第四章分子对称性和分子点群(王荣顺 版)

合集下载

分子的对称性与点群

分子的对称性与点群

分子的对称性与点群摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。

分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。

例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。

关键词:对称性点群对称操作一.对称操作与点群如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。

一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。

描述分子的对称性时,常用到“点群”的概念。

所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。

而全部对称元素的集合构成对称元素系。

每个点群具有一个持定的符号。

一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。

二.分子中的对称元素和对称操作2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。

作分别用E、 E^表示。

这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作分别用C n、C^n表示。

如果一个分子沿着某一轴旋转角度α能使分子复原,则该分子具有轴C n,α是使分子复原所旋转的最小角度,若一个分子中存在着几个旋转轴,则轴次高的为主轴(放在竖直位置),其余的为副轴。

分子沿顺时针方向绕某轴旋转角度α,α=360°/n (n=360°/α(n=1,2,3……)能使其构型成为等价构型或复原,即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分子具有 n 次对称轴。

n是使分子完全复原所旋转的次数,即为旋转轴的轴次,对应于次轴的对称操作有n个。

C n n=E﹙上标n表示操作的次数,下同﹚。

如NH3 (见图 1)旋转 2π/3 等价于旋转 2π (复原),基转角α=360°/n C3 - 三重轴;再如平面 BF3 分子,具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以上的旋转轴,则轴次最高的为主轴。

分子对称性和点群

分子对称性和点群

例二:置换群(群元素为变换位置的操作,乘法规则为从右到左 相继操作). S3 群 ( 三阶置换群 )
1 2 3 E 1 2 3 1 2 3 A 1 3 2
1 2 3 D 2 3 1 1 B 3 1 2 2 3 2 1 2 3 3 1
{E,D,F}构成S3的一个3阶子群
AA BB CC E
{E,A}、 {E,B}、 {E,C}分别构成S3的2阶子群
3.2.4 群的共轭类
共轭元素: B=X-1AX ( X,A,B都是群G的元素) (A和B共轭)
元素的共轭类: 一组彼此共轭的所有元素集合称为群的 一个类.
f 类 = { x-1fx,
第三章
分子对称性和点群
分子具有某种对称性. 它对于理解和应用分子 量子态及相关光谱有极大帮助. 确定光谱的选择定则需要用到对称性. 标记分子的量子态需要用到对称性.
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
A4 =E
(2)非循环群
欲构成非循环群,只可能是各元素的逆元素为自身 即 A2 =B 2 =C 2 =E ,再根据重排定理即可得乘法表
3.2.3 群的子群
•子群: 设 H 是群 G 的非空子集, 若对于群 G 的乘法规则,集合 H 也 满足群的四个条件,则称 H 是 G 的子群. • 1) 封闭性 • 2) 结合律: H属于G并且为相同的乘法规则,因此结合律显然满足 • 3) 恒等元素:针对每个子群加入群G的恒等元素即可 • 4) 逆元素 因此满足条件1)与4)是证明子群成立的关键. 显然, 恒等元素 E 单独构成的群和群 G 自身是平庸子群.

结构化学基础-4分子的对称性

结构化学基础-4分子的对称性

S3 = h + C 3
S 4:
ˆ1 ˆ 1 ˆ 1 S 4 hC4
ˆ2 ˆ 2 ˆ 2 ˆ1 S 4 h C4 C2 ˆ4 ˆ 4 ˆ 4 ˆ S 4 h C4 E
ˆ3 ˆ 3 ˆ 3 ˆ ˆ 3 S 4 h C4 h C4
S S 5:ˆ
S 4 的操作中既没有h,也没有C4,是真正的映轴
ˆ1 C4
4 3

4 3 3 4 2 1

2 1
ˆ1 C4
对称元素的独立性
• 分子中的某一对称元素,不依赖于分子内 的其它元素或元素的结合而独立存在。
不同轴次的I所包含的操作
I 1:
ˆ ˆ ˆ1 ˆ I11 i 1C1 i 1
ˆ ˆ1 ˆ I 2 i 1C 2 h
ˆ ˆ ˆ ˆ I12 i 2C12 E ˆ2 ˆ ˆ 2 ˆ I 2 i 2C 2 E
I 6 C3 h
由此可知:对于反轴In有 Cn + i In = 2n个操作 n为奇数
Cn/2 + h n个操作 n为偶数但不是4的倍数
In n个操作 n为4的倍数(同时有Cn/2与
之重叠)
旋转反映操作和映轴
旋转反映操作:绕轴转360/n,接着按垂直于轴的镜面 进行反映
ˆ ˆ ˆ S C n h h C n 旋转轴Cn和垂直于Cn镜面h的组合
绕轴转360n接着按垂直于轴的镜面进行反映的组合不同轴次的s所包含的操作n个操作n为偶数但不是4的倍数2n个操作n为奇数n个操作n为4的倍数2nn为奇数n为4的倍数对称操作对称元素旋转第一类对称操作实操作旋转轴第一类对称元反演第二类对称操作虚操作对称中心第二类对称元反映镜面旋转反演在一定的坐标系下对物体进行对称操作使得其对应的坐标发生改变对这种坐标的变化关系可以使用矩阵来描述

