某综合楼深基坑支护设计(手算)教学教材

合集下载

教学楼深基坑支护工程施工设计方案设计书

教学楼深基坑支护工程施工设计方案设计书

教学楼深基坑支护施工方案设计1、编制依据1.1深基坑支护设计书1.2岩土工程勘察报告1.3福建省建筑边坡与深基坑工程管理规定1.4建筑基坑支护技术规程(JGJ120-1999)1.5建筑桩基技术规范(JGJ94-94)1.6混凝土结构施工及验收规范(GB50204-2002)1.7供水水文地质勘察规范(GBJ27-88)1.8建筑地基处理技术规范(JGJ79-91)2、工程概况2.1设计概况1、本基坑重要性等级为二级。

2、本工程教学楼设计为6层,地下室设计为地下一层,层高4.1M,其中地下建筑面积约为5539.11平方米。

该地下室正负零设计标高为131.00M,自然地面为136.3M。

3、基坑支护体系概况。

本项目基坑西侧采用重力式毛石挡墙,东面、南面、东北面分台放坡。

2.2场区周边环境拟建场地位于三明农校校内,基坑东边为校园主干道、基坑北侧场地较开阔,修筑施工便道与金砂大道连接,南面已有1幢5层教学楼,西面与公园一号相邻,因公园一号长时间停工,地下室开挖后存在高边坡。

基坑南面与已有教学楼间绿化带下有供电管线、自来水管。

基坑空中无影响施工安全的管线等。

详见施工平面图(另附)。

2.3场地工程地质条件根据福建东辰综合勘察院提供的地勘报告资料介绍,本工程施工场地土层分布情况:①素填土(Qml):人工堆填而成,紫红、灰黄色,以强~中风化粉砂岩碎、块石为主,为附近山丘挖方、爆破物回填而成,含量约50~60%,仅局部含量较少,粒径一般为20~800mm,最大可见1000mm,其余为粘性土及砾石,呈松散、湿~饱和状态。

堆填年限超过5年,该层部分地段分布,揭示厚度0.80~19.60m,厚度变化大。

岩芯采取率:65~80%。

②残积粘性土(Qel):紫红、灰黄等色,为粉砂岩完全风化后产物,无摇振反应,韧性中等,干强度中等,切面较光滑,很湿,硬塑。

场区部分地段分布,揭示厚度:1.90~5.50m,厚度变化较大,岩芯采取率75~90%。

深基坑手算计算书

深基坑手算计算书

题目:基坑深17.0m,支护方式为排桩加外锚方案,设两道锚杆支护(第一道设在-6.0m 处,第二道-11.5m处。

土层相关参数见下表:表1 土层参数信息表土层编号土层名称重度3(kN /m3)黏聚力c(kPa)内摩擦角()土层厚度(m)1-1 杂填土16 0.7 156.03-1-2 新黄土2 19.4 21.7 22 4.0 3-2-2 古土壤20.2 24.5 20 4.8 4-1-2 老黄土21.1 20.3 24 6.1此基坑采用分层开挖的方式,在基坑顶部承受拟定的均布荷载,荷载值为及各土层分布情况见图 1.1。

