第01讲 集合的概念与运算(解析版)

合集下载

第01讲 集合(解析版)备战2023年高考数学一轮复习精讲精练

第01讲 集合(解析版)备战2023年高考数学一轮复习精讲精练

第01讲集合(精讲+精练)目录第一部分:思维导图(总览全局)第二部分:知识点精准记忆第三部分:课前自我评估测试第四部分:典型例题剖析高频考点一:集合的基本概念高频考点二:集合的基本关系高频考点三:集合的运算高频考点四:venn图的应用高频考点五:集合新定义问题第五部分:高考真题感悟第六部分:集合(精练)1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系:属于 或 不属于,数学符号分别记为:∈和∉. (3)集合的表示方法:列举法、描述法、韦恩图(venn 图). (4)常见数集和数学符号 ①确定性:给定的集合,它的元素必须是确定的;也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.给定集合{1,2,3,4,5}A =,可知1A ∈,在该集合中,6A ∉,不在该集合中; ②互异性:一个给定集合中的元素是互不相同的;也就是说,集合中的元素是不重复出现的. 集合{,,}A a b c =应满足a b c ≠≠.③无序性:组成集合的元素间没有顺序之分。

集合{1,2,3,4,5}A =和{1,3,5,2,4}B =是同一个集合.④列举法把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.⑤描述法用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.2、集合间的基本关系(1)子集(subset ):一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集(proper subset ):如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A 是集合B 的真子集,记作AB (或B A ⊃≠).读作“A 真包含于B ”或“B 真包含A ”.(3)相等:如果集合A 是集合B 的子集(A B ⊆,且集合B 是集合A 的子集(B A ⊆),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.(4)空集的性质: 我们把不含任何元素的集合叫做空集,记作∅;∅是任何集合的子集,是任何非空集合的真子集.3、集合的基本运算(1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ,即{|,}AB x x A x B =∈∈且.(2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A B ,即{|,}AB x x A x B =∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.4、集合的运算性质(1)A A A =,A ∅=∅,A B B A =. (2)A A A =,A A ∅=,A B BA =.(3)()U AC A =∅,()U A C A U =,()U U C C A A =.5、高频考点结论(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个.(2)空集是任何集合A 的子集,是任何非空集合B 的真子集. (3)U U A B A B A A B B C B C A ⊆⇔=⇔=⇔⊆.(4)()()()U U U C AB C A C B =,()()()U U U C A B C A C B =.一、判断题1.(2022·江西·贵溪市实验中学高二期末)集合{},,,A a b c d =的子集共有8个 ( ) 【答案】错误集合{},,,A a b c d =的子集共有4216=个, 故答案为:错误2.(2021·江西·贵溪市实验中学高二阶段练习)集合{}1,2,3,4,5和{}5,4,3,2,1表示同一个集合( ) 【答案】√由集合相等的定义可知,集合{}1,2,3,4,5和{}5,4,3,2,1表示同一集合. 故答案为:√.3.(2021·江西·贵溪市实验中学高三阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是2个.( ) 【答案】正确因{}{}11,2,3M ⋃=,则{2,3}M =或{1,2,3}M =,所以的集合M 的个数是2个. 故答案为:正确4.(2021·江西·贵溪市实验中学高三阶段练习)已知集合{}20M xx x =+=∣,则1M -∈.( ) 【答案】正确因为{}{}200,1M xx x =+==-∣ 所以1M -∈5.(2021·江西·贵溪市实验中学高二阶段练习)满足条件{}{}11,2,3M ⋃=的集合M 的个数是3 ( ) 【答案】错误因集合M 满足{}{}11,2,3M ⋃=,于是得{2,3}M =或{1,2,3}M =,即符合条件的集合M 有2个,所以原命题是错误的.故答案为:错误 二、单选题1.(2022·广东茂名·高一期末)已知集合{}21A x y x ==+,集合{}21B y y x ==+,则A B =( )A .0B .