二次函数图象知识点总结
二次函数四大类知识点总结

二次函数四大类知识点总结一、二次函数的图像特征1. 二次函数的开口方向二次函数的开口方向由二次项的系数a决定。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
此外,当a=0时,函数退化为一次函数或常数函数。
2. 二次函数的顶点二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
当a>0时,顶点为图像的最小值点;当a<0时,顶点为图像的最大值点。
3. 二次函数的对称轴二次函数的对称轴为x=-b/2a,即与顶点的横坐标相等。
4. 二次函数的焦点和直径对于二次函数y=ax^2+bx+c,其焦点坐标为(-b/2a,c-b^2/4a),焦点为顶点的下方或上方的点。
5. 二次函数的零点二次函数的零点即为函数图像和x轴的交点,其解析表达式可以用求根公式来表示。
二、二次函数的解析表达式1. 二次函数的一般解析式二次函数的一般解析式为f(x)=ax^2+bx+c,其中a、b、c分别是二次项、一次项和常数项的系数。
2. 二次函数的顶点形式二次函数的顶点形式为f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。
3. 二次函数的因式分解形式二次函数也可以通过完全平方公式进行因式分解,得到因式分解形式f(x)=a(x-m)(x-n)。
4. 二次函数的标准形式二次函数的标准形式为f(x)=a(x-p)(x-q),其中p、q是函数的两个零点。
三、二次函数的性质1. 二次函数的增减性当a>0时,二次函数在对称轴的左侧是递减的,在对称轴的右侧是递增的;当a<0时,二次函数的变化方向与上述相反。
2. 二次函数的奇偶性二次函数是偶函数,当且仅当a是偶数时。
此时,二次函数的图像关于y轴对称。
3. 二次函数的极值和最值对于二次函数f(x)=ax^2+bx+c,当a>0时,函数的最小值为c-b^2/4a;当a<0时,函数的最大值为c-b^2/4a。
此外,当a=0时,函数的最值即为常数项c。
初中数学二次函数最全知识点总结

初中数学二次函数最全知识点总结二次函数是数学中一个重要的函数概念,在初中阶段也有着广泛的应用。
下面是关于初中数学二次函数最全的知识点总结,供你参考。
一、基本形式二次函数的基本形式为:y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。
二、图像特征1.抛物线:二次函数的图像是一个抛物线,可以开口向上或向下。
2.拉伸:a确定了抛物线的开口方向和形状,绝对值越大,抛物线越“瘦长”,绝对值越小,抛物线越“圆胖”。
3.对称性:二次函数的图像关于直线x=-b/2a对称。
4.顶点坐标:直线x=-b/2a与抛物线的交点即为抛物线的顶点坐标。
5. 零点:二次函数的零点是指函数图像与x轴交点的横坐标,即解方程ax² + bx + c = 0。
三、顶点坐标的确定1.顶点坐标的横坐标x=-b/2a。
2.代入x值可以得到顶点坐标的纵坐标y=f(-b/2a)。
四、二次函数的方程及解法1. 二次函数方程一般形式:ax² + bx + c = 0。
2.解法一:使用因式分解法,将方程化为(x-m)(x-n)=0的形式,其中m和n为实数。
3. 解法二:使用配方法,对方程ax² + bx + c = 0进行化简,得到(ax + p)² + q = 0的形式,其中p和q为实数。
4. 解法三:使用求根公式,根据公式x = (-b ± √(b² - 4ac)) / 2a求得方程的根。
五、二次函数的特殊情况1.完全平方式:当二次函数的方程形式为(x+m)²=0时,说明抛物线的顶点坐标为(-m,0),且抛物线开口向上。
2.切线与二次函数的关系:二次函数的切线与函数图像的交点为切点,其斜率等于函数的导数值,切线的方程可以通过点斜式得到。
3. 线性函数与二次函数的关系:当二次函数的系数a = 0时,二次函数化为线性函数,即y = bx + c。
六、二次函数的应用1.模型拟合:二次函数可以用来拟合一些实际问题的数学模型,如抛物线运动问题、图像反演等。
二次函数的知识点总结