结构化学分子的对称性

结构化学分子的对称性

ˆ ˆ2 ˆ3 ˆn ˆ 2n ˆ 2n C 2n , C 2n , C 2n , , C 2n , , C 2n 1 , C 2n E

ˆ n n 2π 2π C ˆ C 2n 2 2n 2
ˆ C 2 z
x, y, z
2
x, y, z
1
ˆ i
ˆ σ xy
x, y, z
3
并延长到反方向等距离处而使分子复原,这一点就是对
称中心 i ,这种操作就是反演.
(4) 象转轴和旋转反映操作 反轴和旋转反演操作 旋转反映或旋转反演都是复合操作,相应的对 称元素分别称为象转轴Sn和反轴In . 旋转反映(或旋 转反演)的两步操作顺序可以反过来.
对于Sn,若n等于奇数,则Cn和与之垂直的σ都
而唯一地被定义了——至少在抽象地意义上是如此。上述概念 可以方便地呈现在群的乘法表的形式中。 一个h阶有限群的乘法表由h行和h列组成,共h2 个乘积; 设行坐标为x,列坐标为y,则交叉点yx,先操作x,再操作y;对 称操作的乘法一般是不可交换的,故应注意次序。 在群的乘法表中,每个元素在每一行和每一列中被列入一 次而且只被列入一次,不可能有两行或两列是全同的。每一行 或每一列都是群元素的重新排列,这就是群的重排定理。
四阶群只有两种,其乘法表如下
G4 E A B C E E A B C A A B C E B B C E A C C E A B G4 E A B C E E A B C A A E C B B B C E A C C B A E
H2O分子的所有对称操作形成的C2v点群的乘法表如下:
G4
E E
ˆ C2 ˆ C2
ˆ 2 C 1C 1 , Cn ˆ n ˆ n

4周公度第四版结构化学第四章分子的对称性

4周公度第四版结构化学第四章分子的对称性

4.1.2 反演操作和对称中心
与对称中心 i 对应的对称操作叫反演或倒反 i 。 若将坐标原点放在对称中心处,则反演操作将空间 任意一点(x, y, z)变为其负值(-x, -y, -z),反演操

作的矩阵表示为:
y
i
x
x ' 1 0 0 x ' y y 0 1 0 z' z 0 0 1
3
C
1
1 3
C32
1 2
E
3
2 2
1 C3
1
2
3
C
2 3
3
1
1 ˆ2 2 ˆ1 ˆ ˆ ˆ C3C3 C3 C3 E
操作和逆操作
ˆ 的逆,反之 A ˆ为 A ˆ ˆ BA ˆˆ E ˆ ,则 B ˆ 也为 逆操作: 若 AB ˆ 的逆。 B
写为 显然,对于 C
1 ˆ ˆ A B 1 ˆ ˆ BA
两个 d 反式二氯乙烯 ClHC=CHCl
平面型分子中至少有一个镜面,即 分子平面。
镜面的例子
一个 v
一个包含OH键 的平面 另一个垂直于它
两个 d
H2O
镜面的例子
CO2 , H2, HCl 等直线分子有无数个 v 镜面
4.1.4 旋转反演操作( Î n )和反轴(In )
这一个复合对称操作:先绕轴旋转3600/n(并未进入等价 图形),接着按对称中心(在轴上)进行反演(图形才进入等价 图形)。对应的操作为:
基转角: a =(360/n)°能使物体复原的最小旋转角
ˆ C 1 ˆ C 3
360 a 360 1 360 a 120 3
ˆ C 2 ˆ C 4

