高炉煤气与焦炉煤气的综合利用

高炉煤气与焦炉煤气的综合利用
高炉煤气与焦炉煤气的综合利用

高炉煤气与焦炉煤气的综合利用

张策邢春良

山西工业设备安装公司山西同世达煤化工集团有限公司

摘要:本文主要论述了高炉煤气与焦炉煤气通过变压吸附制甲醇的工序消耗及经济性以及焦炉煤气提氢后解析气深冷制LNG的经济性。提出了钢铁企业高炉煤气及焦炉

煤气综合利用的一种新途径。

关键词:高炉煤气焦炉煤气甲醇 LNG

一、前言

传统钢铁企业中,焦炉煤气、高炉煤气、转炉煤气除部分用于自身加热外,大部分采用通过发电的形式进行回收利用,随着近年来国家节能减排政策的实施,如何以循环经济发展理念为指导原则,充分挖掘能源等方面的潜力,提高资源的利用效率,最大限度的减少污染物的排放,成为众多钢铁企业新的课题。

二、高炉煤气与焦炉煤气

高炉煤气,主要成分是CO,它是碳一化学品合成气的主要组成。每生产1吨生铁,产生高炉煤气约2400-2800标立方米,其中有1200标立方米高炉煤气被热风炉利用,剩下的1300标立方米左右需合理利用,十分宝贵。

高炉煤气成份

焦化煤气是制取焦炭的副产品。在900-1000℃高温下,隔绝空气煤分解,每吨煤产生焦化煤气350到380立方米,每立方米热值为

4000—4300千卡,焦化煤气的主要成分是氢气和甲烷。

焦炉气组成

做为钢铁企业,焦炉煤气、高炉煤气、转炉煤气数量巨大,目前虽利用三气发电回收了热能,但效果有限,环境效果也差,需改变利用思路,利用投资少、技术成熟的工艺方案将高炉煤气中有效成分CO及焦炉煤气中的甲烷和氢气资源综合利用,生产甲醇等高附加值的碳一化工产品,增加企业的经济效益,减少温室气体的排放,保护环境。

三、综合利用方案

变压吸附是利用吸附剂对气体的吸附具有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。具有流程简单、投资少、能耗低、自动化程度高、吸附剂寿命长等优点,且操作灵活、经济合理。循环过程由DCS自动控制,装置弹性大,能适应气量和组成的较大幅度波动。针对钢厂高炉煤气和焦炉煤气的特点,可利用变压吸附工艺将其中有效成份提取出来,再加以利用。

3.1.1高炉煤气变压吸附提取CO

原料气压缩后进入PSA系统。PSA由两部分组成即PSA-1、PSA -2。在PSA-1主要是脱除CO2,出口端得到半成品气,被吸附的杂质组份通过逆放,冲洗得到解吸。

从PSA-1出来的半成品气进入PSA-2。PSA-2主要是脱除N2,被吸附的组份通过逆放、抽空得到解吸。逆放和抽空的气体作为产品输出界区; PSA-2的吸附废气作为PSA-1的冲洗气。

物料衡算表 CO收率≥65%

主要设备:吸附器I、吸附器II、原料气压缩机、PSA2真空泵消耗:每Nm3的产品气消耗电 KW,新鲜水

3.3.2焦炉煤气变压吸附

本工序采用二种不同的吸附工艺,变温吸附工艺和变压吸附工艺。焦炉煤气首先经变温吸附工艺除去焦炉煤气中的高碳烃和高沸点组份,达到预净化焦炉煤气的目的,再经变压吸附工艺除去其它杂质组份,得到%的产品氢气。

焦炉煤气经预处理后,达到焦油含量≤5mg/Nm3、萘含量≤50mg/Nm3后气,送入压缩工序加压后进入变压吸附系统。从吸附器顶部出来的产品氢气送入合成工序,解析气去深冷装置另行处理。物料衡算表

解吸气v%

主要设备:粗脱萘器、精脱萘器、吸附器、真空泵、原料气压缩机。

消耗:每Nm3的氢气消耗电 KW,新鲜水。

3.3.3焦炉煤气提氢解析气制LNG

焦炉气变压吸附提氢后解析气,其主要成份为CH4,这部分气体如果单纯用于燃烧或其它,将造成严重浪费,根据目前国内天然气的消费及市场情况,可将这部分气体深冷制LNG。

焦炉气提氢后解析气先经过脱碳装置,将解析气中CO2脱除至50—100PPM,再经分子筛脱水、脱汞,活性炭脱除芳香烃和重烃,最后经过液化装置液化后低温分离得到高纯度的液体。

组份CO CO2H2CH4N2O2

原料气v%

冷冻解析气v%——

根据冷冻解析气的主要成份,其中CO比例占79%以上,这部分气体可送入高炉煤气变压吸附系统提取CO。达到气体全部利用。

主要设备:原料气压缩机、脱碳塔、再生塔、吸附塔、脱汞塔、低温精馏塔、增压透平膨胀机、氮甲烷循环压缩机、LNG贮槽、消耗:每Nm3的LNG消耗电1KW/h,新鲜水

四、经济分析

1)投资分析根据甲醇产量10万吨/年,配套LNG约d设计经过综合估算:

A、高炉煤气变压吸附提取CO产品气约需求量为12900Nm3/h,原料高炉煤气约需55000 Nm3/h,变压吸附后解析气中主要成份为N2,可送锅炉进行回收,装置界区内软、硬件总投资约8000万元;

B、焦炉煤气变压吸附提氢装置,原料焦炉气需30000Nm3/h,产品氢气量约为17300 Nm3/h,提氢后解析气主要成份为CH4,可通过冷冻液化生产LNG,装置界区内软、硬件总投资约1200万元。

C、焦炉气变压吸附提氢后的12700 Nm3/h解析气,CH4含量为50%左右,通过深冷配套生产d的LNG,产量可达装置界区内投资约9500万元。

10万吨/年的甲醇装置采用该方案进行设计,与目前相同规模的焦炉气生产甲醇装置相比,在工艺上可减少空分、CH4转化等工序,投资需两亿多,仅相当于同等规模甲醇项目的一半多费用。

2)、收益分析:根据成本核算,吨甲醇成本在1200——1300元/吨(如果将机组改为蒸汽轮机,成本还可进一步降低),目前甲醇出厂价按照2200元/吨计算,这样利润在1000元/吨左右,甲醇年利润非常可观。液化LNG如果不计原料气成本,其只有消耗电的成本,成本优势非常明显。

五、结论

随着人们对环境的日益关注和能源的日益紧缺,钢厂三气利用的呼声日益高涨,在大型焦化企业兴建焦炉气制甲醇、化肥项目的同时,钢铁企业也应该积极的想办法,提高三气的综合利用水平。

钢铁企业利用高炉煤气和焦炉煤气生产甲醇配套生产LNG,实现

了资源由燃料化利用过渡为资源化利用,是中小型钢铁企业废气综合利用的一个好方法,具有相对投资规模小,产品市场好、风险低、能耗低、装置操作弹性大和投资回报率高等优点。

Comprehensive utilization of blast furnace gas and coke oven gas

Zhangce Xingchunliang

Industrial equipment installation company in Shanxi province

Shanxi tongshida coal chemical industry group Co., LTD

Abstract:This paper discusses the blast furnace gas and coke oven gas by pressure swing adsorption (methanol process cost and efficiency and coke oven gas

lift hydrogen gas cryogenic system after analysis of LNG. Put forward a

new method of comprehensive utilization of blast furnace gas and coke oven

gas.