二次函数的知识点总结一、二次函数的定义二次函数是指一个形如 $y = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是常数,且 $a \neq 0$。
在这个表达式中,$x$ 是自变量,$y$ 是因变量,$a$、$b$ 和 $c$ 是系数,其中 $a$ 称为二次项系数,$b$ 称为一次项系数,$c$ 称为常数项。
二、二次函数的性质1. 抛物线形状:二次函数的图像是一个向上或向下开口的抛物线。
2. 开口方向:当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
3. 对称轴:二次函数图像关于直线 $x = -\frac{b}{2a}$ 对称,这条直线称为抛物线的对称轴。
4. 顶点:抛物线的顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
5. 与 X 轴的交点:二次函数与 X 轴的交点称为根,可以通过解方程$ax^2 + bx + c = 0$ 来找到。
三、二次函数的图像1. 顶点式:$y = a(x - h)^2 + k$,其中 $(h, k)$ 是顶点坐标。
2. 交点式:$y = a(x - x_1)(x - x_2)$,其中 $x_1$ 和 $x_2$ 是与 X 轴的交点坐标。
3. 标准式:$y = ax^2 + bx + c$。
四、求解二次方程1. 因式分解法:当能够找到两个数,它们的和等于 $b$,积等于$c$ 时,可以使用因式分解法。
2. 完全平方法:通过配方将二次方程转化为完全平方的形式。
3. 公式法:使用二次公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 来求解。
五、二次函数的应用1. 物理运动:描述物体在重力作用下的自由落体运动和抛体运动。
2. 优化问题:在商业和工程中,用于寻找最大利润或最小成本。
3. 数据拟合:在统计学中,用于拟合数据点,找到最佳曲线。
二次函数知识点总结ppt

二次函数知识点总结ppt一、基本概念1. 二次函数的定义二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。
2. 二次函数的图像二次函数的图像是一个抛物线,开口方向取决于a的正负,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。
4. 二次函数的对称轴二次函数的对称轴是通过抛物线顶点且垂直于x轴的直线,其方程为x=-b/2a。
5. 二次函数的平移二次函数的图像可以通过平移来变换位置,如上下平移、左右平移等。
6. 二次函数的零点二次函数的零点是函数与x轴相交的点,其坐标为(x1, 0)和(x2, 0),其中x1和x2分别是二次方程ax^2+bx+c=0的根。
二、性质及相关概念1. 二次函数的坐标二次函数的坐标为(x, y),其中x为自变量,y为因变量。
2. 二次函数的定义域二次函数的定义域为实数集R。
3. 二次函数的值域二次函数的值域取决于抛物线开口方向和顶点坐标。
4. 二次函数的最值当a>0时,二次函数的最小值为f(-b/2a),当a<0时,二次函数的最大值为f(-b/2a)。
5. 二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,二次函数有两个不相等的实根;当Δ=0时,二次函数有两个相等的实根;当Δ<0时,二次函数无实根。
6. 二次函数的性质(1)a的正负决定抛物线开口方向和抛物线的最值;(2)a的绝对值大小决定抛物线的开口程度;(3)b决定了抛物线的位置;(4)c决定了抛物线与y轴的交点。
三、二次函数的图像及相关变换1. 抛物线开口向上的二次函数二次函数y=ax^2+bx+c,当a>0时,抛物线开口向上。
2. 抛物线开口向下的二次函数二次函数y=ax^2+bx+c,当a<0时,抛物线开口向下。
3. 二次函数的平移二次函数y=ax^2+bx+c的平移变换为y=a(x-h)^2+k,其中(h, k)为抛物线顶点坐标。
人教版九年级上册第22章二次函数图像与性质知识点题型总结