分子对称性和点群

分子对称性和点群

规则三. 点群中不可约表示特征标间的正交关系:
k
hjr(Rj)*s(Rj)nrs
j1
对不可约表示: ( R ) 2 n

R
k 为群中所有共轭类的数目;
hj 为共轭类j中的群元素个数.
k
hj
(Rj)2
n
j1
对可约表示:
(R)2 n
R
如 D3 群在直角坐标系下的表示
A(R )290011112
a
17
2. Sn 点群 (n为偶数) S n,S 2 n,S 3 n,..S n n . .I, S2 i
3有. C一n个v 点C群n 轴和 n 个包含该轴的对称面 v
C
v
a
18
4. Dn点群 有一个Cn轴和n个垂直于该轴的C2轴. (暂没有实例)
5. Cnh点群 有一个Cn轴和一个垂直于该轴的对称h.
S3 hC3 S32 h2C32 C32 , S33 h3C33 hI h S34 h4C34 C34 C3,S35 h5C35 hC32, S36 h6C36 I
当n为偶数时, 当n为奇数时,
Sn nhnCn nI
S n n h n C n n h ,S 2 n n h 2 n C 2 n I n
例2. 数的集合 {1, -1, i, -i}, 乘法规则为代数乘法, 则构成一个群.
恒等元素为1. 数 (-1) 的逆元素为(-1).数 (i) 的逆 元素为 (-i).
例3. 空间反演群 {E,i}, i为空间反演操作.
i2 = E
a
10
• 例4. D3={e,d,f,a,b,c}
e: 恒等操作 d: 绕z轴顺时针转动 120º f: 绕z轴顺时针转动 240º a: 绕a轴顺时针转动 180º b: 绕b轴顺时针转动 180º c: 绕c轴顺时针转动 180º

结构化学第四章分子对称性

结构化学第四章分子对称性
X射线晶体学需要制备晶体样品,通过X射线照射晶 体并记录衍射数据,再通过计算机软件分析衍射数 据,最终得到分子的晶体结构。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。

第4章分子对称性与群论初步

第4章分子对称性与群论初步
对称元素:对称操作据以 进行的几何要素叫做对称元素;
对称图形: 能被一个以上 的对称操作(其中包括不动操 作)复原的图形叫做对称图形。
对称元素: 旋转轴 对称操作: 旋转
分子中的对称操作共有四类,与此相应的对称元素 也有四类。它们的符号差别仅仅是对称操作符号头顶上 多一个Λ 形的抑扬符^,就像算符那样。在不会引起误解 的场合,抑扬符^常常省略。
44..22..44 旋旋转转反反映映与与映映轴轴((旋旋转转反反演演与与反反轴轴))
旋转反映或旋转反演都是复合操作,旋转反映是先绕 一条轴线旋转,继而针对垂直于该轴的镜面进行反映,结 果复原;而旋转反演是先绕一条轴线旋转,继而对轴线上 的一点进行反演,结果复原。相应的对称元素分别称为映 轴Sn和反轴In 。旋转反映(或旋转反演)的两步操作顺序可 以反过来。
1s (1) 1s (2)
Maxwell方程:
Maxwell方程的原始形式包含20个方程。利用其 中的对称性以后,可以按矢量形式写成4个方程:
D=
B=0 E= B
t H =J + D
t
电荷对称:
一组带电粒子 极性互换, 其相 互作用不变(但在 弱相互作用下这 种对称被部分破 坏)。
(1)正四面体群,包括点群T、Td、Th; (2)立方体群,包括点群O、Oh; (3)二十面体群,包括点群I、Ih(亦称Id) 4. 无旋转轴群:包括点群Cs、Ci、C1
44..33..11 单单轴轴群群
包括Cn、Cnh、Cnv、Cni(n为奇数)、Sn(n为4 的整数倍)群。共同特点是旋转轴只有一条(但 不能说只有一条旋转轴,因为还可能有某些镜面 或对称中心存在)。
对称性与化学有什么关系? 对称性如何支配着物质世界的运动规律? 在本章中,我们将涉足这一领域,由浅入深地讨论一些 化学中的对称性问题。

04分子对称性精品PPT课件

04分子对称性精品PPT课件
s ˆxz x ,y ,z x ,y ,z C ˆ4,zx,y ,z y ,x,z
y
p
s s ˆ x C ˆ z 4 ,z x ,y ,z ˆ x y z ,x ,z y ,x ,z
x
s s ˆ x C ˆ z 4 ,z x ,y ,z ˆ x y z ,x ,z y ,x ,z
记为 Cˆ n ;相应地,旋转轴也称为真轴,记为 Cn 。
H2O2 中的 C2
能使图形复原所必须转动的最小角度( 0o 除外 ),称
为基转角 a 。
对称轴的轴次: n 360 α
一个 n 重对称轴包含 n 个对称操作,可表示为:
C n (C ˆn 1 ,C ˆn 2 , ,C ˆn i, ,C ˆn n E )
4.1 生活中的对称性
生 物 界 的 对 称 性
立方 ZnS 型晶体模型 NaCl 型晶体模型
B6H6
B5H9
4.2 对称操作与对称元素
我们在谈论生活中的对称性时,更多的是定性的,和 出于美感的。然而,当我们开始讨论分子的对称性时,必 须对分子对称性的含义具有明确的概念。
使对称概念严格、系统化,是从引进,并明确“对称 操作”的基本概念开始的。
但这些特殊的例子能够帮助我们理解对称元素的组合原如果存在n次旋转轴c垂直的二次旋转轴c轴与轴的组合bf432对称元素组合原理22n的二个二次旋转轴c决定的平面的垂直方向上过交点有一个n次旋转一个具体的例子是我们刚刚证明了
第四章 分子对称性
目录
4.1 生活中的对称性 4.2 对称操作与对称元素 4.3 对称元素组合原理 4.4 对称性与分子的偶极矩、旋光性 4.5 分子点群
可以证明,分子或有限图形所具有的所有可能的对称类 型只有 5 种:E,Cn,s,i,Sn(In) 。