Key words: Blast furnace gas Coke oven gas LNG Methanol

作者简介:张策,1971年4月出生,毕业于太原理工大学,现为山西财经大学工商硕士,山西省工业设备安装公司第三分公司项目经理,电话:

通讯地址:山西临汾河西工业区山西同世达煤化工集团有限公司邢春良转

邮政编码:041606

钢铁企业高炉煤气平衡使用预案

钢铁企业高炉煤气平衡使用预案 (ISO45001-2018) 为进一步加强高炉煤气的使用和平衡,减少放散量,提高能源综合利用率,制定煤气平衡使用管理规定如下: 一、煤气产生量及使用 1、根据高炉炉况,炼铁厂高炉吨铁产气量按1800 m3计算,损失率约为5%, 高炉热风炉及其他自用量约占总量的45%计算,外供煤气量按煤气外供总量的55%计算; 2、其它使用高炉煤气单位为:炼铁厂4台烧结机,2座竖炉,喷煤及烘干机; 炼钢厂中包烘烤,550轧钢厂加热炉;动力厂煤气发电。 3、25MW煤气发电生产所需煤气量为13万立方米; 4、550用量在4万M3/h左右。 5、炼钢厂中包烘烤用量2.万M3/h,大板坯用0.1万M3/h。 6、喷煤煤气用量为0.5万M3/h,烘干机煤气用量约1万M3/h。 7、两座竖炉煤气用量3万M3/h。 8、烧结1#、2#及3#、4#煤气用量总量大约在4万M3/h。 二、煤气管网压力要求 1、现高炉煤气总管网压力为15-35KPa,各单位正常生产需煤气压力为: 2、炼钢厂烤包所需压力不能低于10 KPa,否则烤包煤气压力不足,造成点火 困难,烤包时间延长,影响生产;设备及管网最高承受压力为16 KPa,否则容易造成隐患;

3、轧钢厂在正常生产时煤气压力不能低于15 KPa,不能高于25 KPa;在停产 时,加热炉保温所需煤气压力不低于10 KPa; 4、炼铁厂烧结一车间正常生产时要求煤气压力10 KPa以上,不能低于5 KPa, 否则造成熄火或回火爆炸;低于10 KPa时减风减烧或降低机速; 5、烧结二车间正常生产时需煤气压力16 KPa以上,最低不能低于5 KPa,否 则造成熄火或回火爆炸;低于16 KPa时减风减烧或降机速; 6、竖炉车间需要煤气压力20 KPa以上,最低不能低于5 KPa,否则熄火或回 火爆炸;低于20 KPa时减风减烧或降低机速; 7、高炉一车间生产时所需煤气压力20KPa,二车间生产所需煤气压力25KPa; 8、受管道直径、管道路程及其它降低管网压力因素影响,煤气管网和用户使用 压力压差约为5-10KPa,为保证煤气压力、流量和使用安全,煤气总管管网压力不能高于35Kpa。 三、高炉煤气放散控制 1、当煤气管网压力超过安全值时,根据各项安全指标实行煤气放散; 2、新1#高炉布袋300mm放散阀两组,可进行点火放散;在煤气保证煤气发电 及各煤气用户生产后,如煤气仍有富余,在保证安全的前提下进行点火放散。 3、3#高炉、4#高炉布袋各有600mm放散阀一组,为管网调压辅助放散; 4、竖炉车间主体西侧(炼钢厂渣跨外)400mm放散阀一组,因涉及炼钢厂和竖 炉车间及临近车间人员安全,在正常生产过程中不开启; 5、新烧结机主体东侧600mm放散阀一组,因涉及烧结车间人员及周边村民安 全,无特殊情况不开启; 6、高钙灰白灰窑东侧600mm放散阀一组,正常生产过程中不开启。

煤气知识

有国家标准,一般来说每千标准立方米的热值为16.4Gj-18Gj,根据煤种挥发份不同,煤气成分略有区别 加热煤气种类单位数值备注 焦炉煤气(富煤气) kJ/m3 17900 4280kcal/m3 高炉煤气kJ/m3 3920 938kcal/m3 贫煤气混合煤气kJ/m3 4180 1000kcal/m3 发生炉煤气kJ/m3 5225 1250kcal/m3 两段炉煤气kJ/m3 6395 1530kcal/m3 焦炉煤气,又称焦炉气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(1.5%~3%)、氧气(0.3%~0.8%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。焦炉气属于中热值气,其热值为每标准立方米17~19MJ,适合用做高温工业炉的燃料和城市煤气。焦炉气含氢气量高,分离后用于合成氨,其它成分如甲烷和乙烯可用做有机合成原料。焦炉气为有毒和易爆性气体,空气中的爆炸极限为6%~30%。 编辑本段构成 焦炉煤气主要由氢气和甲烷构成,分别占56%和27%,并有少量一氧化碳、二氧化碳、氮气、氧气和其他烃类;其低发热值为18250kJ/Nm3,密度为0.4~0.5kg/Nm3,运动粘度为25×10`(-6)m2/s。根据焦炉本体和鼓冷系统流程图,从焦炉出来的荒煤气进入之前,已被大量冷凝成液体,同时,煤气中夹带的煤 尘, 焦粉也被捕集下来,煤气中的水溶性的成分也溶入氨水中。焦油、氨水以及粉尘和焦油渣一起流入机械化焦油氨水分离池。分离后氨水循环使用,焦油送去集中加工,焦油渣可回配到煤料中炼焦煤气进入初冷器被直接冷却或间接冷却至常温,此时,残留在煤气中的水分和焦油被进一步除去。出初冷器后的煤气经机械捕焦油使悬浮在煤气中的焦油雾通过机械的方法除去,然后进入鼓风机被升压至19600帕(2000毫米水柱)左右。为了不影响以后的煤气精制的操作,例如硫铵带色、脱硫液老化等,使煤气通过电捕焦油器除去残余的焦油雾。为了防止萘在温度低时从煤气中结晶析出,煤气进入脱硫塔前设洗萘塔用于洗油吸收萘。在脱硫塔内用脱硫剂吸收煤气中的硫化氢,与此同时,煤气中的氰化氢也被吸收了。煤气中的氨则在吸氨塔