图1.1荷载分布及支护方案解:1计算各土层侧压力系数(1)郎肯主动土压力系数计算Ka1 tan2 (45 1/2) 2tan (45 15 /2) 0.589 ,Ka1 0.76720kPa,荷载Ka2tan2 (45 2/2) tan2 (45 22 /2) 0.455 .Ka2 0.675 Ka3 tan2 (45 3/2) 2tan (45 20 /2) 0.490 .Ka3 0.700Ka4 tan2 (45 4/2) tan2 (45 24 /2) 0.422 ;Ka4 0.649 (2)郎肯被动土压力系数计算KP1 2tan (452 1/2)2tan (45215 /2) 1.698 、KP1r~,—1.303KP2 tan (45 2/2) tan (45 22 /2) 2.198 .KP2 1.483,____ KP3 tan2 (45 3/2) tan2 (45 20 /2) 2.040 KP3 1.428 KP4 2tan (45 4/2) 2tan (45 24 /2) 2.371 .KP4 1.540 2各工况土压力及支撑力计算(1) 工况1:基坑开挖至-6.0m,并在此处设置第一道锚杆,地面处的主动土压力为:e a0qKa12q Ka120 0.589 2 0.7 0.767 10.706kPa6.0m处的主动土压力:第一层土层:e a6 (q 1乙)斛2G .臼(20 16 6) 0.589 2 0.7 0.767 67.250kPa第二层土层:e a6 (q 1Z)Ka2 2c?.. Ka?(20 16 6) 0.455 2 21.7 0.675 23.485kPa开挖面处的被动土压力为:e p62c2. Kp2 2 21.7 1.483 64.362kPa开挖面处主动土压力减去被动土压力为:e6 e a6e p623.485 64.362 40.877kPa则所有的主动土压力合力为:E a1 0.5 (10.706 67.250) 6 233.868kN/m10.706图3.2工况1 土压力分布图假设开挖面以下t,m处剪力为0,该处即是最大弯矩所在截面,则t,m处的主动土压力减去被动土压力为:e ti e2t i Ka2 ( 2t i Kp? 2C2 . KP2)23.485 19.41 0.455 (19.4t12.198 2 21.7 1.483)(33.814t140.877)kPa由静力平衡列方程:Ea10.5 (40.877 40.877 33.814t1)t1233.868 40.877t1 216.592t1解得t1 2.719m 所以e 33.814 2.719 40.877 132.817kPa 因此最大弯矩为:M max1 10.706 6 (0.5 6 2.719) 0.5 (67.250 10.706) 6 ( 13 6 2.719)40.877 2.719 0.5 2.719 0.5 (132.817 40.877) 2.719 13 2.719827.266kN m/m(2)工况2:开挖至处11.5m,并在此处设第二道锚杆,土压力分布:开挖面处主动土压力:第二层土层:e a10 e a6 2z2Ka223.485 19.4 4 0.455 58.793kPa第三层土层:' :e a10 (q 1Z1 2Z2)Ka3 2c3*'Ka3(20 16 6 19.4 4) 0.4902 24.5 0.700 60.564kPa开挖面处的主动土压力为:3z 2Ka 360.564 20.2 1.5 0.490 75.411kPa开挖面处的被动土压力为:e p ii.5 2c 3jKp 7 2 24.5 1.428 69.972kPa则主动土压力减去被动土压力为:假设土压力零点位置为开挖面以下d 2处,则有:e a11.5 3d 2Ka 3e pn.53d ?Kp 3主动土压力合力为:土压力零点位置处截面的弯矩为:(13 4 1.5 0.174) 60.564 1.5 (0.5 1.5 0.174) 0.5 (75.411 60.564)1.5 (13 1.5 0.174) 0.5 5.439 0.174 23 0.174 2507.943kN m/m则第一道(6m)处锚杆的水平分力为:Ma 2 25°7.943 442.006kN/ma 25.5 0.174力为:e t2 5.439 t 2 0.174由静力平衡可列方程:e i1.5ea11.5ep11.575.411 69.972 5.439kPae i1.5d 23(8 饥)5.43920.2 (2.040 0.490)0.174mEa 2233.868 0.5 500.878kN / m(23.485 58.793) 4 0.5 (75.411 60.564) 1.5Ma 2 10.706 6 (0.5 6 41.5 0.174)0.5 (67.25010.706) 4 1.5 0.174) 23.485 4 (0.5 4 1.5 0.174) 0.5 (58.793 6 (1323.485) 4假设土压力零点位置以下t 2m 处剪力为0,即弯矩最大,则由几何关系可知, t 2m 处的土压e t2 31.259t 2图3.3工况2 土压力分布图Ea 2 T 1 0.5 e t2t2500.878 442.006 0.5 31.259t 2 t 2解得t 21.941m所以e t2 31.259 1.941 60.674kPa因此最大弯矩为:(23 0.174 1.941) 0.5 1.941 60.674 打 1.941 442.006 (5.5 0.174 1.941) 270.607kN m/m(3)工况3:开挖至17.0m ,并在此处设第三道锚杆:ea14.8ea10 3Z3Ka 360.564 20.2 4.8 0.490108.074kPa第四层土层:1為4.8(q 1乙2Z23Z 3 )Ka 4 2C 4 . Ka 4(20 16 6 19.4 4 20.2 4.2) 0.422 220.3 0.64996.267kPaMmax2(13 6(58.793 1.10.706 6 (0.5 6 4 4.5 0.174 1.941) 0.5 (67.250 10.706) 6 4 1.5 0.174 1.941) 23.485 4 (0.5 4 1.5 0.174 1.941) 0.523.485) 4 ( 13 4 1.5 0.174 1.941) 60.564 1.5 (0.5 1.5 0.174 0.5 (75.411 60.564) 1.5 ( 13 1.5 0.174 1.941)0.5 5.439 0.174e a17 e a14.5 4z 4Ka 4 96.267 20.2 2.2 0.422 115.856kPa开挖面处的被动土压力为:e p 仃 2C 4 Kp 4 2 20.3 1.540 62.524kpa主动土压力减去被动土压力:e 17 e a 仃 e p17115.856 62.524 53.332kPa假设土压力零点位置为开挖面以下d 3处,则:10.706115856 21.1 d 3 0.422 21.1 d 3 2.371 2 20.3 1.540解得 d 1.297m 所有主动土压力合力为:E a3 0.5 (10.706 67.250) 6 0.5 (23.485 58.796) 4 0.5 (60.564108.074)4.8 0.5 (96.267 115.856) 2.2 0.5 53.332 1.297 1070.076kN/m土压力零点处截面的弯矩为:Ma 310.706 6 (0.5 6 4 4.8 2.5 1.297) 0.5 (67.250 10.706) 623.485 \67.250T 258.793 __60.564108.074 96.26753.332115.856d 3t3图3.4工况3的土压力分布图e a 仃 4dKa 4 4dKp 4 2c 4 . Kp 4(13 6 4 4.8 2.2 1.297) 23.485 4 (0.5 4 4.8 2.2 1.297) 0.5(58.793 23.485) 4 (13 4 4.8 2.2 1.297) 60.564 4.8 (0.5 4.8 2.21.297) 0.5 (108.074 60.564) 4.8 (13 4.82.2 1.297) 96.267 2.2(0.5 2.2 1.297) 0.5 (115.856 96.267) 2.2 (13 2.2 1.297) 0.5 53.332 1.297 23 1.297 7931.991kN m/m所以第二道(11.5m处)锚杆的水平分力为:Ma3「(17 6)5.5 1.2977931.991 442.006 (11 1.297)5.5 1.297438.303kN/m假设土压力零点位置以下t3m处剪力为0,即该处弯矩最大,则该界面处的土压力为: 由几何关系有:e t3 53 .332t 3 d3所以%41.120t3则由静力平衡列方程:Ea3 T1 T20.5 41.120 t3 t31070.076 442.006 438.303 0.5 41.120t3 t3解得t3 3.038me341.120 3.038 124.922kPa因此最大弯矩为:Mmax3 10.706 6 (0.5 6 4 4.8 2.2 1.297 3.038) 0.5 (67.250 10.706)6 ( 13 6 4 4.8 22 1.297 3.038) 23.485 4 (0.5 4 4.8 22 1.2973.038) 0.5 (58.793 23.485) 4 (13 44.8 2.2 1.297 3.038) 60.564 4.8 (0.5 4.8 2.2 1.297 3.038) 0.5 (108.074 60.564) 4.8 (\ 4.8 2.2 1.297 3.038) 96.267 2.2 (0.5 2.2 1.297 3.038) 0.5 (115.856 96.267) 2.2 (13 2.2 1.297 3.038) 0.5 53.332 1.297 (23 1.297 3.038) 0.5 124.9223.038 13 3.038 442.006 (11 1.297 3.038) 438.303 (11 5.5 1.297 3.038)95.109kN m/m(4)嵌固深度的计算T d Ea3 T1 T2 1070.076 442.006 438.303 189.767kN/me h 41.120h图3.5嵌固深度计算图对O点取矩,由力矩平衡可知:M(O) 0:189.767 h 0.5 ( 41.120h) h 13 h 0解得h 5.262m则嵌固深度h a 1.2(h t3) 1.2 (5.262 3.038) 9.96m因此桩总长L 17 9.96 26.96m3灌注桩的内力设计值及配筋设计最大弯矩计算值:M c 827.266 1.5 1240.899kN m最大弯矩设计值:M 1.25 0M c 1.25 1.1 1240.899 1706.236kN m灌注桩的配筋取分段开挖的最大弯矩: M max 1240.899kN m 。