分子对称性PPT课件

分子对称性PPT课件

I6包括6个对称动作。
第二第十二二十二页页,,课课件件共共有5有9页59页
I6 C3 h
22 22
第四章 分子的对称性
结论 In 包含的独立动作
Ø

n
为奇数时,I
包含
n
2n个对称动作,可由
Cn i
组成;
Ø 当 n为偶数时,
(1)
n
不是4的倍数时,
I
可由
n
Cn / 2 组h 成,包
含 n 个对称动作。











体 群
2021/12/23
31
2021/12/23
31
第三十一页,课件共有59页
第四章 分子的对称性
一、单轴或无轴群
⒈ Ci 群
O
OC
C
Fe
Fe
C
CO
O
对称元素: i Ci iˆ Eˆ h 2
2021/12/23
32
2021/12/23
32
第三第十三二十二页页,,课课件件共共有5有9页59页
第四章 分子的对称性
四、旋转反演操作(
Iˆn)和反轴(
I
)
n
1. 旋转反演操作( Iˆn)
这是一个联合操作,先依据某一直线旋转 Cˆ,n 然后按照轴上的中心点进行反演,Iˆn iˆCˆn 。
2. 反轴( In)
旋转反演操作依据的轴和对称中心称为反轴,In
的n决定于转轴的轴次。
2021/12/23
结合律
2021/12/23 2021/12/23
群中三个元素相乘有A(BC) (AB)C

分子的对称性

分子的对称性

(1)封闭性:指A和B若为同一群G中的对称操作,则 AB=C C也是群G中的一个对称操作。 (2)主操作:在每个群G中必有一个主操作E,它与 群中任何一个操作相乘给出 AE=EA=A (3)逆操作:群G中的每一个操作A均存在逆操作A-1, A-1也是该群中的一个操作。逆操作是按原操作途径 退回去的操作。 AA-1=A-1A=E (4)结合律:对称操作的乘法符合下面的结合律(括 号中的2个对称操作表示先进行相乘)。 A(BC)=(AB)C
现以二氯乙烯分子为例,说明C2h点群。 H CI
CI
Ⅰ.C2旋转轴
H
Ⅱ.σh对称面 Ⅲ.C2h点群
该分子是一个平面分子。C=C键中点存在垂直于 分子平面的C2旋转轴(Ⅰ),分子所在平面即为水平对 称面 σh(Ⅱ),C=C键中点还是分子的对称中心i。所 以C2h点群(Ⅲ)的对称操作有四个:{E,C2,σh,i}, 若分子中有偶次旋转轴及垂直于该轴的水平平面, 就会产生一个对称中心。反式丁二烯等均属 C2h点群。
旋转操作是将分子绕通过其中心的轴旋转一 定的角度使分子复原的操作,旋转所依据的 对称元素为旋转轴。n次旋转轴的记号为C n . 使物体复原的最小旋转角( 0度除外)称为 基转角(α)称为基转角 α,对C n轴的基转 角α= 3600/n。旋转角度按逆时针方向计算。 和C n轴相应的基本旋转操作为Cn1,它 为绕轴转 3600/n的操作。分子中若有多个旋 转轴,轴次最高的轴一般叫主轴。
C2v
图IV. 船式环已烷
图V. N2H4
C2v
NH3分子(图VII)是C3v点群典型例子。C3轴穿过 N原子和三角锥的底心,三个垂面各包括一个N-H 键。其它三角锥型分子PCl3、PF3、PSCl3、CH3Cl、 CHCl3等,均属C3v点群。P4S3(图Ⅷ)亦属C3v点群。