二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。
《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
初中数学二次函数知识点总结

初中数学二次函数知识点总结1. 二次函数的定义:二次函数是指形如 $y=ax^2+bx+c$ 的函数,其中$a≠0$。
2. 二次函数的图像:二次函数的图像是一个开口向上或向下的抛物线。
当 $a>0$ 时,抛物线开口向上;当 $a<0$ 时,抛物线开口向下。
3. 二次函数的对称轴:二次函数的对称轴是抛物线的中心线,一定经过抛物线的顶点。
对称轴的方程为 $x=-\frac{b}{2a}$。
4. 二次函数的顶点(最值点):当 $a>0$ 时,抛物线的顶点是最小值点;当$a<0$ 时,抛物线的顶点是最大值点。
顶点的坐标为$\left(-\frac{b}{2a},\frac{4ac-b^2}{4a}\right)$。
5. 二次函数的零点:二次函数的零点是函数图像与 $x$ 轴交点的横坐标。
可以通过求根公式来求得二次函数的零点。
求根公式为 $x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$,$x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$。
6. 二次函数的判别式:判别式是指 $b^2-4ac$ 的值,用于判断二次函数的零点个数及其性质。
当判别式 $b^2-4ac>0$ 时,函数有两个不相等的实数根;当判别式$b^2-4ac=0$ 时,函数有两个相等的实数根;当判别式 $b^2-4ac<0$ 时,函数没有实数根。
7. 二次函数的增减性:当 $a>0$ 时,二次函数是增函数;当 $a<0$ 时,二次函数是减函数。
10. 二次函数在平面直角坐标系中的表示:二次函数在平面直角坐标系中的图像,以抛物线的形式展现。
其中,参数 $a$ 决定了抛物线的开口方向和大小,参数 $b$ 决定了抛物线在 $x$ 轴上的位置,参数 $c$ 决定了抛物线在 $y$ 轴上的位置。
初中二次函数知识点总结

初中二次函数知识点总结二次函数是一种具有二次项的代数式,通常表示为y=ax^2+bx+c。
其中,a、b、c是常数,a称为二次项系数,决定了函数的开口方向和曲线的陡峭程度;b称为一次项系数,决定了曲线的位置;c称为常数项,决定了曲线与y轴的交点。
在学习二次函数的过程中,我们需要掌握以下几个重要的知识点。
1. 二次函数的图像特征:二次函数的图像通常是一个抛物线,可以是开口向上或开口向下的。
开口向上的抛物线的二次项系数a为正数,开口向下的抛物线的二次项系数a为负数。
二次函数的图像关于y轴对称。
2. 零点和顶点:二次函数的零点是函数曲线与x轴交点的横坐标,可以通过解方程ax^2+bx+c=0求得。
顶点是二次函数曲线的最高点或最低点,可以通过公式x=-b/2a求得。
3. 判别式和根的性质:二次函数方程ax^2+bx+c=0的判别式为Δ=b^2-4ac。
当Δ>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程无实根。
根的性质包括:两个实根之和等于-x1-x2=-b/a,两个实根之积等于x1*x2=c/a。
4. 求解二次函数的最值:最值是指函数的最大值或最小值。
对于开口向上的二次函数,最小值等于顶点的纵坐标;对于开口向下的二次函数,最大值等于顶点的纵坐标。
5. 二次函数的平移和伸缩:二次函数可以通过平移和伸缩来改变函数的图像位置和形状。
平移是指将函数的图像沿x轴或y轴移动;伸缩是指改变函数图像的大小。
6. 用二次函数解决实际问题:二次函数可以用来描述许多现实生活中的问题,比如抛物线的轨迹、物体的最高或最低点、经济成本和利润的关系等。
我们可以通过将实际问题转化为二次函数方程来求解问题。
7. 过顶点的对称轴和对称点:二次函数的图像关于其顶点对称,顶点为对称中心。
对称轴是函数图像的镜像中心线,可以通过顶点的横坐标x=-b/2a求得。
对称点是函数图像关于顶点对称的点。
8. 二次函数的定义域和值域:定义域是函数自变量的取值范围,对于二次函数来说,定义域是全体实数。
初三的二次函数知识点总结