2019年焦炉煤气综合利用项目可行性研究报告

2019年焦炉煤气综合利用项目可行性研究报告 2019年12月

目录 一、项目概况 (3) 二、项目实施的背景 (3) 1、焦炉煤气综合利用符合国家政策与发展战略 (3) 2、本项目是对公司焦炉气制甲醇项目的综合利用和延伸 (4) 三、项目实施的必要性和可行性 (4) 1、符合国家产业政策及地方政府产业发展规划的要求 (4) 2、甲醇产品市场广阔、需求旺盛 (5) 3、有助于企业进一步发展升级,提升企业整体核心竞争力 (6) 4、完善的配套设施与丰富的人员技术储备为本项目的实施提供可靠的保障 7 (1)园区配套设施完善 (7) (2)公司拥有经验丰富的生产管理和技术团队 (7) 四、项目投资概算及效益测算 (8) 五、项目环保情况 (8) 1、废气处理 (9) 2、废水处理 (9) 3、噪声处理 (9) 4、固体废物处理 (10)

一、项目概况 焦炉煤气综合利用项目系在对公司一、二期焦炉气制甲醇弛放气综合利用的基础上,实现年产50万吨甲醇的生产规模,项目主要建设内容包括:气化工艺装置、变换冷却工艺装置、低温甲醇洗工艺装置、压缩制冷工艺装置、合成气压缩工艺装置、甲醇合成工艺装置、甲醇精馏工艺装置、氢回收工艺装置、厂房仓库、公用工程等。本项目建设期为24个月,项目总投资168,747.30万元。 二、项目实施的背景 1、焦炉煤气综合利用符合国家政策与发展战略 2019年,工信部、国家发改委等八部委发布的《关于在部分地区开展甲醇汽车应用的指导意见》(工信部联节[2019]61号),明确指出“鼓励资源综合利用生产甲醇,充分利用低质煤、煤层气、焦炉煤气等制备甲醇,探索捕获二氧化碳制备甲醇工艺技术及工程化应用”。 国家发改委为贯彻落实《国务院关于发布实施促进产业结构调整暂行规定的决定》(国发[2005]40号)和《国务院关于加快推进产能过剩行业结构调整的通知》(国发[2006]11号)的要求,发布的《关于加快焦化行业结构调整的意见的通知》确定鼓励符合国家产业政策要求的大中型焦化企业进行煤气综合利用的项目建设。 焦炉气综合利用制甲醇项目,系在对公司一、二期焦炉气制甲醇弛放气综合利用的基础上,实现年产50万吨甲醇的生产规模,属于资

高炉煤气烟气处理

一、烟气除尘——高炉煤气干法布袋除尘 高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少。 高炉煤气干法布袋除尘技术是钢铁行业重要的综合节能环保技术之一,以其煤气净化质量高、节水、节电、投资省、运行费用低、环境污染小等优点,优于传统的湿法洗涤除尘工艺, 属于环保节能项目,位于国家钢铁行业当前首要推广的“三干一电”(高炉煤气干法除尘、转炉煤气干法除尘、干熄焦和高炉煤气余压发电)之首。是国家大力推广的清洁生产技术。 1、工艺流程与设备 1.1系统组成 1 干法除尘由布袋除尘器、卸、输灰装置(包括大灰仓)、荒净煤气管路、阀门及检修设施、综 合管路、自动化检测与控制系统及辅助部分组成。 2 炉顶温度长期偏高的高炉宜在布袋除尘之前增设降温装置,有热管换热器和管式换热器两类, 应优先选用热管式换热器。 1.2过滤面积 1 根据煤气量(含煤气湿分,以下同)和所确定的滤速计算过滤面积 计算公式: V 60Q F = 其中 F ——有效过滤面积 m 2 Q ——煤气流量m 3/h (工况状态) V ——工况滤速 m/min 2 工况流量。 在一定温度和压力下的实际煤气流量称为工况流量。以标准状态流量乘以工况系数即为工况流量。 3工况系数 工况体积(或流量)和标况体积(或流量)之比称为工况系数,用η表示。 计算公式: ()()0 000P P P T t T Q Q ++==η 其中 η——工况系数 Q 0——标准状态煤气流量m 3/h Q ——工况状态煤气流量m 3/h T 0——标准状态0℃时的绝对温度273K t —— 布袋除尘的煤气温度℃ P —— 煤气压力(表压)MPa P 0——标准状态一个工程大气压,为0.1 MPa

中国焦炉煤气利用现状及发展前景(1)