深基坑支护工程技术(教材,第五章 土钉喷射混凝土支护结构设计计算)

深基坑支护工程技术(教材,第五章 土钉喷射混凝土支护结构设计计算)

式中2=Dk/EA,表示土钉对土体的相对刚度,其量纲为长度。
深基坑支护工程技术
第二节 土钉支护原理
钢管抗拔试验和加筋土的抗拔试验表明,在土体未发生剪切坡 坏前(受拉杆件发生均匀移动前),拉拔端的位移最大,位移由拉 拔端向尾端逐渐减小到零。由于钢管常在工程中被用作打入式土钉 或注浆式土钉的拉筋,因此,抗拔试验等同于土钉的抗拔试验。因 此当x=l时,u=uf,土钉的位移最大。在土钉被拔出的过程中,土钉 各点处的位移相同,即土钉发生均匀移动,开始发生抗拔破坏,不 会存在u≥uf的情况。因此应该只考虑u≤uf时土钉的受力及变形情况。 将方程(5.2.13)代入到方程(5.2.7)中得: Dk Nx P C3 (e l ex ) C4 (e l - e x ) C5
深基坑支护工程技术
第二节 土钉支护原理
二、土钉抗拔荷载传递机理 当拉力逐渐施加于土钉时,靠近拉拔端 a b f 处的土钉单元受到拉伸而产生相对于土体向 外变形,与此同时土钉侧表面受到土体的摩 k 1 擦力。土钉荷载通过所发挥出来的侧向摩擦 阻力传递到土钉周围土体中(降低了土体的 0 u uf 分担作用),致使土钉的轴向拉力和土钉的 图5-1 土钉抗拔剪应力-位移关系 拉伸变形随土钉的长度方向而递减。在钉土 相对位移等于零处,其摩擦阻力尚未开始发挥作用而等于零。随着 荷载的逐渐增加,土钉体的拉伸变形量和位移量逐渐增大,内部土 钉段的摩擦阻力随之逐步调动起来,内部土钉段处周围的土体因此 而产生摩擦阻力;当土钉周侧的摩擦阻力全部发挥出来达到极限状 态时,土钉周侧土体发生剪切破坏,位移增长速度显著增大,并收 敛于某一常数,土钉以均匀的速度被拔出。



只要确定了待定系数C3、C4、C5,测得剪切变形系数k,就可以计 算出位移、轴力、剪力沿土钉的轴向分布规律。

某综合楼深基坑支护设计(手算)

某综合楼深基坑支护设计(手算)