{}|1x x ≥C .{}|1x x ≤D .R【答案】B由题意,集合A R =,{}|1B y y =≥,∴{}|1x x A B =≥. 故选:B.2.(2021·广东·佛山一中高一阶段练习)已知集合{}22,531,=-+A a a ,,{}5,9,1,4=+-B a a ,若{}4A B ⋂=,则实数a 的取值的集合为( ) A .{}1,2,2- B .{}1,2 C .{}1,2- D .{}1【答案】D集合{}22,531,=-+A a a ,,{}5,9,1,4=+-B a a , 又{}4A B ⋂=∴314a +=或24a =,解得1a =或2a =或2a =-, 当1a =时,}{2,5,4,1A =-,}{6,9,0,4B =,{}4A B ⋂=,符合题意; 当2a =时,}{2,5,7,4A =-,}{7,9,1,4B =-,{}7,4⋂=A B ,不符合题意;当2a =-时,}{2,5,5,4A =--,}{3,9,3,4B =,不满足集合元素的互异性,不符合题意.1a,则实数a 的取值的集合为{}1.故选:D.3.(2022·河南平顶山·高三阶段练习(文))已知集合{}1A x x =>,{}260B x x x =--<,则()R A B ⋂=( )A .{}13x x <<B .{}12x x <<C .{}3x x ≥D .{}2x x ≥【答案】C二次不等式求出集合B ,进而求出B R,()RAB .【详解】由题意可得:{}23B x x =-<<,则{2R B x x =≤-或}3x ≥,故(){}R 3A B x x ⋂=≥. 故选:C4.(2022·湖南·沅陵县第一中学高二开学考试)如图所示,阴影部分表示的集合是( )A .(UB ⋂)A B .(U A ⋂)BC .() UA B ⋂D .(U A B )【答案】A由图可知阴影部分属于A ,不属于B , 故阴影部分为() UB A ⋂,故选:A.高频考点一:集合的基本概念1.(2020·重庆·一模(理))已知集合{}2|280,A x Z x x =∈+-<{}2|B x x A =∈,则B 中元素个数为A .4B .5C .6D .7【答案】A{}{}2|280|42{3,2,1,0,1}A x Z x x x Z x =∈+-<=∈-<<=---, {}2|{0,1,4,9}B x x A =∈=,B 中元素个数为4个.故选:A.本题考查集合的化简,注意集合元素的满足的条件,属于基础题.2.(2021·上海黄浦·一模)已知集合{}2,(R)A x x x =∈,若1A ∈,则x =___________.【答案】1-{}2,(R)A x x x =∈,1A ∈, 则1x =或21x =, 解得1x =或1x =-,当1x =时,集合A 中有两个相同元素,(舍去), 所以1x =-.故答案为:1- 3.(2012·全国·一模(理))集合中含有的元素个数为A .4B .6C .8D .12【答案】B共6 个.故选B4.(2017·河北·武邑宏达学校模拟预测(理))集合{}2*|70,A x x x x N =-<∈,则*6|,B y N y A y ⎧⎫=∈∈⎨⎬⎩⎭中元素的个数为 A .1个 B .2个C .3个D .4个【答案】D,,所以集合中的元素个数为4个,故选D.考点:集合的表示5.(2020·湖南·邵东市第十中学模拟预测(理))已知集合{}1,0,1A =-,(),|,,xB x y x A y A y ⎧⎫=∈∈∈⎨⎬⎩⎭N ,则集合B 中所含元素的个数为( ) A .3 B .4 C .6 D .9【答案】B 因为x A ∈,yA ,xy∈N ,所以满足条件的有序实数对为()1,1--,()0,1-,()0,1,()1,1. 故选:B.【点睛】本题考查集合中元素个数的求法,属于基础题.6.(2021·全国·二模(理))定义集合运算:{},,A B z z xy x A y B *==∈∈,设{1,2}A =,{1,2,3}B =,则集合A B *的所有元素之和为( ) A .16 B .18C .14D .8【答案】A由题设知:{1,2,3,4,6}A B *=,∴所有元素之和1234616++++=.故选:A.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后 再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义,再求解时注意把握集合元素的三特性中的“互异性”.高频考点二:集合的基本关系1.(2021·广东肇庆·模拟预测)已知集合{}3P x x =<,{}2Q x Z x =∈<,则( ) A .P Q ⊆ B .Q P ⊆C .P Q P =D .P Q Q ⋃=【答案】B由题意,{}{}21,0,1Q x Z x =∈<=-,{}3P x x =< 故Q P ⊆,A 错,B 对又{1,0,1}P Q Q =-=,{|3}P Q x x P ⋃=<=,故C ,D 错 故选:B2.(2020·山东·模拟预测)已知集合==2{1,},{}M x N x ,若N M ⊆,则x =__. 【答案】0若1x =,则21x =,不符合条件;若2x x =,则0x =或1x =(舍去),经验证0x =符合条件. 故答案为:0.3.