(一)医药生物工程技术的发展为药物的合成和生产提供了新的思路和技术手段。

第二章 生物反应工程的工程学基础

第二章 生物反应工程的工程学基础
• 桨尖线速度
= Di
• 平均剪切速率
=
• 湍流旋涡长度
3
=

ቤተ መጻሕፍቲ ባይዱ
0.25
2.3物料与热量衡算
• 1.物料衡算
• 依据质量守恒定律,对于选定的衡算系统,进入与离开这一过程系统的
目的物料的质量支差,等于该过程系统中目的物料的消耗量和累积量之
和。
输入量-输出量=目的物料的消耗量+目的物料的累积量
• 例题:以淀粉为唯一碳源生产乙醇,试计算生产1000kg无水乙醇
时淀粉的理论消耗量
• (C6 H10 O5 )n + nH2O
nC6 H10 O6
162
18
180
• C6 H10 O6
2C2H5OH + 2H2O
180
2*46
2*44
• 生产无水乙醇时淀粉的理论消耗量为:
1000*162/92=1760.9(kg)
• 如果在2h完成生物反应器中70m3的装液量,请计算物料输入管道
的管径。如果要求50min将反应液排空,请计算物料输出管的管
径。
2.2流体的物理性质
• 7.黏度
dy
du
(a)
流体在管道中流动速度的分布
(b)
(a)理想的活塞流(b)实际的流动
du
F A
(N )
dy

式中 μ—黏性系数(动力黏度),Pa·s;
生物细胞多大的压力,在发酵液表面呢?
2.2流体的物理性质
• 6.流量和流速
• 流量:单位时间内流过管道任一横截面的流体量。
• 体积流量:Vs,m3/s
• 质量流量:ms,kg/s

生物反应工程复习重点无习题

生物反应工程复习重点无习题

1.生物反应工程的定义:一生物反应动力学为基础,将传质过程原理、设备工程学、过程动态学及最优化原理等化学方法生物过程方面的知识相结合,进行生物反应过程分析与开发,以及生物反应器的设计、操作和控制。

2.生物反应动力学:主要研究生物反应速率和各种因素对反应速率的影响。

生物反应器的研究内容:(1)生物反应器中的传递特质即传质、传热及动量;(2)生物器的设计与放大;(3)生物反应器的优化与控制,包括优化操作与优化设计。

3.生物反应器的研究内容(1-34)(1)生物反应器中的传递特性。

(2)生物反应器的设计与放大。

(3)生物反应器的优化与控制。

3.酶促反应中竞争性抑制动力学方程4.酶促反应中非竞争性抑制动力学方程5.酶促反应中反竞争性抑制动力学方程6.判断酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制曲线竞争型非竞争型反竞争型7.比较酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制Km、rmax的变化8.双底物酶催化反应的机理有哪些?随机机制:两个底物S1和S2随机地与酶相结合,产物P1和P2也随机地释放出来。

许多激酶类的催化机制属于此种。

顺序机制:两个底物S1和S2与酶结合形成复合物是有顺序的,酶先与底物S1结合形成ES1复合物,然后ES1再与S2结合形成具有催化活性的ES1S2。

乒乓机制:最主要的特点是底物S1和S2始终不同时与酶结合,其机理式。

转氨酶9.固定化酶的优点:(1) 可连续稳定地生产产物;(2) 反应产物地纯度高、质量好;(3) 生产的副产物少;(4) 反应的动力学常数、反应的最佳pH和反应温度可能按意愿经固定化调整;(5) 固定化酶、细胞在使用时可以再生或回收,可反复使用;(6) 容易实现连续自动控制,节约劳动力;(7) 可大大提高酶、细胞的比生产能力10.酶固定化的方法:(1)载体结合法:将酶或细胞利用共价键或离子键、物理吸附等方法结合于水不溶性载体上的一种固定化方法。

水不溶性载体:纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等。

生化工程知识点

生化工程知识点

生物反应工程知识点第一章绪论*生物反应过程:将生物技术的实验室成果经工艺及工程开发而成为可供工业生产的工艺过程。

技术产品的生产过程。

生物反应过程最重要特征:有生物催化剂的参与*由四部分组成:原材料的预处理---生物催化剂的制备---生物反应器及反应条件的选择与监控---产品的分离纯化。

整个生物反应过程以生物反应器为核心把反应前与后称为上游加工和下游加工。

重点内容:1)建立生物反应过程动力学,以确定包括传质因素影响在内的生物反应过程的宏观速率;2)建立与设计生物反应器,以保证为生物反应过程提供适宜的物理和化学环境,实现反应过程的优化。