某综合楼深基坑支护设计一、工程概况1.环境条件概况某综合楼是集购物、商住、办公于一体的综合性建筑,建筑面积70000m2。

工程占地面积144×40m2。

上部结构由三幢19~20层的塔楼组成,最大高度达81.5m,其中1号、2号楼带三层裙楼,三幢楼的裙房连在一起。

塔楼群房采用框架剪力墙结构,钻孔灌注桩箱形基础,设两层地下室,挖深为8.9m,电梯井局部挖深达11.6m。

该建筑物西侧剧长宁街仅5m,且在路面下埋有电缆线、煤气管道、自来水管道及污水管道等市政公用设施。

南边是新华联施工现场,其围墙局开挖最小距离为4m,青春小区土方开挖时,新华联施工现场正处于打钻孔灌注桩阶段。

东侧大部分为一片已完成拆迁的空地,其中有一幢友谊服装厂的四层厂房,间距约13m,北侧距长庆街约12m。

该场地为原住宅及厂房等拆除后整平,场地基本平坦。

根据地质勘测勘料,地下水位埋藏较浅,平均深度为1.15m,其中上部土层透水性较好。

二、降水设计根据本地的工程地质水文条件以及周围环境,设计采用喷射井点降水系统。

由于上部透水性较好,采用环圈形式布置井点,并配抽水设备。

方案为潜水完整井。

1.井点系统布置井点管呈长方形布置,总管距沉井边缘1.5m。

沉井平面尺寸为144×40m2,水力坡度取1/10。

1)井点系统总长度[(144+1.50*2)+(40+1.50*2)]*2=380m2)喷射井点管埋深H=11.6+IL1=11.6+1/10*43/2=13.75m取喷射井点管长度为14m3)虑水管长度取L=1.5m ,φ38mm4)在埋设喷射井点时冲孔直径为600mm,冲孔深度比滤水管深1米.即:14.50+1.50+1.00=17.00m井点管与滤水管和孔壁间用粗砂填实作为砂滤层,距地表1.00m处用粘土封实以防漏气。

2. 基坑排水量计算2) 渗透系数k 的确定土的渗透系数用第二层和第三层的加权平均值 k =1.725.5*1.34*44.5+*10-4=5.36*10-4cm/s =0.46m/d 2)含水层厚度H w H w =3.9+3.8+3.5+3.5+3+1-1.15=17.55m2) 基坑要求降低水位深度S ′S ′=11.6-1.15+0.5=10.95m2) 地下水位以及井管长度,即井管内水位下降深度SS= S ′+i L 1=10.95+1/10*43/2=13.1m 2) 影响半径RR=10s k =10*13.1*46.0=88.8m 2) 引用半径rr=14.3/F =14.3/43*147=44.87m2) 基坑总排水量Q Q=rR s s H k ln 'ln ')'2(14.3--=87.44ln )8.448.88ln(95.10)95.1075.13*2(46.0*14.3-+-=239.8m 3/d3. 单根井点管的出水量q =65πdl 3k=65*3.14*0.038*1.5*346.0=8.98m 3/d4. 单根井点管数及间距N=1.1Q/q=1.1*239.8/8.98=29.4 实际用30根井点管D=(147+43)*2/30=12.67m 实际间距取12米注意:在井点系统抽水期间应加强地面沉降的观测,防止由于地面沉降而引起的环境问题。

基坑支护课程设计

基坑支护课程设计

基坑支护课程设计一、教学目标本课程的教学目标是使学生掌握基坑支护的基本原理、设计方法和施工技术,能够运用所学知识分析和解决实际工程问题。

具体分为以下三个部分:1.知识目标:学生需要掌握基坑支护的基本概念、类型、设计原则和施工工艺。

2.技能目标:学生能够运用所学知识进行基坑支护的设计和计算,并能分析评价基坑支护方案的可行性。

3.情感态度价值观目标:培养学生对工程安全的重视,使其能够遵循工程伦理和职业道德,对基坑支护工程负责。

二、教学内容本课程的教学内容主要包括以下几个部分:1.基坑支护的基本概念和类型:包括基坑的定义、支护结构的分类及其特点。

2.基坑支护的设计原则:包括安全性、经济性、施工可行性等方面的考虑。

3.基坑支护的施工技术:包括施工准备、施工方法、施工质量控制等方面的内容。

4.基坑支护工程案例分析:通过实际案例,使学生能够将所学知识应用于实际工程问题的分析和解决。

三、教学方法为了实现本课程的教学目标,将采用以下几种教学方法:1.讲授法:通过教师的讲解,使学生掌握基坑支护的基本原理和设计方法。

2.案例分析法:通过分析实际工程案例,使学生能够将所学知识应用于实际工程问题的解决。

3.实验法:通过实验,使学生能够直观地了解基坑支护的施工过程和技术要求。

4.讨论法:通过小组讨论,培养学生的团队合作能力和解决问题的能力。

四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作课件、视频等多媒体资料,增强课堂教学的趣味性和生动性。

4.实验设备:准备相应的实验设备,为学生提供实践操作的机会。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观地评价学生的学习成果。

具体评估方式如下:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和课堂表现。

理正深基坑最的手把手叫你设计基坑支护的教程

理正深基坑最的手把手叫你设计基坑支护的教程

理正深基坑最的手把手叫你设计基坑支护的教程基坑支护设计手把手教程第一步:基坑支护设计前准备工作在开始设计基坑支护之前,需要进行以下准备工作:1.准备基坑资料:收集基坑位置、尺寸、土质及地下水位等相关信息。