《分子对称性》课件

《分子对称性》课件

05
分子对称性的实例分析
烷烃的分子对称性
烷烃的分子结构:由碳原子和氢原子组成,碳原子之间以单键相连
烷烃的对称性:烷烃分子具有对称性,可以划分为对称中心和旋转 对称轴 烷烃的对称性分类:根据对称性的不同,可以分为Cn、Dn、Cnv、 Dnh等类型
烷烃的对称性应用:在化学合成、药物设计等领域具有重要应用
添加 标题
杂环化合物的分子对称性:指杂环化合物 分子中存在的对称性关系
添加 标题
实例分析:苯环、吡啶环、嘧啶环等杂环 化合物的分子对称性
添加 标题
分子对称性的应用:在药物设计、材料科 学等领域具有重要应用
添加 标题
分子对称性的研究进展:近年来,杂环化 合物的分子对称性研究取得了重要进展, 为相关领域的发展提供了新的思路和方法。
对称操作和对称元素
对称操作:在空间中保持分子 不变的操作,如旋转、反射等
对称元素:在分子中保持不变 的元素,如原子、键等
对称性:分子在空间中的对称 性,如旋转对称、反射对称等
对称操作和对称元素的关系: 对称操作保持对称元素不变, 对称元素在空间中保持对称性
对称性的分类
对称性分为旋转对称性和反射 对称性
官能团
拉曼光谱(Raman):通 过拉曼光谱实验测定分子结
构中的振动模式
电子显微镜(EM):通过 电子显微镜实验测定分子结
构中的精细结构
对称性分析的方法
化学键对称性:研究分子中 化学键的对称性,如单键、 双键、三键等
空间对称性:研究分子在空 间中的对称性,如旋转对称、 反射对称等
电子对称性:研究分子中电 子的分布和对称性,如电子
对称性在化学反应中的应用主要体现在化学反应的预测、反应机理的解析、反应产物的 预测等方面。 对称性在化学反应中的应用还可以帮助科学家更好地理解化学反应的本质,为化学反应 的设计和优化提供指导。

《分子的对称性》课件

《分子的对称性》课件

分子点群的应用
化学反应机理
了解分子的对称性有助于理解化 学反应的机理,因为某些对称元 素可能影响反应的活性和选择性

晶体结构预测
分子点群可以用来预测分子的晶 体结构,因为相同点群的分子往
往具有相似的晶体结构。
药物设计
在药物设计中,了解分子的对称 性有助于预测分子的药理活性,
从而优化药物设计。
BIG DATA EMPOWERS TO CREATE A NEW ERA
05
分子的对称性与物理化学性质
对称性与分子光谱的关系
总结词
分子对称性与光谱性质密切相关,可以通过对称性分析预测光谱特征和变化规律 。
详细描述
分子的对称性决定了其电子云分布和分子振动模式,进而影响分子吸收和发射光 谱的性质。通过对称性分析,可以预测分子的光谱峰位、强度和形状等信息,有 助于理解分子与光相互作用的机制。
02
分子的对称元素
BIG DATA EMPOWERS TO CREATE A NEW
ERA
镜面对称元素
总结词
镜面对称元素是分子中存在的对称元素之一,它使得分子在镜像方向上对称。
详细描述
镜面对称元素通常由平面或轴构成,使得分子在镜像方向上呈现对称性。例如 ,二氧化碳分子中的碳氧双键就是一种镜面对称元素,使得分子在垂直于双键 轴线的平面上对称。
平移对称
分子沿某轴平移一定距离 后,形状和方向保持不变 。
对称性在化学中的重要性
01
对称性是化学中重要的 概念之一,它有助于理 解分子的结构和性质。
02
对称性可以帮助我们预 测分子的某些性质,例 如光学活性、反应活性 等。
03
对称性在化学反应中也 有重要作用,例如对称 催化、对称合成等。

第4章分子的对称性 结构化学

第4章分子的对称性 结构化学

对称面
s v 面:包含主轴
s h 面:垂直于主轴 s d 面:包含主轴且平分相邻 C2轴夹角
(4)对称中心 ( i ) 和反演操作 ( i )
对于分子中任何一个原子来说,在中心点的另一侧,必能 找到一个同它相对应的同类原子,互相对应的两个原子和 中心点同在一条直线上,且到中心点有相等距离。这个中
心点即是对称中心。
I1n= i C1n
基本对称操作
恒等操作 绕C n轴按逆时针方向转 3600/n 通过镜面反映 按对称中心反演
绕S n轴转3600/n,接着按 垂直于轴的平面反映 绕I n轴转3600/n,接着按 中心反演
对称操作的乘积
如果一个操作产生的结果和两个或多个其他操作 连续作用的结果相同,通常称这一操作为其他操 作的乘积。
中四面体构型的属于Td群;八面体构型的属于 Oh
群。如果在分子中除恒等元素之外,只有一个对
称面的属于Cs群;只有一对称中心的属C i群;什 么对称元素都没有的属 C1群
确定分子是否具有象转轴 S(n n为偶数),如果只存 在 Sn轴而别无其他对称元素,这时分子属于假轴向 群类的S n 群。
3、分子点群的确定
Example 在 H2O 的 C2v 群中的任意两个元素之积是可以交换
的,每个元素与自身共轭,即
E C2
= C2
E