初三的二次函数知识点总结一、二次函数的定义二次函数是一个形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的符号决定,a>0时开口向上,a<0时开口向下。
二、二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,顶点的横坐标可以用公式x=-b/2a来求得,纵坐标可以代入x的值计算得到。
三、二次函数的平移对于一般的二次函数f(x)=ax^2+bx+c,如果f(x)变为f(x)+m或f(x)-m,就是把抛物线上下平移了m个单位。
如果f(x)变为f(x)+m或f(x)-m,就是把抛物线左右平移了m个单位。
四、二次函数的对称轴二次函数的对称轴是与顶点横坐标相等的直线,即x=-b/2a。
五、二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,函数在x轴上有两个不同的实根;当Δ=0时,函数在x轴上有一个重根;当Δ<0时,函数在x轴上没有实根。
六、二次函数的图像二次函数的图像是一条抛物线,它的开口方向和顶点的位置可以通过二次函数的系数来描述。
七、二次函数的性质1. 当a>0时,抛物线开口向上,函数的最小值为y轴的对称轴。
2. 当a<0时,抛物线开口向下,函数的最大值为y轴的对称轴。
3. 当a>0时,函数在对称轴的一侧是单调递增的,另一侧是单调递减的。
4. 当a<0时,函数在对称轴的一侧是单调递减的,另一侧是单调递增的。
八、二次函数的应用二次函数在生活中有很多应用,比如抛物线的运动轨迹、抛物线的优化问题、抛物线的张力问题、抛物线的最大值与最小值等等。
以上就是初三二次函数的知识点总结。
希望同学们能够掌握这些知识,为以后的学习打下坚实的基础。
初三数学:《二次函数的图象和性质》知识点归纳

二次函数图像的性质 :1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。
(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是( 0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a>0时,抛物线的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k 。
当a<0时,抛物线的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。
顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k 。
3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x= h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。
画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。
当a>0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y 随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。
数学二次函数知识点总结

数学二次函数知识点总结(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数学二次函数知识点总结数学二次函数知识点总结在数学中,二次函数最高次必须为二次。
数学二次函数知识点总结,希望可以帮助到大家,一起来看看下文。
数学二次函数知识点总结一1二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2bxc(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;bxc(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(xm)∧2k(a≠0,a、m、k为常数)或y=a(x-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。
由此可引导出交点式的系数a=y1/(x1*x2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
初中二次函数知识点总结

初中二次函数知识点总结初中二次函数知识点总结:二次函数(Quadratic Function)属于初中代数的重要内容,它是由形如y=ax²+bx+c(a≠0)的代数式所确定的函数。
以下是二次函数的相关知识点的总结。
一、二次函数的图像特征1. 平移:二次函数的图像可以平移,平移的方向与平移的量有关。
2. 对称轴:二次函数的图像关于一个虚轴(称作对称轴)对称。
3. 顶点:对于二次函数y=ax²+bx+c,顶点的横坐标为-x=Δ/b/2a,纵坐标为y⏊-Δ/4a。
4. 开口方向:二次函数的开口方向由a的符号所决定,当a>0时,开口向上;当a<0时,开口向下。
5. 最值:若二次函数的开口方向向上,则该二次函数存在最小值;若二次函数的开口方向向下,则该二次函数存在最大值。
二、二次函数的性质1. 零点:二次函数y=ax²+bx+c的零点,即方程ax²+bx+c=0的解。
2. 应用:二次函数的图像特征常用于解决实际问题,如计算机、物理、化学等领域。
三、二次函数与一次函数的关系1. 一次函数即二次函数的特例:当a=0时,二次函数就变成了一次函数。
2. 交点:二次函数与一次函数可能有1个、2个或无交点。
若两个函数有交点,则这些交点即为方程组的解。
四、解二次方程1. 根的个数:一元二次方程ax²+bx+c=0的根的个数与二次函数y=ax²+bx+c与x轴的交点个数一样(考虑重根)。
2. 用公式解方程:一元二次方程的根可以用求根公式x=(-b±√(b²-4ac))/(2a)来求解。
五、平方完成与配方法1. 平方完成:将一元二次方程变形为一个平方前项和一个常数的和可以极大地简化求解过程。
2. 配方法:适用于解决一元二次方程中某些特殊情况下的解法。
六、二次函数的应用1. 最优化问题:通过对二次函数的相关知识的应用,可以解决最优化问题,求得最值点,并求出最优解。
二次函数的性质与像知识点总结