2.土质调查:对基坑周边土质进行勘探,了解不同土层的性质和稳定性。

3.地下水位调查:通过测井等方法获取地下水位,并评估对基坑施工的影响。

4.确定荷载:分析并确定基坑周边的荷载情况,包括土压力、地震荷载等。

第二步:基坑支护形式的选择基坑支护形式的选择通常有梁板桩、垂直支撑和构筑物支撑等多种形式,根据具体情况选择最适合的支护形式。

1.梁板桩支护:适用于较深且土壤稳定性较好的基坑,可以采用梁板桩形成围护墙来支护挖土,保持挖土面的稳定。

2.垂直支撑支护:适用于浅基坑或土壤稳定性较差的基坑,可以采用垂直支撑体系,如钢支撑和混凝土支撑等,来支持挖土的侧面。

3.构筑物支护:适用于需要同时进行建设和基坑支护的情况,如挡土墙、钢结构支撑和混凝土面板等构筑物。

第三步:基坑支护设计根据基坑资料和支护形式的选择,进行具体的基坑支护设计。

1.挂墙设计:对于梁板桩支护形式,需要进行挂墙设计,包括挂板预制和挂板施工等。

2.土压力计算:对于各种支护形式,需要计算土体的荷载和土压力,确定支撑材料和尺寸。

3.支护材料选择:根据土压力计算结果和实际工程要求,选择适合的支撑材料,如预制钢板、钢管和木质支撑等。

4.连接方式设计:对于支撑材料之间的连接,如挂板和支撑材料之间的连接,需要进行设计,并选择适当的连接方式,如焊接和螺栓连接等。

第四步:基坑支护施工基坑支护设计完成后,需要进行具体的施工工作。

1.挖土:根据设计要求,按照支护计划进行挖土工作,确保挖土面的稳定性。

2.安装支撑:根据支护设计,安装预制的挂板和支撑材料,保证基坑的稳定性。

3.进一步处理:根据土质条件和地下水位等情况,可能需要进行其他处理,如加固支护材料和加装临时支撑等。

4.监测:在施工过程中,需要进行基坑支护的监测,如地下水位监测和支护结构变形监测等,及时调整和处理问题。

深基坑围护结构课程设计指导书

深基坑围护结构课程设计指导书

深基坑围护结构课程设计指导书一、题目深基坑围护结构课程设计二、设计内容及要求:1.设计目的了解深基坑围护结构的构成和原理,掌握常用的围护结构形式及其作用,熟悉设计、施工和监理的相关规定和技术要求。