中国焦炉煤气利用现状及发展前景 范良忠 (新地能源工程技术有限公司石家庄能源化工技术分公司,河北石家庄050000) 众所周知,当今我国是世界上最大的焦炭生产国,近几年以来,我国的焦炭产量逐年增长。只是一零年,我国的焦炭产量就差不多约4.0亿吨,我国焦炭的产量大约有全世界的焦炭总产量的百分之六十左右,所以,焦炉煤气的回收利用有很大的前景。焦炉煤气主要是指焦炉炉煤在焦炉的炭化过程中干馏而产生的一种黄褐色的汽气混合物。它的组成比较复杂,它可以用作工业的能源用在钢铁企业中,或者其它的工业部门。 1我国焦炉煤气的利用现状简述 伴随着我国的钢铁企业的不断发展,近几年,由钢铁行业所产生的焦化行业也逐渐有了突飞猛进的发展。人们开始越来越关注对焦炉煤气进行综合的回收和利用。这种方式不仅符合我国当前的产业政策,而且可以建设节约型的社会,有利于我国打造一种循环经济从而实现我国工业的绿色发展。随着我国环保部门的要求不断提高,以及我国对资源综合利用的水平也在逐渐的提高。所以人们对焦炉煤气的回收利用这项工作的关注程度越来越大。在这种大趋势的发展和驱动之下,我国逐渐产生了一些新的对焦炉煤气进行利用的方法和途径。 1.1燃烧焦炉煤气,从而提供能量 焦炉煤气用作燃料的方面可以分为工业利用和民用方面。在工业利用方面,焦炉煤气主要利用在以下的几个方面:(1)焦炉煤气的生产企业在化学产品的回收和净化过程中,可以作为一种高效的加热燃料。(2)焦化企业可以利用剩余的那些焦炉煤气用来发电,为发电提供燃料。(3)焦炉煤气可以作为钢铁企业的炼钢,轧钢等工序的燃料。焦炉煤气在民用燃料利用方面主要体现在经过净化之后的焦炉煤气可以通入我国城市的供气管网,从而可以作为居民的生活用气来使用。因为工业生产的焦炉煤气具有热值相对较高,而且一氧化碳的含量相对较低等优点,所以是一种很适合作为民用燃气的一种气体。虽然我国的西气东输的发展已经为一些地区使用天然气提供了相当便利的条件。虽然焦炉煤气在和天然气相比的情况下,仍然存在着一些缺点,比如焦洁净度方面不如天然气。但是在天然气输送不到的地方,或者西气东输没有覆盖的城市,焦炉煤气依然可以作为一种主要的民用燃气来供给居民使用。 1.2可以利用焦炉煤气用来生产氮肥或者甲醇等化学产品 近年来,因为我国的焦化产业公司,主要都是注重焦炭的生产而忽视焦炭的综合利用。所以有很多的焦化生产企业都在利益的驱动下,忽视建设焦炉煤气的回收和利用装置,从而导致了大量的焦炉煤气直接排放到了大气中。有的焦炭生产企业甚至采取了燃烧等方式来处理焦炉煤气。造成了资源的极大浪费,而且同时对环境造成了很大的污染。焦炉煤气除了用于民用燃料和用于发电等用途之外,还可以利用焦炉煤气来生产很多种化工产品。比如利用焦炉煤气可以生产碳铵化肥和甲醇等,用焦炉煤气生产化肥和甲醇的工艺技术已经不断地发展而趋于成熟。这种技术已经在我国取得阶段性的成功。虽然我们用焦炉煤气来生产化肥和甲醇等化学产品的成本,相当于用无烟煤为原料生产化肥和甲醇的成本相比低,而且生产的产品性能相对比较稳定,具有一定的市场竞争能力。但是,由于焦炉煤气生产化肥和甲醇的工艺相对比较复杂,它对企业的技术和企业的管理水平都有较高的要求,而且市场也相对比较饱满,所以投资还应该相对谨慎。 1.3利用焦炉煤气制造氢燃料 众所周知,氢能是一种绝对清洁,而且没有任何污染的能源,它燃烧只会形成水,而且它的热能很大。氢能代表着世界未来能源的发展方向。其实利用焦炉煤气来制造氢能,在我国已经有了很多年的历史,它的生产技术也相对比较成熟,而且氢能也具有较高的经济性能,特别是和水电解法制造氢能相比,这种方法的经济效益比较显著。利用焦炉煤气来制造氢能,有很多优点。 1.4利用焦炉煤气可以生产还原铁 利用焦炉煤气可以直接还原铁。而且焦炉煤气是电炉炼钢的一种重要原料,它不仅可以代替原先的废钢,而且可以很大程度上的减小废钢中的有害杂质。所以利用焦炉煤气炼钢可以有利于冶炼优质钢。 1.5用焦炉煤气制天然气 焦炉煤气可以用于合成天然气。这种合成天然气的技术是焦炉煤气利用的一个新领域,合成天然气这项技术也相对比较成熟。如果用制造液化的天然气和焦炉煤气制甲醇等工艺来比较,焦炉煤气制造天然气的这项技术具有原料的利用效率高和工程工艺简单的特点。 2焦炉煤气利用的发展前景 我国是世界生产焦炭最多的国家,所以我国拥有很大数量的可焦炉煤气资源,如何充分的利用焦炉煤气资源对保护我国的环境和促进我国经济快速发展都具有重大的作用。 2.1在未来,我国将会走上以甲醇为原料的新型化工的发展之路 在未来,我国将会充分的利用甲醇作为化工原料来生产低碳烯烃。这种技术已经成为了发展新型煤化工产业的重要途径。在未来我国将会实现以煤代油的这种战略。 2.2焦炉煤气利用实现清洁化 伴随着人们的环保意识在不断地增强,国家也提出了可持续发展的伟大战略。所以我国将会对每年焦炉气的排空量作出严格的限制。今年来以来,随着雾霾席卷中华大地,国家更加会注重环境保护工作。现在的钢铁产业发展政策明确的规定,新上的焦炉必须配备配套的焦炉煤气回收装置,所以,焦化行业将会逐渐迈入清洁化的生产。这对环境保护,以及我国未来的发展都有很大的作用。2.3未来焦炉煤气利用将会实现多联产 因为相对于传统的焦炉煤气的利用工艺而言,最新发展出来的多联产系统,不仅可以实现焦炉煤气的科学化,合理化使用,而且同时可以大幅度的提高焦炉煤气资源的利用效率。所以,我们可以知道焦炉煤气的多联产系统发展将会成为我国能源领域中的热点系统,热点技术。 3结束语 我国的焦炉煤气资源相当丰富,所以焦炉煤气的综合利用问题,现在已经成为了炼焦企业生存和发展的关键。但是在焦炉煤气的回收和利用问题上,企业不能仅仅局限于某一个行业或者局限于某一个产品。我国的焦化企业应该充分的、大力的发掘焦炉煤气这种资源的潜能,争取实现因地制宜发展,从而让焦炉煤气的利用逐渐走向清洁化发展的道路。 参考文献 [1]张永发.中国焦化工业实现可持续发展的思考[J].山西能源与节 能,2005,2:13-17. [2]李琼玖.油头氨生产装置扩能改造成天然气制氨和甲醇装置的设 计方案[J].石油化工动态,2008,30(8):20-29. [3]焦化设计资料编写组.焦化设计手册[M].北京:冶金工业出版社,2009(2):22-44. 摘要:伴随着我国工业化的不断发展,焦炉煤气的回收利用的工作也在不断地发展当中。众所周知,焦炉煤气是工业发展使用的重要能源,同时焦炉煤气也是重要的化工原料。所以,为了实现资源的综合利用,同时为了积极响应国家的“节能减排”的号召,积极保护我国的生态环境。为了更好地利用工业焦炉煤气,文章就如何充分利用焦炉煤气所的现状及发展前景做出了一定的诠释,并且提出了见解。 关键词:中国;焦炉煤气;利用现状;发展前景 99--

高炉煤气和焦炉煤气特性对比及流量测量

高炉煤气和焦炉煤气特性对比及流量测量 2009-1-4 来源:陕西上太自动化仪表有限公司 >>进入该公司展台 高炉煤气特性 (1)高炉煤气中不燃成分多,可燃成分较少(约30%左右),发热值低,一般为3344—4180千焦/标米; (2)高炉煤气是无色无味、无臭的气体,因CO含量很高、所以毒性极大; (3)燃烧速度慢、火焰较长、焦饼上下温差较小; (4)用高炉煤气加热焦炉时,煤气中含尘量大,容易堵塞蓄垫室格子砖; (5)安全规格规定在1米³空气CO含量不能超过30mg; (6)着火温度大于700OC。 (7) 高炉煤气含有H2(1.5-3.0%),CH4(0.2-0.5%),CO(25-30%),CO2(9-12%),N2(55-60%),O2(0.2-0.4%);密度为1.29-1.30Kg/Nm3。 焦炉煤气特性 (1)焦炉煤气发热值高16720—18810KJ/m³,可燃成分较高(约90%左右); (2)焦炉煤气是无色有臭味的气体; (3)焦炉煤气因含有CO和少量的H2S而有毒; (4)焦炉煤气含氢多,燃烧速度快,火焰较短; (5)焦炉煤气如果净化不好,将含有较多的焦油和萘,就会堵塞管道和管件,给调火工作带来困难; (6)着火温度为600-650 OC。 (7) 焦炉煤气含有H2(55-60%),CH4(23-27%),CO(5-8%),CO2(1.5-3.0%),N2(3-7%),O2(<0.5%),CmHn(2-4%);密度为0.45-0.50 Kg/Nm3。 煤气的流量测量 利用差压原理进行流量测量具有悠久的历史,其测量的理论基础是:在充满流体的管道中,固定放置一个流通面积小于管道截面积的阻力件(节流件),则管道内流体在通过该节流件时就会造成局部收缩,在收缩处流速增加,静压力降低,因此,在节流件前后将产生一定的压力差。对于一定形状和尺寸的节流件、一定的测压位置和前后直管段、一定的流体参数情况下,节流件前后的差压△P与流量Q之间关系符合伯努利方程。 由于在冶金行业和煤化工行业中,各类气体成分多变复杂,如高炉、焦炉、转炉煤气中含有大量粉尘、颗粒、焦油、萘等杂质程度不等以及低流速等实际情况,尤其是煤气中的焦油和萘在节流件、测压孔上粘附和低温下结晶,煤气中的粉尘、颗粒对仪表的堵塞,煤气中的水分在冬季时的冻结,这些都会造成流量计测压孔堵塞、节流件变形,严重的甚至造成流