二次函数的性质与像知识点总结二次函数是高中数学中重要的一种函数类型,它在数学建模、物理问题以及实际生活中具有广泛应用。
通过对二次函数的性质与像的总结,可以更好地理解和应用这个函数类型。
本文将对二次函数的性质与像进行详细的讨论和总结。
一、二次函数的定义与基本形式二次函数是指函数关系中含有x的二次项的函数。
一般地,二次函数的基本形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的定义域为所有实数,其图像为开口朝上或朝下的抛物线。
二、二次函数的性质1. 单调性:对于二次函数f(x) = ax^2 + bx + c,若a > 0,则函数图像开口朝上,函数单调递增;若a < 0,则函数图像开口朝下,函数单调递减。
2. 零点:对于二次函数f(x) = ax^2 + bx + c,零点即为函数图像与x 轴交点的横坐标。
二次函数有可能有两个、一个或零个零点,这取决于判别式Δ = b^2 - 4ac的值。
a) 若Δ > 0,则函数有两个不同的零点;b) 若Δ = 0,则函数有且仅有一个零点;c) 若Δ < 0,则函数无零点。
3. 对称轴:对于二次函数f(x) = ax^2 + bx + c,其对称轴的方程为 x = -b / (2a)。
对称轴是函数图像的中心对称轴线,对称轴上的任何一点关于对称轴都有镜像对称的点。
4. 定点:二次函数的定点是图像的顶点,也是函数的极值点。
定点的横坐标为对称轴的横坐标,纵坐标为函数值的最大值或最小值,取决于函数的开口方向。
5. 极值:当二次函数开口朝上时,函数取得最小值,该最小值为定点的纵坐标;当二次函数开口朝下时,函数取得最大值,该最大值为定点的纵坐标。
三、二次函数的像像是指函数关系中的值域,也即函数的输出值所构成的集合。
对于二次函数,其像的范围由定点的纵坐标向上或向下延伸而来,取决于函数的开口方向。
若二次函数开口朝上,则像的范围为定点纵坐标及以上的一切实数;若二次函数开口朝下,则像的范围为定点纵坐标及以下的一切实数。
二次函数知识点归纳

二次函数知识点归纳
知识点归纳:
1、二次函数的概念y=ax2+bx+c(a≠0)
2、求二次函数的解析式
一般式y=ax2+bx+c、
顶点式y=a(x+m)2+k
交点式y=a(x-x1)(x-x2)
3、二次函数的图像和性质
当a>0时,图像开口向上,有最低点,有最小值
当a<0时,图像开口向下,有最高点,有最大值
顶点式对称轴:直线x=-m
一般式对称轴:直线x=-b/2a
交点式对称轴:直线x=(x1+x2)/2
4.二次函数图像的平移
函数y=a(x+m)2+k的图像,可以由函数y=ax2
的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到
5、抛物线与系数的关系
二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点
抛物线与y轴交于(0,c)
抛物线与x轴交点个数
Δ= b2-4ac>0时,抛物线与x轴有2个交点。
Δ= b2-4ac=0时,抛物线与x轴有1个交点。
Δ= b2-4ac<0时,抛物线与x轴没有交点。
初中数学二次函数知识点总结