反应过程的特点:1)采用可再生资源为主要原料,来源丰富,价格低廉,原料成分难以控制。

2)反应条件温和。

3)生物催化剂易失活,难以长期使用。

4)生产设备较简单、能耗较低。

5)反应基质与产物浓度不能太高,生产效率较低。

6)反应机理复杂,较难检测与控制。

7)反应液杂质多,分离提纯困难1.2.2.1生物反应动力学①本征动力学:(微观动力学)它是指没有传递等工程因素影响时,生物反应固有的速率。

该速率除反应本身的特性外,只与反应组分的浓度、温度、催化剂及溶剂性质有关,而与传递因素无关。

②宏观动力学:(反应器动力学)它是指在一反应器内所观测得到的总反应速率及其影响因素,这些影响因素包括反应器的形式和结构、操作方式、物料的流动与混合、传质与传热等。

研究方法(细胞反应动力学模型--数学模型方法):机理模型(结构模型)、半经验模型、经验模型生物技术的最终目的:建立工业生产过程,并且又以生化反应过程为核心。

第二章均相酶催化反应动力学酶催化作用的特点:高效的催化活性;高度的专一性;催化作用条件温和;酶活性的不稳定性(易变性失活);常需要辅因子的参与(金属离子、辅酶、辅底物);酶活性的可调节性(酶浓度调节、共价修饰调节、抑制调节、反馈调节、神经体液调节、别构调节)酶催化反应类型:氧化还原酶类;转移酶类;水解酶类;裂合酶类;异构酶类;合成酶类(连接酶类)酶的转化数Kcat:每个酶分子每分钟催化底物转化的分子数,是酶催化效率的一个指标催化周期T=1/KcatKm 是酶的特征常数之一,一般只与酶的性质有关,而与酶的浓度无关,可用于鉴定酶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名词解释1,返混:不同停留时间的物料的混合。

2,双膜理论:作为界面传质动力学的理论,该理论较好地解释了液体吸收剂对气体吸收质吸收的过程。

一种关于两个流体相在界面传质动力学的理论3,构象改变:在分子生物学里,一个蛋白质可能为了执行新的功能而改变去形状;每一种可能的形状被称为构象,而在其之间的转变即称为构象改变。

4,分配效应:分配的马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的一种现象。

5,酶的固定化技术:酶固定化技术是通过物理或化学的方法将酶连接在一定的固相载体上成为固定化酶,从而发挥催化作用。

固定化后的酶在保持原有催化活性的同时,又可以同一般催化剂一样能回收和反复使用,可在生产工艺上实现连续化和自动化,更适应工业化生产的需要。

6,结构模型:就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型.7,固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。

在催化反应中以固相状态作用于底物。

¥8,停留时间:又称寄宿时间,是指在稳定态时,某个元素或某种物质从进入某物到离开该物所度过的平均时间。

9,恒化器:一种微生物连续培养器。

它以恒定的速度流出培养液,使容器中的微生物生长繁殖始终低于最快生长速度。

这种容器反映的是培养基的化学环境恒定。

而恒浊器反映的是细胞浊度(浓度)的恒定。

10,恒浊器:一种连续培养微生物的装置。

可以根据培养液中的微生物的浓度,通过光电系统观控制培养液的流速,从而使微生物高密度的以恒定的速度生长。

11,生物反应工程:一个由生物反应动力学与化学反应工程结合的交叉分支学科。

着重解决不同性质的生物反应在不同型式的生物反应器中以不同的操作方式操作时的优化条件12,连续灭菌:就是将配制好的培养基在通入发酵罐时进行加热,保温,降温的灭菌过程,也称连消。

13,间歇灭菌:在100℃条件下,灭菌30分钟,间隔24小时再重复操作三次。

14,有效电子转移:是指物质在氧化过程中伴随着能量释放所进行的电子转移。

15,能量生长偶联型:当有大量合成菌体材料存在时,微生物生长取决于ATP的供能,这种生长就是能量生长偶联型。

16,能量生长非偶联型:在ATP的供能充分,而合成细胞的材料受限制时,这种生长就是能量生长非偶联型。

、17,不可逆抑制:抑制剂与酶的必需基团或活性部位以共价键结合而引起酶活力丧失,不能用透析、超滤或凝胶过滤等物理方法去除抑制剂而使酶活力恢复的作用。

18,流加式操作:能够任意控制反应液中基质浓度的操作方式。

19,代谢工程:通过基因工程的方法改变细胞的代谢途径。

20,连续培养及稳态:又叫开放培养,是相对分批培养或密闭培养而言的。

连续培养是采用有效的措施让微生物在某特定的环境中保持旺盛生长状态的培养方法. 生理学家把正常机体在神经系统和体液以及免疫系统的调控下,使得各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫做稳态。