焦炉煤气综合利用项目环境影响报告表

概述 1. 前言 1.1 项目背景简介 ××省××市拥有较为丰富的煤炭资源,是以煤兴市的资源型老工业城市。长期以来,作为能源生产和供应基地,××市为国家,尤其是××省的经济社会发展做出了重大贡献。但是,由于资源结构单一,××市经济社会发展中的问题也日益凸显,主要体现在经济结构失衡、能源接续替代产业发展较慢、生态环境破坏严重等方面,使××市经济社会可持续发展面临严峻挑战。因此,充分发挥现有资源优势,探索××市资源枯竭城市转型之路,是实现××市可持续发展的迫切要求。 ××(××)新型煤化工合成材料基地(原××××临涣工业园)位于××市濉溪县韩村镇境内,距离××市区约50公里。该基地于2005年启动建设,2010年3月,××省人民政府以皖政秘[2010]53号《关于同意筹建××××临涣工业园的批复》,同意临涣工业园比照省级开发区筹建,规划为煤基合成材料和循环经济为战略发展方向的高新技术产业园区,是××市推进资源型经济转型的重要平台,是××省重点建设的四大化工产业基地之一,基地批复规划建设面积为20.4平方公里。 2012年3月,国家工业和信息化部批准园区为第一批国家级“循环经济示范园区”;2012年7月,××省经济和信息化委员会批准园区为“××省新型工业化产业示范基地”;2014年10月,原××省环境保护厅以皖环函[2014]1338号《××省环保厅关于××××临涣工业园规划环境影响报告书审查意见的函》,同意园区规划方案;2015年4月,××××临涣工业园正式更名为××(××)新型煤化工合成材料基地。 ××矿业(集团)有限责任公司(简称××矿业集团)是××省以煤炭和煤化工产品生产为主,多种经营、综合发展的特大型国有企业集团;××煤矿是国家十三大煤炭基地之一。××矿业集团依据“依托煤炭、延伸煤炭、超越煤炭”的战略规划、组织实施了“临涣焦化焦炉煤气综合利用项目”。该项目是××省“861行动计划”的重点项目、是振兴皖北经济1号工程“煤化-盐化一体化”工

浅析焦炉煤气的利用现状及发展前景

浅析焦炉煤气的利用现状及发展前景 冯路叶 摘要:焦化是我国煤炭化工转化的最主要方式,焦炉煤气是重要的能源和化工原料。本文重点分析了我国焦化行业及焦炉煤气的利用现状, 介绍焦炉煤气的综合利用途径, 提出了以焦炉煤气为基础发展化工、工业燃料、热电联产等项目的广阔前景。 关键词:焦炉煤气; 现状; 综合利用;发展前景 1 炼焦工业和焦炉煤气利用现状 1.1 炼焦工业概况 我国是世界上焦炭产量最大的国家,2010年焦炭产量约为3.8亿t,约占世界焦炭总产量的60%,全国约有焦化企业2000多家,其中1/3为钢铁联合企业,2/3为独立焦化企业,而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,为焦炉煤气综合利用市场提供了良好发展环境。所产生的焦炉煤气量巨大,如何高效、合理地利用这些煤气,是关系环保、资源综合利用、节能减排的重大课题。 1.2焦炉煤气利用现状 焦化是我国煤炭化工转化的最主要方式。2010年我国新投产焦炉57座,新增产能约3371万吨。其中炭化室高6米及以上的顶装焦炉和炭化室高5.5米及以上的捣固焦炉48座、产能3020万吨,占新增总产能的89.59%。以2010年我国焦炭产量为例进行估算,按吨焦产420 m3焦炉煤气计算,2010年我国焦化产业产生的焦炉煤气产量约为1596亿m3,除去焦炉用于自身加热所消耗的40% (约638亿m3),剩余958亿m3,基本用作燃料进行各种加热或燃烧产生蒸汽发电或简单地进行化产回收处理。有许多非钢焦化企业所产的焦炉煤气无法利用被“点天灯”浪费(这些企业一般远离城市),约有300亿m3被白白排放掉。同时, 随着国家西气东输工程的实施, 城市民用焦炉煤气将被天然气取代, 这一部分焦炉煤气也将成为待利用的资源。 2 焦炉煤气的组成与净化 2.1焦炉煤气的组成 焦炉煤气的组成非常复杂,典型焦炉煤气各组分的体积分数见表1,从表中数据可以看出:焦炉煤气含H2量高, 还含有部分CH4, CO2 和N2等,其它组分还有( g/ m3): NH3 0.05, H2S 0.2~0.02,BTX 3.0 ,焦油0.05,萘0.3等等。 表1 焦炉煤气组成 2.2焦炉煤气的净化 一般的焦化企业在焦炉煤气净化流程中,只对H2S、NH3、萘、苯、焦油的含量有一定的要求。常规的净化流程是:焦炉煤气经过冷凝鼓风、电捕焦油、脱硫、脱氨、脱苯流程后,就作为产品向外输送。 3 目前焦炉煤气的利用途径 焦炉煤气的组成特性决定其利用途径主要有以下几个方面: 燃料气、化工原料、制氢、制甲醇、多晶硅和多联产技术。

xx钢厂高炉煤气发电利用初步方案

xxxxx高炉煤气发电利用初步方案 一焦钢高炉煤气技术条件 1.1 总煤气产量:5.5-6万立方米 1.2 放散量:3-3.5万立方米 1.3 CO含量 33% 1.4 S含量:600-1000mg/立方米 1.5 1.9吨焦炭/吨铁 1.6 7吨铁/h 1.7 热值:4000-5000kj、1000大卡以上 1.8 送风量38000-40000立方米/h 1.9 企业每年生产最低产量27万吨,最高产量为30万吨。 1.10 每年正常生产时间不低于330天。 1.11 该高炉年设计生产时间为350天。 二煤气发电方案的比较 燃气发电技术成熟的工艺有:燃气、蒸汽联合循环发电、蒸气轮机发电、燃气内燃机发电,下面针对三种发电方式进行比较。 (一)蒸汽轮机发电 这是一个非常传统的技术,也是大家比较熟悉的工艺方式。它是采用锅炉来直接燃烧燃气,将燃气的热能通过锅炉内的管束把水转换为蒸汽,利用蒸汽推动蒸汽轮机再驱动发电机发电。系统的主要设备是燃气燃烧器、锅炉本体、化学水系统、给水系统、蒸汽轮机、冷凝器、冷却塔、发动机、变压器和控制系统,工艺流程比较复杂。 蒸汽轮机发电机组运行热效率较低,但运行可靠、机组寿命长、