二次函数的图象与性质二次函数开口方向对称轴顶点增减性最大(小)值y = ax2 a>0时,开口向上;a<0抛时,开口向下。
x=0 (0,0)当a>0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;当a<0时,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小。
当a>0时,当x=0时,=0;当a<0时,当x=0时,=0;y = ax2+c x=0 (0,c)当a>0时,当x=0时,=c;当a<0时,当x=0时,=c;y = a(x-h)2 x=h (h,0)当a>0时,当x=h时,y最小=0;当a<0时,当x=h时,y最大=0;y = a(x-h)2 +k x=h (h,k)当a>0时,当x=h时,y最小=k;当a<0时,当x=h时,y最大=k;y = ax2+bx+c x= (,)当a>0时,当x=h时,y最小=k;当a<0时,当x=h时,y最大=k;其中h=,k=★二次函数y = ax2 、y = ax2+c、y = a(x-h)2 以及y = a(x-h)2 +k的形状相同,只是位置不同,相互之间可以通过平移得到,一般式y = ax2+bx+c 可以通过配方化成y = a(x-h)2 +k的形式。
3.二次函数的解析式二次函数解析式常见有三种形式:①一般式:y = ax2+bx+c(a、b、c是常数,且a≠0)②顶点式:y = a(x-h)2 +k(a、h、k是常数,且a≠0)③交点式:y=a(x-x1)(x-x2)(a、x1、x2是常数,且a≠0,x1、x2是抛物线与x轴交点的横坐标)。
★抛物线y = ax2 的开口大小由∣a∣决定:∣a∣越大,开口越小;∣a∣越小,开口越大。
一般式y=ax+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a) ;顶点式y=a(x-h)²;+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²;的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和B(x2,0)的抛物线,即b2-4ac≥0] ;由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴y=ax²;+bx+c=a(x²;+b/ax+c/a)=a[﹙x²;-(x1+x2)x+x1x2]=a(x-x1)(x-x2)重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。
九年级数学上册《二次函数的图象和性质》知识点整理知识点总结

九年级数学上册《二次函数的图象和性质》知识点整理知识点总结为大家整理了二次函数的图象和性质知识点整理,供大家参考和学习,希望对大家的学习和成绩的提高有所帮助。
二次函数图像及性质知识总结二次函数概念一般地,形如y?a_2?b_?c(a,b,c是常数,a?0)的函数,叫做二次函数。
定义域是全体实数,图像是抛物线解析式b﹑c为0时y?a_2向上.向下y轴b为0时y?a_2?c向上向下y轴b﹑c不为0时y?a_2?b_?c向上向下a?0开口a?0开口对称轴顶点坐标图_??b2a?0,0?_=0.时y最小值等于0?0,c?_=0,时Y最小值等于c?b4ac?b2????4a??2ab4ac?b2当_??时。
y有最小值.2a4aa?0时y有最小值像a?0时y有最大值的性质a?0时开口向上a?0时开口向下_=0.时_=0,时b4ac?b2当_??时,y有最大值.y最大值等于0Y最大值等于c2a4a_?0时,y随_的增大而增大;_?0时,b当_??时,y随_的增大而减小;y随_的增大而减小;_?0时,y有最小值0.2a当_??b时,y随_的增大而增大2ab时,y随_的增大而增大;2ab时,y随_的增大而减小2a_?0时,y随_的增大而减小;_?0时,y随_的增大而增大;_?0时,y有最大值0 当_??当_??图像画法利用配方法将二次函数y?a_2?b_?c化为顶点式y?a(_?h)2?k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点?0,c?、以及?0,c?关于对称轴对称的点?2h,c?、与_轴的交点?_1,0?,?_2,0?(若与_轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与_轴的交点,与y轴的交点.解析式的表示及图像平移1.一般式:y?a_2?b_?c2.顶点式:y?a(_?h)2?k3.两根式:y?a(_?_1)(_?_2)2.平移⑴将抛物线解析式转化成顶点式y?a?_?h??k,确定其顶点坐标?h,k?;在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”①y?a_?b_?c沿y轴平移:向上(下)平移m个单位,y?a_?b_?c变成222y?a_2?b_?c?m(或y?a_2?b_?c?m)②y?a_?b_?c沿轴平移:向左(右)平移m个单位,y?a_?b_?c变成22y?a(_?m)2?b(_?m)?c(或y?a(_?m)2?b(_?m)?c)二次函数y=a_2及其图象看了上文为大家整理的二次函数的图象和性质知识点整理是不是感觉轻松了许多呢?一起与同学们分享吧.。
(完整版)二次函数图象和性质知识点总结