C 群共有四类, 每个元2素v 为一类。
C21 s v C2 = C21 C2 s v = E s v = s v

2. 1分子点群的分类
Cn 群
点群定义
对称元素是n重旋转轴,共有n个旋转操作,
3、分子点群的确定
First
确定分子是否属于连续点群—— Cv , Dh。首先着 眼于分子是否是直线型的;如果是,再看他是否 有对称中心,如果有(如 CO2)则分子属于D h群; 如果没有中心(如HCN)则分子属于Cv 群。

分子对称性和分子点群课件

分子对称性和分子点群课件

分子对称性的意义
预测和解释分子的物理和化学性质
分子对称性与分子的电子结构和化学键有关,因此可以用来预测和解释分子的性质,如稳 定性、反应活性等。
确定分子的点群
分子的点群是根据分子的对称性进行分类的,通过确定分子的点群可以更好地理解分子的 结构和性质。
指导药物设计和材料科学
分子对称性在药物设计和材料科学中具有重要意义,例如在药物设计中,可以利用分子对 称性来设计具有特定性质的化合物。
分子对称性在化学反应中的实例分析
以烷烃为例,烷烃的对称性越高,其化学反应选择性越低,因为它们具有更稳定的 分子结构。
以烯烃为例,烯烃的对称性较低,因此它们在加成反应中表现出较高的反应活性。
以芳香族化合物为例,由于芳香族化合物具有较低的对称性,它们在取代反应中表 现出较高的反应活性。
05
CATALOGUE
02
CATALOGUE
分子点群的基本概念
分子点群的分 类
01
02
03
04
第一类点群
包括1个线性群和3个二面体群。
第二类点群
包括4个四面体群、6个三方 柱群和1个六方柱群。
第三类点群
包括4个四方锥群、4个三角 锥群、2个八面体群、1个五 方双锥群和1个三方偏方面体
群。
第四类点群
包括1个二十面体群。
02
分子对称性是分子结构的一个重 要属性,它决定了分子的物理和 化学性质。
分子对称性的分类
01
02
03
点对称性
分子在三维空间中具有一 个或多个对称中心,这些 对称中心可以将分子分成 若干个相同的部分。
轴对称性
分子具有一个或多个对称 轴,这些对称轴可以将分 子分成若干个相同的部分。

分子对称性和分子点群PPT课件

分子对称性和分子点群PPT课件

完整版课件
28
2. Cn点群
C2
H
OO H
仅含有一个Cn轴。如:H2O2仅含有一个C2轴, 该轴平分两个平面的夹角,并交于O-O键的中点,
所以,该分子属于C2点群;类似的结构如:N2H4等
完整版课件
29
3. Cs点群
O
H
Cl
仅含有一个镜面。如:HOCl为一与水类似的
弯曲分子,只有一个对称面即分子平面,所以它属
完整版课件
2
对称元素和对称操作
元素符号
E C
σ
i
S
I
元素名称 单位元素 旋转轴
镜面 对称中心
映轴
反轴
操作符号
Ê
Ĉ σ∧

i
Ŝ
Î
完整版课件
对称操作
恒等操作
绕中心旋转 2π/n
通过镜面反映
按分子中心反 演 绕中心旋转 2π/n 再镜面 对映 绕中心旋转 2π/n 再反演
下一页
3
分子点群的种类
点群
Cn群 C1 Cnv群 C2v Cnh群 C1h Dn群 D3 Dnh群 D2h Dnd群 D2d Sn群 S2 Td群 Td Oh群 Oh
同理,各个对称操作作用于Tx 、Tz,也可 以得到类似的结果。
Tx Tx
Tx
完整版课件
Tz
Tz
Tz
40
C2v
E
C2 (xz) (yz)
Γ1
1
-1
-1
1
Ty
Γ2
1
-1
1
-1
Tx
Γ3
1
1
1
1
Tz
上述数字的集合(矩阵)代表群,就是 群的表示。

结构化学第4章_分子对称性

结构化学第4章_分子对称性

C1h C1 h Cs
2n阶
H
Cl C C H
反式二氯己烯
Cl
C2h群
④ Dn群:
1个Cn轴加上n个垂直Cn的二重轴
(不存在任何对称面)
n1 (1) ( 2) ( n) Dn E, Cn ,Cn , C2 , C2 ,C2