(2020·江苏省如皋中学二模)设{,2}M m =,{2,2}N m m =+,且M N ,则实数m 的值是________. 【答案】0;因为{,2}M m =,{2,2}N m m =+,且M N ,所以+222m m m =⎧⎨=⎩,解得0m =,故答案为:0.【点睛】本题主要考查集合的基本运算,利用集合相等求解m 的值是解题关键,属于基础题. 4.(2021·辽宁·东北育才学校一模)所有满足{}{},,,a M a b c d ⊆的集合M 的个数为________;【答案】7 满足{}{},,,a M a b c d ⊆的集合M 有{}{}{}{}{}{}{},,,,,,,,,,,,,,,a a b a c a d a b c a b d a c d ,共7个.故答案为:75.(2022·全国·模拟预测)已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞ D .(),1-∞【答案】C∵集合{}{}2131M x x x x =+<=<,且N M ⊆,∴1a ≤. 故选:C .6.(2020·广西·模拟预测)已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-.(1)求A B ,()R A B ⋂:(2)若B C C =,求实数m 的取值范围.【答案】(1){|05}A B x x ⋃=<≤;(){14}R A B xx x ⋂=≤≥或∣;(2)52m ≤. (1){|05}A B x x ⋃=<≤;(){14}RA B x x x ⋂=≤≥或∣(2)因为B C C =,所以C B ⊆. 当B φ=时,121m m +≥-,即2m ≤; 当B φ≠时,12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,即522m <≤综上,52m ≤7.(2020·广西·模拟预测)已知集合{|121}A x a x a =+≤≤-,{|3B x x =≤或5}x >.(1)若4a =,求A B ; (2)若A B ⊆,求a 的取值范围.【答案】(1){|57}A B x x =<≤;(2){|2a a ≤或}4a >. (1)当4a =时,易得{|57}A x x =≤≤,{|3B x x =≤或5}x >,{|57}A B x x ∴=<≤.(2)若211a a -<+,即2a <时,A =∅,满足A B ⊆, 若211a a -≥+,即2a ≥时,要使A B ⊆,只需2132a a -≤⎧⎨≥⎩或152a a +>⎧⎨≥⎩,解得2a =或4a >,综上所述a 的取值范围为{|2a a ≤或}4a >.【点睛】本题考查根据集合的基本关系求参数,属于基础题. 重点考查结论:(1)若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有21n -个,非空子集有21n -个,非空真子集有22n -个. (2)U U A B AB A A B BC B C A ⊆⇔=⇔=⇔⊆.(3)若A B ⊆注意要讨论①A =∅②A ≠∅高频考点三:集合的运算1.(2022·甘肃陇南·模拟预测(理))已知集合{}|321A x x =->,{}260B x x x =--<,则A B =( )A .{}13x x <<B .{}12x x <<C .{}21x x -<<D .{}31x x -<<【答案】A{}{}{}|321|33|1A x x x x x x =->=>=>{}{}{}260(2)(3)023B x x x x x x x x =--<=+-<=-<<所以{}13A B x x ⋂=<<, 故选:A2.(2022·北京丰台·一模)已知集合{|12}A x x =-<≤,{|21}B x x =-<≤,则A B ⋃=( ) A .{|11}x x -<< B .{|11}x x -<≤ C .{|22}x x -<< D .{|22}x x -<≤【答案】D∵集合{|12}A x x =-<≤,{|21}B x x =-<≤, ∴{|22}A B x x ⋃=-<≤. 故选:D.3.(2022·河南·模拟预测(理))已知集合{}14A x x =≤≤,(){}214B x x =-≥,则()AB =R( )A .[]3,4B .[]1,4C .[)1,3D .[)3,+∞【答案】C解:由()214x -≥,即310x x ,解得3x ≥或1x ≤-,即(){}214{|3B x x x x =-≥=≥或1}x ≤-,所以()1,3R B =-,又{}14A x x =≤≤,所以()[)1,3R A B ⋂=; 故选:C4.(2022·全国·模拟预测(理))设全集U =R ,集合102x A xx ⎧⎫+=≤⎨⎬-⎩⎭,集合{}ln 1B x x =≤,则A B 是( ) A .(]0,2 B .()2,e C .()0,2 D .[)1,e -【答案】C102x x +≤-,解得:12x -≤<,故集合[)1,2A =-,ln 1x ≤,解得:(]0,e x ∈,集合(]0,e B =,则()0,2A B =, 故选:C .5.