21,反馈流加:分间接控制,直接控制,定值控制和程序控制等流加培养。

22,高细胞浓度培养: 23,生物反应系统优化: 24,生物反应过程的优化:公式/1,米氏方程 v=Vmax×[S]/(Km+[S])2,monod 方程3,停留时间fV =τ4,稀释率VF D =5,转化率0S S S t-=χ6,Da 准数 mmNr Da = <7,内扩散效率因子 8,外扩散效率因子oout out r r =η9,菌体得率dSdX Y S X -=/10,菌体得率常数 GG dS dX Y )(-=11,反应器生产能力 (分批式) (连续)12,产物生成比速XdtdPQ P =!13,换热装置的传热面积tS t P P t r 0⋅==χτχτinoutr S P P ⋅==mall t K Q F ∆⋅=o inin r r =η14,呼吸商22/O CO Q Q RQ =问答1,比较米氏方程和monod 方程"莫诺方程:SK SS +=max μμ米氏方程:SK Sr r m +=max描述微生物生长 描述酶促反应 经验方程 理论推导的机理方程 方程中各项含义:|μ:生长比速(h -1)μmax :最大生长比速(h -1) S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L)方程中各项含义: r :反应速率(mol/r max :最大反应速率(mol/ S :底物浓度(mol/L){K m :米氏常数(mol/L)适用于单一限制性底物、不存在抑制的情况 适用于单底物酶促反应不存在抑制的情况2,比较CSTR 和PFR 型酶反应器的性能答:CSTR 代表连续全混流酶反应器。

PFR 代表连续活塞式酶反应器。

CSTR 型和PFR 型酶反应器的性能比较:1)达到相同转化率χ时,PFR 型酶反应器所需停留时间较短。

2)在相同的停留时间达到相同转化率时,CSTR 型反应器所需酶量要大大高于PFR 型反应器。

因此一般来说,CSTR 型反应器的效果比PFR 型差,但是,将多个CSTR 型反应器串联时,可克服这种不利情况。

<3)与CSTR 型酶反应器相比,PFR 型酶反应器中底物浓度较高,而产物浓度较低,因此,发生底物抑制时,PFR 型酶反应器转化率的降低要比CSTR 型剧烈得多;而产物抑制对CSTR 型酶反应器影响更显着。

3,气体溶解过程的双模理论答:当气体与液体相互接触时,即使在流体的主体中已呈湍流,气液相际两侧仍分别存在有稳定的气体滞流层(气膜)和液体滞流层(液膜),而吸收过程是吸收质分子从气相主体运动到气膜面,再以分子扩散的方式通过气膜到达气液两相界面,在界面上吸收质溶入液相,再从液相界面以分子扩散方式通过液膜进入液相主体。

4,影响发酵介质流变特性的因素答:发酵介质的流变特性主要取决于细胞的浓度和其形态。

一般发酵介质中液相部分粘度较低,但是随着细胞浓度的增加,发酵介质的粘度也相应增大,流体偏离牛顿特性越大。

细胞的形态对发酵介质流动特性也有较大影响,如细胞为丝状形态时会导致发酵介质成为非牛顿型流体。

影响发酵介质流变特性的另一个因素为胞外产物,如产物为多糖,此时细胞的存在对发酵介质的流变特性影响较小,而多糖浓度的高低则对介质的粘度有较大影响。

5,生物反应过程中比氧消耗速率与溶解氧的关系答:微生物反应过程中比氧消耗速率和溶解氧浓度间的关系可以通过试验来测定。

从数据可以看出,当[DO]在某一值以上时, [DO] 随时间线性减少,其比氧消耗速率qO2与[DO] 无关,为一常数;当[DO]在某一值以下时, qO2与[DO]有一定关系,随 [DO]的减少,两者呈双曲线关系。