2.设计内容(1)设计深基坑的开挖顺序和选用的围护结构形式,防止底部土层扰动,保证基坑是否安全。

(2)根据基坑周围的地形、建筑物高度以及地下水位等因素,选用合适的围护结构形式,并进行相关的计算。

(3)根据设计要求,确定围护结构的材料和规格,制定施工方案。

(4)进行设计计算,包括围护结构的稳定性、变形及内力等方面的计算。

(5)编制施工图纸,包括围护结构各部位细节图、标注及尺寸等。

3.设计要求(1)设计和计算的内容应准确、完整,符合相关规范和标准。

(2)图纸和文字说明应明确、简洁、规范,起到明示设计意图、施工方法和操作要求的作用。

(3)设计应综合考虑各种因素,如地质条件、项目要求等,确保设计的可行性和安全性。

三、实验器材计算机、设计软件、绘图仪器等。

四、实验步骤1.确定基坑深度、形状及选用的围护结构形式。

2.确定基坑周围的地形、建筑物高度以及地下水位等因素,并按相关规定进行综合分析。

3.计算围护结构的稳定性、变形及内力等,包括荷载分析和受力计算等。

4.确定围护结构的材料和规格,并结合实际情况进行使用。

5.编制施工图纸,包括围护结构各部位细节图、标注及尺寸等。

6.制定施工方案,进行施工和监理工作。

五、实验注意事项1.要认真阅读相关规范和标准,并结合实际情况进行设计。

2.计算和设计内容要准确、完整,涉及安全的部分要特别注意。

3.图纸和文字说明要规范、明确、简洁。

4.实验前要检查相关器材和软件是否正常,避免因故障而耽误实验。

5.施工和监理工作要按照相关规定和技术要求进行。

深基坑支护设计课件资料

深基坑支护设计课件资料

深基坑支护设计(B-A-N段、C-D段、N-M-L段)---------------------------------------------------------------------- [ 支护方案 ]---------------------------------------------------------------------- 天然放坡支护[ 基本信息 ][ 放坡信息 ][ 超载信息 ][ 土层信息 ][ 土层参数 ][ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件:计算方法:瑞典条分法应力状态:总应力法基坑底面以下的截止计算深度: 0.00m基坑底面以下滑裂面搜索步长: 5.00m条分法中的土条宽度: 1.00m深基坑支护设计(B-C段、D-E段)---------------------------------------------------------------------- [ 支护方案 ]---------------------------------------------------------------------- 天然放坡支护---------------------------------------------------------------------- [ 基本信息 ][ 放坡信息 ][ 超载信息 ][ 土层信息 ][ 土层参数 ]----------------------------------------------------------------------[ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ]----------------------------------------------------------------------天然放坡计算条件:计算方法:瑞典条分法应力状态:总应力法基坑底面以下的截止计算深度: 0.00m基坑底面以下滑裂面搜索步长: 5.00m条分法中的土条宽度: 1.00m深基坑支护设计(E-J段)---------------------------------------------------------------------- [ 支护方案 ]---------------------------------------------------------------------- 排桩支护---------------------------------------------------------------------- [ 基本信息 ][ 超载信息 ][ 附加水平力信息 ][ 土层信息 ][ 土层参数 ][ 土压力模型及系数调整 ]---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型:[ 工况信息 ][ 设计结果 ]---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ]---------------------------------------------------------------------- 各工况:内力位移包络图:地表沉降图:---------------------------------------------------------------------- [ 冠梁选筋结果 ]----------------------------------------------------------------------[ 截面计算 ]----------------------------------------------------------------------钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF500[ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 1.00m滑裂面数据整体稳定安全系数 K s = 2.991圆弧半径(m) R = 24.365圆心坐标X(m) X = -11.031圆心坐标Y(m) Y = 14.521---------------------------------------------------------------------[ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:p, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某综合楼深基坑支护设计一、工程概况1.环境条件概况某综合楼是集购物、商住、办公于一体的综合性建筑,建筑面积70000m2。

工程占地面积144×40m2。

上部结构由三幢19~20层的塔楼组成,最大高度达81.5m,其中1号、2号楼带三层裙楼,三幢楼的裙房连在一起。

塔楼群房采用框架剪力墙结构,钻孔灌注桩箱形基础,设两层地下室,挖深为8.9m,电梯井局部挖深达11.6m。

该建筑物西侧剧长宁街仅5m,且在路面下埋有电缆线、煤气管道、自来水管道及污水管道等市政公用设施。

南边是新华联施工现场,其围墙局开挖最小距离为4m,青春小区土方开挖时,新华联施工现场正处于打钻孔灌注桩阶段。

东侧大部分为一片已完成拆迁的空地,其中有一幢友谊服装厂的四层厂房,间距约13m,北侧距长庆街约12m。

该场地为原住宅及厂房等拆除后整平,场地基本平坦。

根据地质勘测勘料,地下水位埋藏较浅,平均深度为1.15m,其中上部土层透水性较好。

该场地30m深范围内土层的主要物理力学指标如下:二、降水设计根据本地的工程地质水文条件以及周围环境,设计采用喷射井点降水系统。

由于上部透水性较好,采用环圈形式布置井点,并配抽水设备。

方案为潜水完整井。

1.井点系统布置井点管呈长方形布置,总管距沉井边缘1.5m。

沉井平面尺寸为144×40m2,水力坡度取1/10。

1)井点系统总长度[(144+1.50*2)+(40+1.50*2)]*2=380m2)喷射井点管埋深H=11.6+IL1=11.6+1/10*43/2=13.75m取喷射井点管长度为14m3)虑水管长度取L=1.5m ,φ38mm4)在埋设喷射井点时冲孔直径为600mm,冲孔深度比滤水管深1米.即:14.50+1.50+1.00=17.00m井点管与滤水管和孔壁间用粗砂填实作为砂滤层,距地表1.00m处用粘土封实以防漏气。

2. 基坑排水量计算2) 渗透系数k 的确定土的渗透系数用第二层和第三层的加权平均值 k =1.725.5*1.34*44.5+*10-4=5.36*10-4cm/s =0.46m/d 2)含水层厚度H w H w =3.9+3.8+3.5+3.5+3+1-1.15=17.55m2) 基坑要求降低水位深度S ′S ′=11.6-1.15+0.5=10.95m2) 地下水位以及井管长度,即井管内水位下降深度SS= S ′+i L 1=10.95+1/10*43/2=13.1m 2) 影响半径RR=10s k =10*13.1*46.0=88.8m 2) 引用半径rr=14.3/F =14.3/43*147=44.87m2) 基坑总排水量Q Q=rR s s H k ln 'ln ')'2(14.3--=87.44ln )8.448.88ln(95.10)95.1075.13*2(46.0*14.3-+-=239.8m 3/d3. 单根井点管的出水量q =65πdl 3k=65*3.14*0.038*1.5*346.0=8.98m 3/d4. 单根井点管数及间距N=1.1Q/q=1.1*239.8/8.98=29.4 实际用30根井点管D=(147+43)*2/30=12.67m 实际间距取12米注意:在井点系统抽水期间应加强地面沉降的观测,防止由于地面沉降而引起的环境问题。

按此喷射井点设计方案降水在沉井施工过程中降水效果好,满足设计要求。

三、土层压力计算因墙背竖直、光滑,填土面基本水平,符合郎金条件计算时假定附加荷载q=10kp个填土层物理力学性质该书中已给,不再赘述。

计算过程如下:K a1 =tan2(45。

-10。

/2)=0.7kσa0 =qK a1-2c11a=10*0.7-2*5*7.0=-1.37kpσa1 =(10+18.1*1.15)*0.7-2*57.0=13.2kpσa2 =(10+18.1*1.15+8.1*3.35)*0.7-2*57.0=32.2kpK a3 =tan2(45。

-35。

/2)=0.27.0σa2’=(10+18.1*1.15+8.1*3.35)*0.27-2*1027=5.25kp.0σa3=(10+18.1*1.15+8.1*3.35+8.9*4)*0.27-2*1027=14.86kpK a4= tan2(45。