(2022·江西赣州·一模(理))设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n的值为( ) A .1- B .0 C .1 D .2【答案】C依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ; 当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C6.(2021·江西·模拟预测)2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,传扬中国共产党的伟大精神,为广大青年群体带来精神感召.现有《青春之歌》《建党伟业》《开国大典》三支短视频,某大学社团有50人,观看了《青春之歌》的有21人,观看了《建党伟业》的有23人,观看了《开国大典》的有26人.其中,只观看了《青春之歌》和《建党伟业》的有4人,只观看了《建党伟业》和《开国大典》的有7人,只观看了《青春之歌》和《开国大典》的有6人,三支短视频全观看了的有3人,则没有观看任何一支短视频的人数为________. 【答案】3把大学社团50人形成的集合记为全集U ,观看了《青春之歌》《建党伟业》《开国大典》三 支短视频的人形成的集合分别记为A ,B ,C ,依题意,作出韦恩图,如图,观察韦恩图:因观看了《青春之歌》的有21人,则只看了《青春之歌》的有214638---=(人), 因观看了《建党伟业》的有23人,则只看了《建党伟业》的有234739---=(人), 因观看了《开国大典》的有26人,则只看了《开国大典》的有2667310---=(人), 因此,至少看了一支短视频的有3467891047++++++=(人), 所以没有观看任何一支短视频的人数为50473-=. 故答案为:37.(2021·上海·模拟预测)已知集合{}2890,U x x x x Z =--≤∈,{}A y y y Z ==∈,则UA__________.【答案】{1,6,7,8,9}-由题意,289(9)(1)019x x x x x --=-+≤∴-≤≤,又x ∈Z{}1,0,1,2,3,4,5,6,7,8,9U -∴=又y =由于20(4)2525x ≤--+≤05∴≤,又y Z ∈{}0,1,2,3,4,5A ∴= 故{1,6,7,8,9}UA =-故答案为:{1,6,7,8,9}- 集合运算的常用方法①若集合中的元素是离散的,常用Venn 图求解;②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.高频考点四:venn 图的应用1.(2022·贵州贵阳·一模(理))若全集U 和集合A ,B 的关系如图所示,则图中阴影部分表示的集合为( )A .()U AB ⋂ B .()UB AC .()UA BD .()U A B【答案】A由图知:阴影部分属于A ,不属于B ,故为()U B A ⋂. 故选:A2.(2021·广东·模拟预测)已知全集U =R ,集合{}2,20A x yB xx x ⎧==--<⎨⎩∣∣,它们的关系如图(Venn 图)所示,则阴影部分表示的集合为( )A .{12}x x -≤<∣B .{12}xx -<<∣ C .{12}xx ≤<∣ D .{12}xx <<∣ 【答案】C解:由题意得:{10}{1}A x y xx x x ⎧==->=<⎨⎩∣∣∣ {}220{12}B x x x x x =--<=-<<∣∣{}()1,{12}UUA x x AB x x ∴=≥⋂=≤<∣∣故选:C3.(2021·黑龙江·哈九中三模(理))如图,U 是全集,,,M P S 是U 的子集,则阴影部分表示的集合是( )A .()MP S B .()MP S C .()UM P S ⋂⋂D .()UM P S ⋂⋃【答案】C解:由图知,阴影部分在集合M 中,在集合P 中,但不在集合S 中, 故阴影部分所表示的集合是()UM P S ⋂⋂.故选:C.4.(2021·江苏徐州·二模)某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为( )A .5B .10C .15D .20【答案】C用集合A 表示除草优秀的学生,B 表示椿树优秀的学生,全班学生用全集U 表示,则UA 表示除草合格的学生,则UB 表示植树合格的学生,作出Venn 图,如图,设两个项目都优秀的人数为x ,两个项目都是合格的人数为y ,由图可得203045x x x y -++-+=,5x y =+,因为max 10y =,所以max 10515x =+=. 故选:C .【点睛】关键点点睛:本题考查集合的应用,解题关键是用集合,A B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.5.(2020·北京市第五中学模拟预测)高二一班共有学生50人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择三门课程进行学习.