这一值,我们称为临界溶解氧浓度,记为[DO]cri 。

.讨论:当 时, [DO] 随时间线性减少,qo2与[DO]无关。

这意味微生物反应对于DO 为0级反应,而与细胞内呼吸系统有关的酶完全被氧所饱和,微生物反应过程成为酶催化反应控制。

进一步,当溶氧浓度大于空气饱和值时,过高的溶氧反而会使微生物生长受到抑制。

当溶氧浓度小于临界溶氧浓度时,比氧消耗速率随溶氧而变化,可认为是由于与呼吸作用有关的酶未被氧饱和,微生物反应成为供氧控制。

多数情况下,比氧消耗速率和溶氧的关系可用米氏方程近似表示:6,固定化酶促反应的主要因素(1) 分子构象的改变。

酶固定化过程中,酶和载体的相互作用引起酶的活性中心或调节中心的构象发生变化,导致酶的活力下降。

(2) 位阻效应。

指由于载体的遮蔽作用,使酶与底物无法接触。

(3) 微扰效应。

是指由于载体的亲水性、疏水性及介电常数等,使固定化酶所处微环境发生变化,导致酶活力的变化。

(4)~(5)分配效应。

由于载体内外物质分配不等,影响酶促反应速率。

(6) 扩散效应。

底物、产物及其他效应物受传递速度限制,当酶的催化活性很高时,在固定化酶周围形成浓度梯度,造成微环境与宏观环境之间底物、产物的浓度产生差别。

7,比较恒化器和恒浊器答:恒化器、恒浊器指的是两种控制方法。

恒化器是通过控制流量而达到相应的菌体浓度。

恒浊器则是通过监测菌体密度来反馈调节流量。

前者通过计量泵、溢流管来保证恒定的流量;后者通过光电池监测细胞密度,以反馈调节流量来保证细胞密度的恒定。

恒化器便于控制,其应用更为广泛。

8,连续培养的应用答:由于连续培养存在杂菌污染问题、菌种变异问题、成本问题,使其在生产中的应用受到限制,目前主要用于面包酵母的生产、及污水处理。

连续培养在科研领域有着重要的应用,主要表现在以下几个方面:(1) 利用恒化器测定微生物反应动力学参数。

例如μm 、Ks 的测定。

(2) 确定最佳培养条件。

例如面包酵母生产中最佳葡萄糖浓度的确定。

%(3) 利用冲出现象进行菌种的筛选。

1.生物反应工程的定义:一生物反应动力学为基础,将传质过程原理、设备工程学、过程动态学及最优化原理等化学方法生物过程方面的知识相结合,进行生物反应过程分析与开发,[][]q q DO K DO o o m 22=+,max[][]DO DOcri〉以及生物反应器的设计、操作和控制。

2.生物反应动力学:主要研究生物反应速率和各种因素对反应速率的影响。

生物反应器的研究内容:(1)生物反应器中的传递特质即传质、传热及动量;(2)生物器的设计与放大;(3)生物反应器的优化与控制,包括优化操作与优化设计。

3.生物反应器的研究内容(1-34)(1)生物反应器中的传递特性。

(2)生物反应器的设计与放大。

(3)生物反应器的优化与控制。

、3.酶促反应中竞争性抑制动力学方程4.酶促反应中非竞争性抑制动力学方程>5.酶促反应中反竞争性抑制动力学方程6.判断酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制曲线竞争型非竞争型反竞争型!7.比较酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制Km、rmax的变化8.双底物酶催化反应的机理有哪些随机机制:两个底物S1和S2随机地与酶相结合,产物P1和P2也随机地释放出来。

许多激酶类的催化机制属于此种。

顺序机制:两个底物S1和S2与酶结合形成复合物是有顺序的,酶先与底物S1结合形成ES1复合物,然后ES1再与S2结合形成具有催化活性的ES1S2。

乒乓机制:最主要的特点是底物S1和S2始终不同时与酶结合,其机理式。

转氨酶9.固定化酶的优点:(1) 可连续稳定地生产产物; }(2) 反应产物地纯度高、质量好; (3) 生产的副产物少;(4) 反应的动力学常数、反应的最佳pH 和反应温度可能按意愿经固定化调整;(5) 固定化酶、细胞在使用时可以再生或回收,可反复使用; (6) 容易实现连续自动控制,节约劳动力; (7) 可大大提高酶、细胞的比生产能力 10.酶固定化的方法:(1)载体结合法:将酶或细胞利用共价键或离子键、物理吸附等方法结合于水不溶性载体上的一种固定化方法。

相关文档
最新文档