2n阶
D3: [Co( NH 2CH 2CH 2 NH 2 )3 ]
(3)N2(直线形)
(4)CO
有σh、∞个σd(σv)
有∞ 个σv
⑤ 反轴In和旋转反演操作
如果分子图形绕轴旋转3600/n后,再按轴上的中 心点反演,可以产生分子的等价图形,则称该轴为反 轴,对应的对称操作为:I n iCn 例如CH4,其分子构型可用下图表示:
1 C4
i
CH4没有C4,但存在I4
一个有限分子的对称操作的集合构成群,称为分子点群。
2 分子点群的分类
分子的全部对称操作的集合构成群—分子点群, 采用Schonflies(熊夫利)记号。
① Cn群:
只有一个Cn轴。
2 n1 Cn E, Cn , Cn ,, Cn


n阶 C 1群 C 2群 C 3群
CHFClBr H2O2
1D=3.336×10-30c.m
偶极矩是分子本 身固有的性质,与是否有外加 电场无关。
-1-分子的偶极矩和分子的对称性
分子有无偶极矩与分子的对称性有密切关系。 对静态分子,可根据分子的对称性对分子有无 偶极矩作出简单明确的判据: 只有属于Cn和Cnv(n=1,2,3, …,∞) 点群的分子具 有偶极矩。C1v=C1h=Cs,Cs点群也包括在Cnv之 中。 具有对称中心的分子没有偶极矩;有两个对称 元素只相交于一点的分子偶极矩为零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D2h 群 :N2O4
D2h群:乙烯
上一页
主轴垂直于荧光屏. σh在荧光屏上.
下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
D4h群:XeF4
D6h群:苯
D3h 群 : 乙烷重叠型
上一页 下一页 回主目录
Dh群: I3-
返回
2020/3/9
结构化学 精品课程
Sˆ2k1 2k 1

Cˆ 2k1 2k 1
ˆ 2k1 h
Eˆˆh ˆh
后能够产生分子等价图形
的对称操作。将该轴和镜
面组合的对称元素称为象
转轴。
Sˆn Cˆnˆh ˆhCˆn
偶数次象转轴才独立
上一页 下一页 回主目录
返回
2020/3/9
CH4 的
回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
C3群
C3群
H
Cl C
H H
C Cl
Cl
重叠式CH 3CCl3
C3通过分子中心且垂直于荧光屏
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
Cnh群 :
除有一条n次旋转轴Cn外,还有与之垂直的一个镜面 σh .
1. 对称性概念
对称(symmetry) 是一个很常见的现象。在自 然界我们可观察到五瓣对称的梅花、桃花,六瓣的 水仙花、雪花、松树叶沿枝干两侧对称,槐树叶、 榕树叶又是另一种对称……在人工建筑中,北京的 古皇城是中轴线对称。在化学中,我们研究的分子、 晶体等也有各种对称性。
上一页 下一页 回主目录
封闭性: 所有整数(包括零)相加仍为整数
结合律:A(BC)=(AB)C; 2+(3+4)=(2+3)+4
单位元素: 0;
0+3=3+0=3
逆元素: A-1=-A ;
上一页 下一页 回主目录
3-1=-3 3+(-3)=(-3)+3=0
返回
2020/3/9
结构化学 精品课程
§4.2 点群
NH3 对称元素:C3, va, vb , vc
轴除了主轴Cn外,还有与之垂直的 n 条C2副轴. Dn 群: 除主轴Cn外,还有与之垂直的n条C2副轴( 但没有镜面).
Dn



E,Cn
,

Cn2
,

,

Cnn1,

C (1) 2

,C2(2)
,


Cn( n)