已知选择物理、化学、生物的学生各有至少20人,这三门课程都不选的有10人,这三门课程都选的有10人,在这三门课程中选择任意两门课程的都至少有13人,物理、化学只选一科的学生都至少6人,那么选择物理和化学这两门课程的学生人数至多()A.16 B.17 C.18 D.19【答案】C把学生50人看出一个集合U,选择物理科的人数组成为集合A,选择化学科的人数组成集合B,选择生物颗的人数组成集合C,要使选择物理和化学这两门课程的学生人数最多,除这三门课程都不选的有10人,这三门课程都选的有10人,则其它个选择人数均为最少,即得到单选物理的最少6人,单选化学的最少6人,单选化学、生物的最少3人,单选物理、生物的最少3人,单选生物的最少4人,以上人数最少42人,可作出如下图所示的韦恩图,所以单选物理、化学的人数至多8人,+=人.所以至多选择选择物理和化学这两门课程的学生人数至多10818故选:C.【点睛】本题主要考查了集合的应用,其中解答中根据题意,画出集合运算的韦恩图是解答本题的关键,着重考查数形结合思想,以及分析问题和解答问题的能力.高频考点五:集合新定义问题1.定义集合{|A B x x A -=∈ 且}x B ∉.己知集合{}Z 26U x x =∈-<<,{}0,2,4,5A =,{}1,0,3B =-,则()UA B -中元素的个数为( )A .3B .4C .5D .6【答案】B因为{}0,2,4,5A =,{}1,0,3B =-,所以{}2,4,5A B -=, 又因为{}1,0,1,2,3,4,5U =-,所以(){}U1,0,1,3A B -=-.故选:B.2.设A 、B 是非空集合,定义:{|A B x x A B ⨯=∈且}x A B ∉.已知{|A x y =,{|1}B x x =>,则A B ⨯等于( ) A .[0,1](2,)+∞ B .[0,1)(2,)⋃+∞ C .[0,1] D .[0,2]【答案】A集合A 中,220x x -≥,即()20x x -≤, 解得02x ≤≤,即{}[]|0202A x x =≤≤=,, 又{}|1B x x =>,所以)0,A B ⎡⋃=+∞⎣,](1,2A B ⋂=, 则[]0,1(2,)A B ⨯=⋃+∞. 故选:A .3.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( ) A .2 B .3C .8D .9【答案】B解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3. 故选:B.4.已知非空集合A 、B 满足以下两个条件:(1){}1,2,3,4,5A B =,A B =∅;(2)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(),A B 的个数为( ) A .4 B .6C .8D .16【答案】C由题意可知,集合A 不能是空集,也不可能为{}1,2,3,4,5.若集合A 只有一个元素,则集合A 为{}4;若集合A 有两个元素,则集合A 为{}1,3、{}3,4、{}3,5; 若集合A 有三个元素,则集合A 为{}1,2,4、{}1,2,5、{}2,4,5; 若集合A 有四个元素,则集合A 为{}1,2,3,5. 综上所述,有序集合对(),A B 的个数为8. 故选:C.【点睛】关键点点睛:解本题的关键在于对集合A 中的元素个数进行分类讨论,由此确定集合A ,由此得解.5.(多选)在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即{}[]5k n k n Z =+∈,0,1,2,3,4k =.则下列结论正确的是( )A .2011[1]∈;B .[0][1][2][3][4]Z =⋃⋃⋃⋃;C .3[3]-∈;D .整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.【答案】ABDA :2011除以5,所得余数为1,满足[]1的定义,故正确;B :整数集Z 就是由除以5所得余数为0,1,2,3,4的整数构成的,故正确;C :()3512-=⨯-+,故[]33-∉,故错误;D :设{}112212125,5,,,,0,1,2,3,4a n m b n m n n Z m m =+=+∈∈, 则()12125a b n n m m -=-+-;若整数a ,b 属于同一“类”,则120m m -=,所以[]0a b -∈; 反之,若[]0a b -∈,则120m m -=,即12m m =,,a b 属于同一“类”. 故整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”,正确. 故选:ABD .1.(2021·山东·高考真题)假设集合{}1,2,3A =,{}1,3B =,那么A B 等于( ) A .{}1,2,3 B .{}1,3C .{}1,2D .{}2【答案】B{}1,2,3A =,{}1,3B =,{}1,3∴⋂=A B . 故选:B .2.(2021·湖南·高考真题)已知集合{}13,5A =,,{}1,2,3,4B =,且A B =( ) A .{}1,3 B .{}1,3,5C .{}1,2,3,4D .{}1,2,3,4,5【答案】A因为集合{}13,5A =,,{}1,2,3,4B = 所以{}1,3A B =, 故选:A.3.(2021·江苏·高考真题)已知集合{}1,3M =,{}1,3N a =-,若{}1,2,3M N =,则a 的值是( )A .-2B .-1C .0D .1【答案】B 因为{}1,2,3MN =,若110a a -=⇒=,经验证不满足题意;若121a a -=⇒=-,经验证满足题意. 