燃气不需特殊的净化处理是其优点。它所需要的是对锅炉用水的软化处理,锅炉房较大的土建投资加大了土建投资。只有当产气量特别大,且供气年限长的情况下,才选择汽轮机发电。 优点是:对于燃料气体品质要求比较低,只要燃气燃烧器能够承受的气体,一般都可以适应,燃气只需要有限的压力,因而燃气处理系统投资比较简单。 缺点是:工艺复杂,建设周期比较长,难以再移动,必须消耗大量的水资源,占地比较多,管理人员也比较多,小机组能源利用效率太低,发电效率通常不到15%。 (二)燃气、蒸汽联合循环发电 从工作原理上看,燃气轮机无疑是最适合燃气利用的工艺技术之一。燃气轮机是从飞机喷气式发动机的技术演变而来的,它通过压气机涡轮将空气压缩,高压空气在燃烧室与燃料混合燃烧,是空气急剧膨胀做功,推动动力涡轮旋转做功驱动发电机发电,因为是旋转持续做功,可以利用热值比较低的燃料气体。燃气轮机自身的发电效率不算很高,大功率的一般在30%~35%之间,小功率(单机功率4000KW)的一般低于24%,产生的废热烟气温度高达450~550℃,然后进入燃气轮机后部的余热锅炉产生蒸汽,在通过蒸汽轮机发电。联合循环的发电效率可以接近40%。 燃气轮机是最常用的燃气动力机械。其优点是运行可靠,燃料混合气在燃气轮机的燃烧室里燃烧,利用涡轮机动力驱动,带动发电机发电;结构简单、紧凑,较小功率的整套机组可以装在一个大型集装箱内;比之燃煤或燃气锅炉占地少,节省基建投资。

高炉煤气加热的特点分析

高炉煤气加热的特点分析 高炉煤气需要预热 同体积的高炉煤气的发热量较焦炉煤气低得多,一般为3300—4200KJ/m3。热值低的高炉煤气是不容易燃烧的,为了提高燃烧的热效应,除了空气需要预热外,高炉煤气也必须预热。因此使用高炉煤气加热时,燃烧系统上升气流的蓄热室中,有一半用来预热空气,另一半用来预热煤气。煤气与空气一样,经过斜道进入燃烧室立火道进行燃烧。 燃烧系统的阻力大 用高炉煤气加热时,耗热量高(一般比焦炉煤气高15%左右),产生的废气多,且密度大,因而阻力也较大。而上升气流虽然供入的空气量较少,但由于上升气流仅一半蓄热室通过空气,因此上升气流空气系统和阻力仍比焦炉煤气加热时要大。 高炉煤气燃烧火焰较长 高炉煤气中的惰性气体约占60%以上。因而火焰较长,焦饼上下加热的均匀性较好。由于通过蓄热室预热的气体量多,因此蓄热室、小烟道和分烟道的废气温度都较低。小烟道废气出口温度一般比使用焦炉煤气加热时低40--60℃。 高炉煤气毒性大 高炉煤气中CO的含量一般为25%--30%,为了防止空气中CO含量超标,必须保持煤气设备严密。高炉煤气设备在安装时应严格按规定达到试压标准,如果闲置较长时间再重新使用前,必须再次进行打压试漏,确认管道、设备严密后才能改用高炉煤气加热。日常操作中,还应对交换旋塞定期清洗加油,对水封也应定期检查,保持满流状态,蓄热室封墙,小烟道与联接管处的检查和严密工作应经常进行高炉煤气进入交换开闭器后即处于负压状态。一旦发现该处出现正压,应立即查明原因组织人力及时处理,确保高炉煤气进入交换开闭器后处于负压状态。 高炉煤气含尘量大 焦炉所用的高炉煤气含尘量要求最大不超过15mg/m3。近年来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m3以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。 另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。煤气温度越高,水分就越多,会使煤气的热值降低。从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,

焦炉煤气综合利用技术探讨

焦炉煤气综合利用技术探讨 摘要:我国的煤炭资源丰富,是世界上焦炭产量最大的国家,约占世界焦炭生 产总量的百分之六十,在生产焦炭的过程中会产生大量的焦炉煤气,是一种非常 丰富的能源,如何高效利用焦炉煤气是各国研究的重要课题,对于营造低碳环境,创造经济效益具有很大的推动作用,实现资源的循环利用,对于我国经济的可持 续发展具有很大的积极意义。因此,本文对焦炉煤气综合利用技术进行探讨。 关键词:焦炉煤气;综合利用;技术 焦炉煤气是炼焦过程中产出焦炭和焦油产品的同时得到的可燃气体,是炼焦 副产品。每生产1t焦炭,约副产400m3焦炉煤气,除一半用于焦炉自身加热外,还会剩余约200m3。若不合理利用,既造成巨大的资源浪费,又造成严重的环境 污染。随着我国能源结构的调整及排放法规的日益严格,如何合理、高效、无污 染地利用焦炉煤气,已成为目前社会关注的热点之一。 1焦炉煤气综合利用技术分析 1.1传统的利用方式——加热燃料 焦炉煤气的传统利用方式普遍用于燃料,作为不同加热设备的气体燃料,延 用近百年的历史。与固体燃料比较,有使用便捷、管道输送和传热效率高等优点,受到工业和民用的青睐。 利用焦炉煤气生产炭黑新工艺的研究就是以焦炉煤气为燃料,以煤焦油为原料,采用油——气技术路线。工艺特点:采用新型反应炉,利用在线高温空气预热 器和油预热器,强化反应条件,提高产品质量和收率,降低一次消耗。利用焦炉 煤气特性,结合炭黑生产技术特点,研究开发利用焦炉煤气作燃料生产炭黑的新 工艺技术,扩大了炭黑生产的燃料范围;高效焦炉煤气喷嘴的研制,结合焦炉煤气 特点,加长燃烧器长度,在燃烧器的配风结构上采用同向双旋流沟槽,两风道入风,增大燃烧器燃烧喷嘴的配风湍流程度,使燃烧火焰更加稳定;开发研制新型煤 气型反应炉,加大反应面积,结合煤气燃烧均匀的特点,改进燃烧室结构。 1.2利用焦炉煤气发电 利用富余焦炉煤气,选择可靠性高、可连续性生产的直燃式航空发电机组进 行发电,减少能源浪费,减少温室气体甲烷的排放,保护环境。焦炉煤气发电后 的尾气余热进行回收,建立空调中心,夏天向井下和办公楼等地点供冷,冬天向 井口和办公楼等地点供暖。 中国平煤神马集团朝川焦化公司采用的燃气轮机发电,由粗苯来的净化后的 煤气经煤气压缩机加压到0.9MPa送往六台2000kW的QDR2型燃气轮发电机组,燃气轮机尾气余热设置六台6.5t/h的余热锅炉,机组装机容量为15000kW,自耗 电量达9.97%,每小时能外供13489kW,运行情况良好。 1.3焦炉煤气生产甲醇 甲醇是一种很好的液体燃料,也是一种重要的化工原料,随着技术的发展, 甲醇应用的拓宽,其前景市场更加广阔。焦炉煤气中的甲烷含量在24%~28%左右,在6.0MPa压强下即可合成甲醇,反应速度快,流程短,相较于天然气、煤 制作甲醇成本要低,合成甲醇也是目前高效利用焦炉煤气的重要方式之一。焦炉 煤气合成甲醇技术的关键步骤是将焦炉煤气深度净化,然后将焦炉煤气中的甲烷 及少量多碳烃转化为一氧化碳和氢气,以满足甲烷转化催化剂和甲醇合成催化剂 的要求,提高其催化能效和使用寿命。目前,焦炉煤气甲烷转化工艺主要有催化 氧化转化法、非催化转化法、蒸汽转化法三种,催化氧化转化法因其流程短、投