-35.15。

/2)=0.27.0σa3’ =(10+18.1*1.15+8.1*3.35+8.9*4)*0.27-2*6.527=18.5kp.0σa4 =(10+18.1*1.15+8.1*3.35+8.9*4+8.7*3.5)*0.27-2*6.527=26.7kpK a5 = tan2(45。

-11.2。

/2)=0.67.0σa4’ =(10+18.1*1.15+8.1*3.35+8.9*4+8.7*3.5)*0.67-2*15.667 =57.5kp.0σa5 =(10+18.1*1.15+8.1*3.35+8.9*4+8.7*3.5+8.4*3.5)*0.67-2*15.667 =77.2kpK a6 = tan2(45。

-17.3。

/2)=0.54.0σa5’ =(10+18.1*1.15+8.1*3.35+8.9*4+8.7*3.5+8.4*3.5)*0.54-2*4354 =19.6kp.0σa6 =(10+18.1*1.15+8.1*3.35+8.9*4+8.7*3.5+8.4*3.5+8.9*3.5)*0.54-2*4354 =36.5kp被动:K p4= tan2(45。

+35.12。

/2)=3.7σp4 =8.7*0.4*3.7+2*6.57.3=37.9kpK p5= tan2(45。

+11.2。

/2)=1.48.1σp4’ =8.7*0.4*1.48+2*15.648=43.1kp.1σp5 =(8.7*0.4+8.4*3.5)*1.48+2*15.648=86.6kpK p6 = tan2(45。

+17.3。

/2)=1.85.1σp5’ =(8.7*0.4+8.4*3.5)*1.85+2*4385=177.8kp.1σp5’ =(8.7*0.4+8.4*3.5+8.9*3.5)*1.85+2*4385 =235.4kp土层水的压力:σW=γW H W10*(11.6-1.15)=104.5kp不考虑渗流的影响土层水土压力图四、基坑护围及支护方案设计1.方案选定1)东侧和北侧采用放坡另加适当的土钉墙;基坑开挖深度为9米,采用1:0.577即坡角60度放坡开挖,中间设1.5米平台。

2)南侧采用人工挖孔桩配合对拉锚杆支护结构。

3)西侧由于对基坑侧壁变形稳定性要求较高,宜采用土钉墙支护。

2.方案设计及计算1)东侧和北侧放坡段板面:C20喷射混凝土,厚度100mm钢筋网:φ6@200mm*200mm土钉:共设4排土钉,水平间距与垂直间距为2米土钉规格:φ28L8000mm@2000mm分布见图纸①内部稳定分析为方便计算土层力学性质采用加权平均值。

附加荷载为10kp,临界破坏面为楔性破坏面,破坏面倾角为:45○+φ/2计算时可用下式:K= [CL+(W+Q)Sin(45。

+φ/2)tanφ+Tsin(45。

+φ/2+Θ)tanφ+ Tcos(45。

+φ/2+Θ)]/(W+Q) cos(45。

-φ/2)公式说明:φ为土层平均内摩擦角取φ=9.815.35*4.035*410*5.4++=22.4。

c为土层平均粘聚力取c =9.85.6 * 4.010*45*5.4++=7.3kpγ为土层平均重度取γ=9.87.18*4.09.18*41.18*5.4++=18.5kN/m3w为土层自重取w=0.5γH2tan(45-φ/2)-0.5γ*H2cot60=0.5*18.5*8.92tan33.8-0.5*18.5*8.9*8.9*0.58 =65.5kn/mH为井深8.9mL为楔形滑移面长度L =H/cos(45-11.2)=8.9/cos33.8。

=10.7mQ为地面载荷Q =10*8.9tan(45-11.2)=59.6kn/mT为土钉的支撑力T =∑Lb*20/1.5=32*20/15=426.7kN/mΘ为土钉与水平面的夹角10度将以上数据带入公式中 K=︒+︒+︒︒+︒︒++8.33cos )5.656.59(2.66cos 7.4264.22tan 2.66sin 7.4264.22tan 8.33sin )5.656.59(7.10*3.7 =4.2② 抗滑稳定计算 安全系数K H =F T /E ax 公式说明:K H 为抗滑安全系数;F T 为墙底断面上产生的抗滑力; E ax 为墙后主动土压力。

E ax =(0.5γH+q )Htan 2(45-φ/2)-2cH tan(45-φ/2)+2c 2/γ=(0.5*18.5*8.9+10)*8.9tan 233.8-2*7.3*8.9tan33.8+2*7.32/18.5 =287kN/mF T =(W+qB)tan φB=11/12*8cos10=7.2mF T =(18.5*8.9*7.2+10*7.2)tan35.15○=885.4kN/m ∴ K H =885.4/287=3.1 满足稳定要求③ 抗倾覆稳定计算 安全系数:K Q =M W /M M W =(W+qB)*0.5B=(18.5*8.9*7.2+10*7.2)*0.5*7.2=4526.9kN/m M=E ax *1/3H=287*1/3*8.9=851.4kN/m K Q =4526.9/851.4=5.3 满足稳定要求2) 西侧土钉墙支护设计板面:C20喷射混凝土,厚度100mm 钢筋网:φ6@200mm*200mm土钉:共设8排土钉,水平间距为2米, 垂直间距为1米。