二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a 、b 、c 为常数,a ≠0) ②顶点式:(a 、h 、k 为常数,a ≠0),其中(h ,k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数的图象 ①二次函数的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),y ax bx c =++2y a x h k =-+()2y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2y ax =2y ax bx c =++2y a x h k =-+()2(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
a >0 a <0 a >0 a <0(1)抛物线开口向上,(1)抛物线开口向下,(1)抛物线开口(1)抛物线开4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为y ax bx c =++2y a x h k =-+()2(h ,k ),对称轴为直线,若a >0,y 有最小值,当x =h 时,;若a <0,y 有最大值,当x =h 时,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲解——二次函数的图象
知识点回顾:
1. 二次函数解析式的几种形式: ①一般式:
(a 、b 、c
为常数,a ≠0)
②顶点式:(a 、h 、k
为常数,a ≠0),其中(h ,
k )为顶点坐标。
③交点式:,其中是抛物线与x 轴交点的横坐标,即一元二次方程的两个根,且a ≠0,(也叫两根式)。
2. 二次函数
的图象
①二次函数
的图象是对称轴平行于(包括重合)
y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线
可以由抛物线
经过适当
的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
y ax bx c =++2y a x h k =-+()2
y a x x x x =--()()12x x 12,ax bx c 20++=y ax bx c =++2y ax bx c =++2y a x h k
=-+()2y ax =2
③在画
的图象时,可以先配方成的形式,然后将
的图象上(下)左(右)平移得到所求图
象,即平移法;也可用描点法:也是将
配成
的形式,这样可以确定开口方向,对称轴及顶点坐
标。
然后取图象与y 轴的交点(0,c ),及此点关于对称轴对称的点(2h ,c );如果图象与x 轴有两个交点,就直接取这两个点(x 1,0),(x 2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y 轴交点及其对称点),一般画图象找5个点。
3. 二次函数的性质
y ax bx c =++2y a x h k
=-+()2y ax =2y ax bx c =++2y a x h k =-+()2
4. 求抛物线的顶点、对称轴和最值的方法
①配方法:将解析式
化为的形式,
顶点坐标为(h ,k ),对称轴为直线,若a >0,y 有最小值,
当x =h 时,
;若a <0,y 有最大值,当x =h 时,。
②公式法:直接利用顶点坐标公式(),求其顶
点;对称轴是直线,若
若,y 有最大值,
当
5. 抛物线与x 轴交点情况: 对于抛物线
①当时,抛物线与x 轴有两个交点,反之也成立。
②当时,抛物线与x 轴有一个交点,反之也成立,此交点即为顶点。
③当时,抛物线与x 轴无交点,反之也成立。
y ax bx c =++2y a x h k =-+()2x h =y k
最小值=y k
最大值
=--b a
ac b a 2442
,
x b
a
=-
2a y x b a y ac b a >=-=-02442
,有最小值,当时,;
最小值a <0x b a y ac b a =-=
-2442
时,最大值y ax bx c a =++20()≠∆=->b ac 240∆=-=b ac 240∆=-<b ac 240。