高炉煤气利用方法的比较

高炉煤气几种综合利用方法的比较 摘要:炼铁高炉煤气可以在净化后先安装TRT发电;或在高炉鼓风机末端安装BPRT节电,然后再供本企业中其它用户使用。如有富余煤气可以进行发电或用蒸汽轮机代替大功率电动机直拖高炉鼓风机、制氧空压机等设备运行。本文论述了这四种节能减排措施的优缺点,一次性投资的比较及长期效益的优劣。结论是…… 关键词:高炉煤气、TRT、BPRT、燃气锅炉、发电、汽轮机直拖大功率设备。 钢铁企业中炼铁高炉要产生大量煤气,这些高炉煤气通过重力除尘器、干法或湿法二次除尘后成为净煤气(含尘量一般<8mg/Nm3)。除高炉自身烧热风炉使用一部分(约煤气总量的45%左右)外,其余55%左右的净煤气经管道输送给钢铁厂其他用户使用。一般用于烧结机;白灰窑;炼钢的再线、离线烤包器、混铁炉;轧钢的加热炉或均热炉;炼铁的烤包器等。 现代化的大中型高炉一般都采用高压炉顶操作手段。煤气压力一般都超过150Kpa,而下游用户使用的煤气压力一般要求在20 Kpa以下。这就需要经过调压阀组调节炉顶煤气压力及下游用户的煤气压力。自从发明了TRT(利用高炉炉顶煤气压力能和潜热能通过透平机带动发电机发电)及BPRT(利用高炉炉顶煤气压力能和潜热能在高炉鼓风机末端同轴安装透平机及增速离合器节电)以后,一般炼铁厂都采用了这两种装置来达到节能之目的。 这两种装置都不减少煤气量,而且都能代替调压阀组的调压作用,炉顶压力的稳定性远远超过调压阀组所能达到的稳定性,更有利于高炉操作。 那么这种两方法哪个更好一些呢?我们分别分析、论述一下: 一、TRT TRT发电功率计算公式如下: k-1 ----- k Q×Cp×Tin×(1-ε )×fd×ηt×ηg N=-----------------------------------------------------------------KW 860 式中:N:发电机功率(KW)

高炉煤气发电

1.高炉煤气的特性 高炉煤气其组成成分中惰性气体(N2、CO2等)占大部分,且可燃成分主要为CO;因而它的低位发热值极低,一般情况下,其发热值仅为2930KJ/Nm3~3550KJ/Nm3。 由于高炉煤气中含有大量的惰性气体,可燃成份少,每立方米煤气燃烧时参与燃烧的空气也少,但要产生一定量的热量,所需要的煤气量就要大,每吨蒸汽产生的烟气为燃煤锅炉烟气量的1.7倍;煤气中极少含硫,加上CnHm含量也极少,烟气的露点较高,即使在点火初期也不会结露,无需考虑低温腐蚀等问题。 高炉煤气中的可燃成分主要为CO,混合气中的CO浓度及着火环境是决定高炉煤气的着火温度的两要素;实验证实高炉煤气于空气的混合气中高炉煤气的着火浓度为35%~71%,着火温度为530℃~660℃,这种着火条件要求较高,但因其燃烧为气气单相化学反应,只要技术措施组织正确,燃烧效率也能达到满意程度。高炉煤气的特性决定了其理论(绝热)燃烧温度低(理论燃烧温度仅为1250℃~1300℃),这个温度仅为燃煤的理论燃烧温度的60%左右,在运行的物理特性是火焰的中心温度较低、化学反应速度也低。设计时就要考虑给予煤气足够的燃烬时间,同时要解决燃烧火焰不易稳定、易产生脉动现象、易脱火等问题,保证燃烧安全。 2.1合适的热风温度 由于煤气的着火温度较高,有关研究表明,当煤气与空气的混合气从室温升高到着火温度所吸的热量占煤气总放出的热量的37%左右,因而提高入口混合气的温度,使混合气的温度及早地升高到着火温度,能使煤气及早地着火。提高混合气的温度有两种方法:一是采用较高的高炉煤气温度;二是采用较高的空气的温度。较高的高炉煤气温度,因其体积量大效果最明显,其加热方式多采用热管换热器,但热管换热器易堵灰(即使灰份很少)、腐蚀后安全性不好、造价较高、检修不方便,考虑到这些因素,一般不用这种方法。采用较高的空气的温度,虽然因其体积量小,效果差一些,温度高也可使混合气达到较高的温度,且这种方法最为方便、安全,造价也低。设计时空气预热器出口空气温度一般定为370℃左右。另外提高了混合气的入炉温度,同时也提高了炉膛的吸热量比,把尾部的热量移至炉膛内,降低了尾部省煤器的吸热量比,降低了省煤器出口的沸腾度,省煤器运行更安全,锅炉有更足的出力。 2.2燃烧器强烈的气气混合 高炉煤气的燃烧为扩散燃烧。前面已讨论了每立方米煤气完全燃烧所消耗的空气量少,量少的空气要在短时间内穿透量大的煤气,及早地使混合气体达到着火浓度是比较困难的,因而在燃烧器的预混段加强煤气与空气的混合有着现实的意义。在燃烧器的出口设置一旋流度不算大的旋流叶轮,配合空气侧的旋流叶片,使煤气和空气在出口处强烈混合,实践证明在燃烧器出口70mm的距离内煤气就可混合好,同时火焰在后期又有一定强度的刚性,加强了火焰后期的扰动,后期也能混合较好。这种设计先进,使气气及时达到着火浓度,且不易堵灰,即使堵了,其清理也较容易。 2.3优越的稳焰器