所以1a =-. 故选:B.4.(2021·天津·高考真题)设集合{}{}{}1,0,11,3,5,0,2,4A B C =-==,,则()A B C ⋂⋃=( ) A .{}0 B .{0,1,3,5} C .{0,1,2,4} D .{0,2,3,4}【答案】C{}{}{}1,0,11,3,5,0,2,4A B C =-==,,{}1A B ∴⋂=,{}()0,1,2,4A B C ⋂⋃=∴. 故选:C.5.(2021·全国·高考真题)设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()UA B =( )A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B 由题设可得{}U1,5,6B =,故(){}U 1,6A B ⋂=,故选:B.6.(2021·浙江·高考真题)设集合{}1A x x =≥,{}12B x x =-<<,则A B =( ) A .{}1x x >- B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D由交集的定义结合题意可得:{}|12A B x x =≤<. 故选:D.7.(2021·全国·高考真题(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ( )A .∅B .SC .TD .Z【答案】C任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =. 故选:C.一、单选题1.(2021·北大附中云南实验学校高一阶段练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .北大附中云南实验学校20202021-学年度第二学期全体高一学生C .高一年级视力比较好的同学D .高一年级很有才华的老师 【答案】B 【详解】对于ACD ,集合中的元素具有确定性,但ACD 中的元素不确定,故不能构成集合,ACD 错误; B 中的元素满足集合中元素的特点,可以构成集合,B 正确. 故选:B.2.(2022··模拟预测(理))已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B3.(2022·贵州毕节·模拟预测(理))已知集合(){}10A x x x =-=,{}20,,B m m =,若A B B ⋃=,则m =( ) A .1- B .0C .1D .±1【答案】A∵集合(){}{}100,1A x x x =-==,{}20,,B m m =,A B B ⋃=,∴1m =或21m =,即1m =±,当1m =时,{}0,1,1B =不合题意,当1m =-时,{}0,1,1B =-成立, ∴1m =-. 故选:A.4.(2022·全国·模拟预测)已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3 B .4 C .8 D .16【答案】C依题意{}2,3,4B =,所以集合B 的子集的个数为328=, 故选:C.5.(2022·湖南·长沙一中高三阶段练习)集合1,36n M x x n Z ⎧⎫==+∈⎨⎬⎩⎭,1,63n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭,则MN =( ) A .M B .N C .∅ D .,6n x x n Z ⎧⎫=∈⎨⎬⎩⎭【答案】B由已知2,6n M x x n Z ⎧⎫+==∈⎨⎬⎩⎭,21,6n N x x n Z ⎧⎫+==∈⎨⎬⎩⎭,又2n +表示整数,21n 表示奇数,故M N N =,故选:B6.(2022·广东·高二期末)集合{}2230A x x x =--=,{}10B x mx =+=,A B A ⋃=,则m 的取值范围是( ) A .11,3⎧⎫-⎨⎬⎩⎭B .{}1,3-C .10,3⎧⎫-⎨⎬⎩⎭D .10,1,3⎧⎫-⎨⎬⎩⎭【答案】D根据题意,可得:{}3,1A =- A B A ⋃=,则有:B A ⊆当0m =时,B =∅,满足题意; 当0m ≠时,则有:1x m=- 则有:13m -=,11m-=-解得:13m =-或1m =综上,解得:0m =或13m =-或1m =故答案选:D7.(2022·湖南·长郡中学高二阶段练习)已知集合(){}2ln 4A x y x ==-,{B y x =,则A B =( )A .()2,3B .()(],22,3-∞-C .()0,3D .(]2,3【答案】B 由题意得,{}2|40{|2A x x x x =->=<-或2}x >,{}|3B y y =≤,故A B ⋂()(],22,3∞=--⋃, 故选:B8.(2022·河南·温县第一高级中学高三阶段练习(理))已知集合102x A xx ⎧⎫-=≤⎨⎬+⎩⎭,B ={-2,-1,0,1},则A ∩B =( ) A .{-2,-1,0,1} B .{-1,0,1}C .{-1,0}D .{-2,-1,0}【答案】B 因为102x x -≤+等价于(1)(2)020x x x -+≤⎧⎨+≠⎩等价于21x -<≤, 所以{|21}A x x =-<≤,又{}2,1,0,1B =--, 所以A B ={}1,0,1-. 