上一页 下一页
D2 群
回主目录
主轴C2垂直于荧光屏
【教学要求】
1.熟练掌握对称元素和对称操作的概念。 2.掌握常见的对称元素和对称操作。 3.了解对称操作的乘积。 4.掌握点群的基本概念:群、子群、群的阶、对易
群与非对易群、共轭元素和群的类。 5.掌握常见分子所属点群的确定。 6.掌握分子旋光性和分子偶极矩的对称性判据。
上一页 下一页 回主目录
间定义一种 运算通常称为“乘法”),如果满足下面四 个条件,则称集合G为群。
封闭性:G含有A、B、C、 … 元素,若A、B是G中任意两 个元素,则AB=C及A2=D,C、D仍属于G中的元素。
有单位元素:G中单位元素E,它使集合G中任一元素满足于, ER=RE=R 缔合性:满足乘法结合律,(AB)C=A(BC)
上一页 下一页 回主目录
开篷一棹远溪流 走上烟花踏径游 来客仙亭闲伴鹤 泛舟渔浦满飞鸥 台映碧泉寒井冷 月明孤寺古林幽 回望四山观落日 偎林傍水绿悠悠
返回
2020/3/9
电荷对称:
一组带电粒子 极性互换, 其相互作 用不变(但在弱相互 作用下这种对称被 部分破坏).
结构化学 精品课程
§4.1 分子的对称性
内江师范学院付孝锦
结构化学精品课程
第四章 分子对称性和分子点群
Chapter 3. Molecular Symmetry & Molecular Point Group
目 录 结构化学
精品课程
1 分子的对称性 2 点群 3 群的表示
上一页 下一页 回主目录
返回
2020/3/9
结构化学
精品课程 第四章 分子对称性和分子点群(8学时)
§4.2 点群
Dnd: 在Dn基础上, 增加了n个包含主轴且平分二次副 轴夹角的镜面σd.
D2d : 丙二烯
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
D2d : B2Cl4
上一页 下一页 回主目录Fra bibliotek 返回
2020/3/9
D3d : 乙烷交错型
D4d :单质硫
为三类,通常以 的右下角标明镜面与主轴的关系:
h
垂直于主轴 (horizontal)
C3
Cl
h
Cl
Cl
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
v
通过主轴 (vertical)
C2
d
通过主轴 且平分副轴的夹角 (diagonal/dihedral)
C2
d
对称操作(symmetry operation ) 不改变图形中任何两点的距离而 能使图形复原的操作叫做对称操 作; 对称操作据以进行的几何要素叫 做对称元素. 分子中的四类对称操作及相应的 对称元素如下:
对称元素: 旋转轴 对称操作: 旋转
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
y
i x
对分子图若连续反演n次,
iˆ2k1 iˆ iˆ2k Eˆ
(k 0,1,2...)
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.1 分子的对称性
⑤象转轴(Sn)和旋转反映操作
^
Sn
象转:先将分子绕某轴旋
转 2 n 角度后,再凭借垂 直于该轴的平面进行反映
§4.1 分子的对称性
① 恒等元素(E)和恒等操作( Ê ) ② 旋转轴(Cn)和旋转操作 ( Ĉn)
对称轴 是分子中的一条特 定的直线,其相应的操作是
把分子图形以直线为轴旋转 能产生的等价图形,使分子 图形完全复原的最少次数为 n,分子可能有n个旋转轴, 其中n值最大的称为主轴。
上一页 下一页 回主目录
)
}
上一页 下一页 回主目录
H2O中的C2和两个σv
返回
2020/3/9
结构化学 精品课程
§4.2 点群
C2v群:臭氧
上一页 下一页 回主目录
C2v 群:菲
返回
2020/3/9
结构化学 精品课程
§4.2 点群
C3v :NF3
上一页 下一页 回主目录
C3v :CHCl3
返回

旋转90°




S4
相互 等价



反映




仍代表 H
对称操作与对称元素
旋转是真操作, 其它对称操作为虚操作.
结构化学 精品课程
§3.1 分子的对称性
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
一、群的定义
定义:一个集合G含有A、B、C、D等元素,在这些元素
Cnh
E,
Cn ,
Cn2 , , Cnn1,
h,
hCn,

hCn2,

C n1
hn
上一页
C2h群: 反式二氯乙烯
C2h群: N2F2
C2垂直于荧光屏, σh 在荧光屏上
下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
C3h 群
R
R
C3垂直于荧光屏, σh 在荧光屏上
R
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.2 点群
Cnv 群: 除有一条n 次旋
转轴Cn 外,还有与之 相包含的n 个镜面σv .
Cnv

{E
,
Cn
,
Cn2
,


Cnn1
,
(1) v
,
(2) v
,



( v
n
返回
2020/3/9
D3:这种分子比较少见,其对称元素也不易看出.
[Co(NH2CH2CH2NH2)3]3+是一实例.
唯一的C3旋转轴从xyz轴连 成的正三角形中心穿过, C2
通向Co;
x
三条C2旋转轴分别从每个N–N 键中心穿过通向Co.
C2 z
y
C2
结构化学 精品课程
§4.2 点群
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
E
E C2(x) C2(y) C2(z)
C2
h v v’ i
h
i
结构化学 精品课程
§4.1 分子的对称性
试找出分子中的镜面
上一页 下一页 回主目录
返回
2020/3/9
结构化学 精品课程
§4.1 分子的对称性
④对称中心(i)和反演操作 iˆ
对于具有对称中心的分子, 其中的任何一个原子,在中心的 另一侧,必能找到一个同它对应 的同类原子,互相对应的两个原 子和中心点同在一条直线上,且 距离相等。
相关文档
最新文档