钢铁企业焦炉煤气测量

钢厂是气体用量大户,一般有如下几种组成: 1.空分站和制氧厂出来的各种气体:用气车间或单位需要计量,主要是氧气、氮气、氩气、天然气和二氧化碳气体 2.压缩空气:需要各车间或单位进行计量。 3.各种煤气:主要是焦炉煤气、高炉煤气和转炉煤气 对于 1,2 两种情况,用户的需求主要如下: 1. 流量计最好直接质量流量测量,无需安装压力变送器、温度变送器和积算仪,并能带数字通讯。 2.流量变化大,需要有大量程比的流量计才能在小流量的时候也能测好。 3.一年四季环境温度变化会导致气体温度变化,故流量计最好不需要温度补偿。 4. 气体的压力会随下游用气量的变化而变化,故流量计最好不需要压力补偿。 5.破管焊法兰连接方式成本高且需要停气影响生产,故需要安装简单、维护方便的、对于安全气体可在线不停气插拔的特殊附件。 6.流量计最好免维护。 钢厂主要煤气种类 高炉煤气。用作高炉热风炉、焦炉、加热炉和锅炉的燃料。高炉煤气发热量低,多与焦炉煤气混合使用。 焦炉煤气。用作焦炉本身和加热炉等的燃料,也可作民用燃料。 转炉煤气。目前国外虽普遍安装回收转炉煤气的设备,但因经济原因,多数工厂把回收煤气燃烧放散,未加利用。日本的钢铁厂已把回收的煤气加以利用,中国有的钢铁厂也进行回收利用。 转炉煤气常与其他煤气混合使用。 发生炉煤气。在钢铁厂中,如果高炉煤气和焦炉煤气不足,可用发生炉煤气补充。发生炉煤气是固体燃料(如烟煤、无烟煤或焦炭)在煤气发生炉中与氧化剂(常用的是空气和水蒸气的混合物)相互作用产生的气体燃料。发生炉煤气主要用于轧钢加热炉、炼钢平炉。要求煤气燃烧温度高或火焰黑度大的用户(如某些加热炉和平炉)可就近制造发生炉热煤气使用。一般用炉则用经过净化的冷煤气。 对于3煤气情况,主要测试难点: 1.气体能源是钢铁企业广泛使用的能源,但对气体能源流量的测量却存在很大的难度,特别是焦炉煤气流量,其测量难度更大。 2.因为在焦炉煤气中除了含有氢、甲烷、乙烷、乙烯等成分外,还含有焦油、萘、氮的水化合物、粉尘、黏着物。 3.这些成分含量虽少,却会产生不利于测量的作用。它们很容易从煤气中分离出来,在管道内壁和管内其它构件表面凝结并聚集起来,使流量测量仪表无法正常工作。(如焦油会敷在测量设备的检测元件上萘会以固体结晶析出堵塞设备。随外界温度变化会引起低温结晶现象;) 4.气体成分混合多变复杂。混合煤气系统是钢铁联合企业中应用极为普遍的能源供应系统,钢铁企业的混合煤气系统一般是由高炉煤气、焦炉煤气和转炉煤气等多组分混合而成焦炉煤气含有H2(55-60%),CH4(23-27%),CO(5-8%),CO2(1.5-3.0%),N2(3-7%),O2(<0.5%),CmHn(2-4%);密度为0.45-0.50 Kg/Nm3。5冬季时期,煤气中的水分容易引起冻结。 6.焦炉煤气为有毒和易爆性气体,空气中的爆炸极限为6-30%(体积)。 7.钢厂煤气测量中存在的湿度大、腐蚀性强、粉尘、黏着物、杂质等,易堵,易

焦炉煤气综合利用制取液化天然气

焦炉煤气综合利用制取液化天然气 1 问题提出 近年来, 我国对焦化行业实施“准入”制度,焦炉煤气的综合利用成为炼焦企业生存与发展的关键。一些大型的炼焦企业建设了焦炉煤气制甲醇项目,并取得了良好的经济效益,为大型炼焦企业综合利用焦炉煤气找到了新方法。但中小焦化企业生产规模相对较小,焦炉煤气产量少,成本优势不明显,多家企业联合又困难,影响了焦化企业对焦炉煤气的综合利用。 2 焦炉煤气生产LNG的技术特点 为了解决中小企业焦炉煤气综合利用的问题,中科院理化技术研究所改变利用思路,将有效成分甲烷和氢气作为两种资源综合利用,开发出了焦炉煤气低温液化生产LNG联产氢气技术(已申请专利),新技术具有以下特点: 1) 可以省去甲烷转化工序,大大节省投资成本。 2) 由于新工艺拥有独立的循环制冷系统,操作弹性非常大,适应性强,运行稳定。 3) 产生的氢气可以利用氢气锅炉为全厂提供动力和热力,这方面的技术已经非常成熟。有经济实力的企业还可以配套合成氨等装置,相对投资少,效益更高。并随着氢气利用技术的日益发展可以生产液氢产品等。 4) 产品市场好。预计未来15年中国天然气需求将呈爆炸式增长,到2010年,中国天然气需求量将达到1000×109 m3,产量约800×109 m3,缺口将达到200×109 m3;到2020年天然气需求量将超过2000×109m3,而产量仅有1000 ×109m3, 50%将依赖进口。 5) 整套方案中工艺流程短,操作简单。处理量1 ×106 m3 /d的生产装置,只需要40~50操作工,非常适合中小型焦化企业对焦炉煤气的综合利用。 3 焦炉煤气生产LNG联产氢气工艺路线 液化天然气是天然气经过预处理,脱除重质烃、硫化物、二氧化碳、水等杂质后,在常压下深冷到-162℃液化制成,液化天然气是天然气以液态的形式存在,

焦炉煤气的处理与应用

焦炉煤气的处理与利用 彭云飞学号11721465 (上海大学材料科学与工程学院,上海) 摘要:焦炉煤气是炼焦过程中得到的重要副产品,近些年对焦炉煤气的组成成分的研究已经相当成熟。焦炉煤气属于中热值然气,其中包含巨大的利用价值。而我国作为世界钢铁大国之一,产焦量也位于世界前列,但焦炉煤气的利用方面却远远不及发达国家,造成了巨大的能源浪费。本文介绍了有关焦炉煤气的基本知识,重点介绍了利用焦炉煤气民用供气、发电、作为工业原料、生产化工产品、高炉喷吹工艺以及这些利用方式的经济效益分析。 关键词:焦炉煤气、处理、利用 Abstract: The cole oven gas is the most secondary product during coking processing, the study about the composition of the coke oven gas has become more devoloped. The coke oven gas is calorific value of fuel gas, containing great use value. But China is one of the world steel superpower, the using of the coke oven gas has falt behind of the devoloped country, making a great waste of energy. This paper give us some things about the coke oven gas, and focusing on the using of coke oven gas on town gas, generate electricity, as industrial raw material, producing chemical products, blast furnace injection process and the economic benefit of this using mathods. Keys: Coke oven gas, handling, using

相关文档
最新文档