土钉规格:前三排:φ28L4000mm@1000mm 下五排:φ28L10000mm@1000mm 内部稳定分析为方便计算,土层力学指标采用加权平均值,临界破坏面为楔形划移面 破坏面倾角为(45+2ϕ) 楔形划移面长度⎪⎭⎫ ⎝⎛-=2263.2445cos H L =⎪⎭⎫⎝⎛-2263.2445cos 9.8=10.6 m土层平均加权内摩擦角φ=9.815.35*3.135*75.310*9.3++=24.263土层平均加权粘聚力cc=9.85.6*3.110*75.35*9.3++=7.354a kp0263.24=ϕ354.7=c 87.18=γ土层自重WW=21γH[tg(45-φ/2)-2.38] =0.5*18.87*8.9*⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-38.22263.2445tg =283.05 kN/m 地面附加载荷QQ=⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛-38.22263.2445Htg q =20*8.9tan(45-2263.24)=67.41 kN/m⎪⎭⎫ ⎝⎛-=2263.2445cos H L =⎪⎭⎫ ⎝⎛-2263.2445cos 9.8=10.6 m土钉与水平面的夹角 θ= 10土钉锚固力TT =∑Lb *20/1.5= 29.6*20/15= 493.3kN/m土钉内部稳定系数K()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-++=245cos 245cos tan 245sin 245sin ϕθϕϕθϕϕϕQ W T T tg W Q Cl K=2.06抗滑稳定计算 K H =axTE F K H ————抗滑安全系数F T ————墙底断面上产生的抗滑力 E ax ————墙后主动土压力γϕϕγ222245224521C CHtg Htg q H E ax+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+= =(0.5*18.87*8.9+20)*8.9tan233.8-2*7.354*8.9tan33.8+2*7.3542/18.87=307.5 kN/m F T =(W+q) Btg ϕ B=1211*8815127+++cos10=4.74 F T =(18.87*8.9*4.74+10*4.74)tan24.263= 401.5kN/m∴ K H =401.5/307.5=1.31满足稳定要求抗倾覆稳定计算 K Q =M M wM W =(W+q) B*0.5B=(18.87*8.9*+10)4.74*0.5*4.74=2111.3kN/m M=H E ax31= 307.5*1/3*8.9=912.5kN/m K Q =2111.3/912.5= 2.31 满足稳定要求 3)南侧段基坑下土压力零点: 设土压力零点距基坑下x 米:3333333324.0*5.35.187.265.182a a p p K c xK K c xK -+-+=+γγ∴x= 0.51m9.8*1051.0*4.19)]4.195.18(4.0)86.1425.5(*4)15.15.4(*)2.132.32()11.015.1(*2.13[21++++++-++-=∑P =229.6 KN/m 计算合力点:6.2299.8*103251.0*4.19214.0)5.184.19(32214.05.18214)25.586.14(3221425.521)15.15.4)(2.132.32(3221)15.15.4(*2.13*2132*)11.015.1(*2.1321222222222++-⨯+⨯+-⨯+⨯+--⨯+-+-=a=4.8 mm K K l P a n m K K l P m mx h l K K m KN h h hh a p a p p a i ii i i i 24.0)45.023.2(41.95.186.2298.46)(643.0)45.023.2(41.95.186.2296)(641.951.09.823.2)245(tan 45.0)245(tan /5.189.84.07.1849.185.41.184.229.84.015.3540.355.40.10332202020000=-⨯⨯⨯⨯=-==-⨯⨯⨯=-==+=+==+==-==⨯+⨯+⨯===⨯+⨯+⨯==∑∑∑∑∑∑γγϕϕγγϕϕ 由布鲁姆理论的计算曲线可查得:84.0=ξmx x t m l x 99.99.72.151.0'2.19.741.984.0'=⨯+=+==⨯=⨯=ξ 桩总长 8.9+9.99=18.89 m求最大弯距最大弯距位置:在剪力Q=0处,设从地面往下m x 处Q=0,则有:m K K Px x K K P a p m m a p 73.3)45.023.2(5.186.2292)(20)(22=-⨯⨯=-==--∑∑γγ 最大弯距 6)()(3max m a p m x K K a x l P M ---+=∑γ673.3)45.023.2(5.18)8.473.341.9(6.2293⨯-⨯--+⨯= m KN ⋅=1.1630截面配筋选 32 204.8cm Ag = 2/38cm KN Rg =钢筋总抗弯能力 )21(4][121m m y y y y AgRg M ++++=-Λ )245.042.036.025.014.0(3804.84++++⨯⨯⨯= m KN ⋅=76.1704桩间距 m b 09.11.163.142776.1704=⨯= 取b=1.0 m 为了减少竖向钢筋的用量,可考虑受压区(靠基坑一侧的半圆截面)砼的抗压作用,砼用C20 2/34.1cm KN R w =KN n aR d N w a 34.1892034.159014.3221=⨯⨯⨯⨯==π 受压区每根钢筋截面积为206.33834.1893804.8''cm Rg Na AgRg Ag =-⨯=-= 按构造选配 25 291.4'cm Ag =为进一步减少钢筋用量,宜在桩身上部减半配筋。

相关文档
最新文档