自旋电子学的综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自旋电子学及其在半导体中的应用
摘要:自旋电子学主要研究电子自旋在固体物理中的作用,是一门结合磁学与微电子学的新兴交叉学科。其研究对象包括电子的自旋极化、自旋相关散射、自旋弛豫以及与此相关的性质及其应用等。本文简单介绍了自旋电子学的概念及其内容综述了自旋电子学目前的研究,尤其是半导体自旋电子学,集中讨论了使电子的自旋特性在半导体中获得应用,在半导体器件中实现自旋极化、注入、传送、操作和检测,最后对自旋电子器件的应用进行了展望。
关键词:自旋电子学自旋阀磁隧道结半导体自旋电子学
一.名词解释
1.自旋电子学[1](spintronics)
也称为磁电子学,是一门磁学和微电子学相交叉的新兴的学科,它研究具有某一自旋状态(自旋向上或自旋向下)的电子的输运特性,是当前凝聚态物理的热点领域之一。众所周知,电子除了带有电荷的特性外,还具有自旋的内禀特性,对于普通金属和半导体,自旋向上和自旋向下的电子在数量上是一样的,所以传统的金属电子论往往忽略电子的自旋自由度。
2.半导体自旋电子学[2]
电子同时具有电荷和自旋两种属性,电子的电荷属性在半导体材料中获得极大的应用,推动了电子技术、计算机技术和信息技术的发展。使电子的自旋特性在半导体中获得应用,在半导体器件中实现自旋极化、注入、传送、操作和检测,成为人们最关注的问题。最初人们企图用铁磁金属与半导体材料直接欧姆接触,把极化自旋流注入到半导体材料中去,但是由于肖特基势垒太高,注入效率极低。为了克服肖特基势垒,只有两个办法:寻找磁性半导体材料或利用隧道效应。
二.自旋电子学的起源
1857年Thomson发现了在多晶结构的Fe中,具有各向异性磁电阻效应[3](anisotropy magnetore.sistance,AMR),而传统的微电子学的研究对象是普通金属和半导体,所以在研究电子的输运过程中,往往忽略电子的自旋。20世纪50年代人们在研究超导体时,将电子的自旋引入,认为参与超导输运的准粒
子是费米面附近两个自旋相反,动量也相反的电子所组成的库柏对,建立了著名的BCS理论,但是BCS理论虽然将电子的自旋自由度引入到输运过程中,但是在库柏对中,电子是成对出现的,并没有去严格区分两种不同自旋的电子在输运中的差别。
在20世纪80年代,1986年,德国的Grtinberg等人在研究Fe/Cr/Fe薄膜中自旋波的光散射时,发现随着Cr的厚度改变,Fe/Cr/Fe中两个Fe层存在反铁磁耦合控[4]。随后在法国工作的Baibich等人用分子束外延的方法制备了Fe/Cr多层膜并研究其电阻特性[5]。当cr的厚度为0.9 nm时,他们发现在T=4.2K温度下,薄膜的电阻值随外加磁场的增加而减小,当外磁场大于2 T后,其电阻值几乎只有原来未加磁场时的一半,这种磁电阻效应可以用自旋相关散射和双电流模型来解释。
考虑到两个不同自旋取向的电子在界面处所受到的散射是不同的,假设当自旋取向与铁磁层的磁化方向相同时,电子所受到的散射较小,而另一种自旋取向的电子所受到的散射较大;那么在Fe/Cr多层膜中,当存在反铁磁耦合时,相邻Fe层的磁化方向是反平行的,这样两个自旋取向的电子所受到的散射都较大,所以系统处于高电阻状态当外磁场较大时,所有Fe层的磁化方向将转到外场的方向,这时有一种自旋取向的电子所受到散射很小,而另一种电子所受到的散射很大,系统总的电阻可以看成这两种电子电阻的并联,因而系统处于低电阻状态。
图1:系统处于两种不同阻态时的磁化散射
由于Fe/Cr多层膜中的这种磁电阻效应很大,比一般的铁磁金属的各向异性磁电阻大1个数量级,所以人们把这种效应叫做巨磁电阻效应(giant magnetoresistance,GMR)。巨磁电阻效应的发现,是自旋电子学发展史上的里程碑。
三.国内外对自旋电子学的研究现状及研究方向
3.1 国内外的研究现状
3.1.1 国内研究现状
1998年,国家自然科学基金委员会设立了“巨磁电阻物理、材料研究及其在信息技术中应用”重大项目[6]。
2001年,国家科技部在国家重点基础发展规划项目中设立了“自旋电子材料、物理以及器件研制”项目[6]。
3.2.2 国外的研究现状
1991年,B、Dieny利用反铁磁层交换耦合,提出了自旋阀结构 J,并首先在(NiFe/Cu/NiFe/FeMn)自旋阀中发现了一种低饱和场巨磁电阻效应。
1995年,美国DARPA计划中设立了GMR合作计划,目的是探索将GMR器件应用到各种传感器和存储器等方面,最终目标是制造出大小为6.45 cm2、读取时间小于100 as的容量为16 K的非丢失性的磁性随机存储器芯片。
2000年,Chiba等利用Mn5.5%的GaAs稀磁半导体和作绝缘层的三明治结构的隧道结,获得磁电阻TMR在20K温度下为5.5%,居里温度为11OK。
2001年,Tanaka等在隧道结中获得TMR值为70%,超过了氧化铝为绝缘层的FM/I/FM的TMR值,引起人们极大兴趣。
2001年,Zhu等通过Fe膜与GaAs膜之间的隧道效应,把自旋电子注入到半导体中,通过电子发光的反转,获得室温下自旋有效注入为2%。Dijken等在GaAs 半导体上制备了磁隧道结,得到集电极磁电阻变化的百分数,其中和分别为两个铁磁层磁化强度平行和反平行时的集电极电流。
2004年,Yamanouchi等用做成特殊设计的结构,用自旋极化电流驱动磁畴壁,控制磁化强度反转,构成磁信息存储器件。
3.2 国内外的研究方向
3.2.1 GMR自旋阀[7]
1988年GMR效应在Fe/Cr金属多层膜中的发现引起了各国科学家的注意,人们从理论和实验上对多层膜GMR效应展开了广泛而深入的研究。为了使GMR材料的饱和磁场(H )降低,人们除了采用降低耦合强度及选用优质软磁作为铁磁层等途径外,还提出了非耦合型夹层结构。1991年,B、Dieny利用反铁磁层交换耦合,提出了自旋阀结构,并首先在(NiFe/Cu/NiFe/FeMn)自旋阀中发现了一种低饱和场巨磁电阻效应。