故选:B 二、填空题9.(2022·四川·雅安中学高一阶段练习)集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 【答案】8{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:810.(2022·上海金山·高一期末)满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.【答案】7由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个,故答案为:7.11.(2022·全国·高三专题练习)已知集合{}2{123},280A x a x a B x x x =-<<+=--≤,若()R A B A ⋂=,求实数a 的取值范围是___________. 【答案】[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦()R A B A =⋂,R A B ∴⊆ {}2280B x x x =--≤,{2R B x x ∴=<-∣或4}x > 当A =∅时,123,4a a a -+-,满足R A B ⊆当A ≠∅时,要使得R A B ⊆,则4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-⎩ 解得542a -<≤-或5a 综上,实数a 的取值范围是[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦ 故答案为:[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦12.(2022·全国·高三专题练习)设集合{}2280A x x x =-->,{B x x a =≤或}5x a ≥+,若()R A B ⋂=∅,则a 的取值范围是___________. 【答案】[]2,1--{}()(){}{22804202A x x x x x x x x =-->=-+>=<-或}4x >, 因为{B x x a =≤或}5x a ≥+,所以{}R 5B x a x a =<<+,若()R A B ⋂=∅,则254a a ≥-⎧⎨+≤⎩,解得21a -≤≤-. 所以a 的取值范围是[]2,1--,故答案为:[]2,1--.三、解答题13.(2022·山西·榆次一中高一开学考试)已知集合{}22150M x x x =--≤,{}N x m x m =-≤≤.(1)当1m =时,求M N ⋂以及()()R R M N ⋃;(2)若M N ,求实数m 的取值范围.【答案】(1)[1,1]=-M N ,()()()(),11,R R M N ∞∞⋃=--⋃+(2)[5,)+∞ (1){}{}(3)(5)035M x x x x x =+-≤=-≤≤,当1m =时,[1,1]N =-,∴[1,1]=-MN , (,3)(5,)=-∞-+∞R M ,(,1)(1,)=-∞-+∞R N ,∴()()(,1)(1,)=-∞-+∞R R M N .(2)由题可知M N , 所以35-≤-⎧⎨≥⎩m m , 解得5m ≥,所以实数m 的取值范围为[5,)+∞.14.(2022·江苏省天一中学高一期末)集合1121x A x x +⎧⎫=>⎨⎬-⎩⎭,{}22240B x x ax a =-+-<. (1)若{}23,4,23C a a =+-,()0B C ∈,求实数a 的值;(2)从条件①②③这三个条件中选择一个作为已知条件,求实数a 的取值范围.条件:①A B A =;②()R A B ⋂=∅;③()R B A R ⋃=.(注:答题前先说明选择哪个条件,如果选择多于一条件分别解答,按第一个解答计分).【答案】(1)1(2)条件选择见解析,502a ≤≤(1)因为()0B C ∈,所以0C ∈,所以2230a a +-=,解得:1a =或3a =-.当3a =-时,{}51B x x =-<<-,不合题意;当1a =时,{}13B x x =-<<,满足题设.∴实数a 的值为1.(2)集合1112212x A x x x x +⎧⎫⎧⎫=>=<<⎨⎬⎨⎬-⎩⎭⎩⎭. 集合{}{}2224022B x x ax a x a x a =-+-<=-<<+. 若选择①A B A =,即22501222a A B a a +≥⎧⎪⊆⇒⇒≤≤⎨-≤⎪⎩若选择②()12502222R a A B a a ⎧-≤⎪⋂=∅⇔⇔≤≤⎨⎪+≥⎩, 若选择③()R B A R ⋃=,则22501222a a a +≥⎧⎪⇒≤≤⎨-≤⎪⎩15.(2022·江西·赣州市赣县第三中学高一开学考试)已知集合{}2430A x x x =++=,{}22230B x x ax a a =-+--=. (1)若1a =,求A B ;(2)若A B A ⋃=,求a 的取值集合.【答案】(1){}1A B ⋂=-(2){3a a ≤-或}2a =-.(1)当1a =时,{}{}22301,3B x x x =--==-. 因为{}{}24303,1A x x x =++==--, 所以{}1A B ⋂=-.(2)因为A B A ⋃=,所以B A ⊆.当()224434120a a a a ∆=---=+<时,解得3a <-,B =∅,符合题意; 当4120a ∆=+=,即3a =-时,{}3B =-,符合题意;当4120a ∆=+>,即3a >-时,{}3,1B A ==--,则()()2312,313,a a a ⎧-+-=⎪⎨-⨯-=--⎪⎩解得2a =-. 综上,a 的取值集合是{3a a ≤-或}2a =-.16.(2022·江苏·高一)已知集合A 为非空数集,定义:{},,S x x a b a b A ==+∈,{},,T x x a b a b A ==-∈.(1)若集合{}1,3A =,直接写出集合S 、T ;(2)若集合{}1234,,,A x x x x =,且T A =,写出一个满足条件的集合A ,并说明理由;(3)若集合{}02020,A x x x N ⊆≤≤∈,S T ⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.【答案】(1){}2,4,6S =,{}0,2T =(2){}1234,,,A x x x x =,1234x x x x <<<,理由见解析(3)1347(1)根据题意,由{}1,3A =,则{}2,4,6S =,{}0,2T =;(2)由于集合{}1234,,,A x x x x =,1234x x x x <<<,且T A =,所以T 中也只包含四个元素,即{}2131410,,,T x x x x x x =---,剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;(3)设{}12,,k A a a a =满足题意,其中12k a a a <<<,则11213223122k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<, ∴21S k ≥-,1121311k a a a a a a a a -<-<-<<-,∴T k ≥, ∵S T ⋂=∅,31S T S T k ⋃=+≥-, S T 中最小的元素为0,最大的元素为2k a , ∴21k S T a ⋃≤+,∴()31214041*k k a k N -≤+≤∈, 1347k ≤,实际上当{}674,675,676,,2020A =时满足题意, 证明如下:设{},1,2,,2020A m m m =++,m N ∈,则{}2,21,22,,4040S m m m =++,{}0,1,2,,2020T m =-, 依题意有20202m m -<,即16733m >, 故m 的最小值为674,于是当674m =时,A 中元素最多, 即{}674,675,676,,2020A =时满足题意, 综上所述,集合A 中元素的个数的最大值是1347.。

专题01 集合的概念与运算 (解析版)

专题01 集合的概念与运算 (解析版)

专题01 集合的概念与运算【名师预测】江苏高考对集合知识的考查比较低,以填空题的形式进行考查,主要考查集合与集合、元素与集合间的关系以及集合的交集、并集、补集的运算,同时注重对Venn图、数轴等数形结合思想的考查。

集合的基本运算有时会以集合知识为载体,往往与函数、方程、不等式等知识结合考查,体现出小题目综合化的命题趋势。

集合的学习要有弹性,要有所取舍.比如我们不必在集合间的关系上过于深究,也不必在集合的概念等内容上过于钻研。

【知识精讲】1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:2.集合间的基本关系3.集合的基本运算4.集合关系与运算的常用结论(1)若集合A中有n个元素,则A的子集有2n个,真子集有12n-个,非空子集有12n-个.(2)集合的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B.(考虑A是空集和不是空集两种情况)(4)C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B).【典例精练】考点一集合的基本概念例1. A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为________.【解析】集合B中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.故答案为9.例2.若-1∈{a-1,2a+1,a2-1},则实数a的取值集合是________.【解析】若a-1=-1,解得a=0,此时集合中的元素为-1,1,-1,不符合元素的互异性;若2a+1=-1,解得a=-1,此时集合中的元素为-2,-1,0,符合题意;若a2-1=-1,解得a=0,不符合题意,综上所述,a=-1.故答案为{-1}.例3.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=________.【解析】若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.①当a=0时,x=23,符合题意;②当a ≠0时,由Δ=(-3)2-8a =0,得a =98. ∴a 的值为0或98故答案为0或98.例4.已知集合A ={1,2,3},B ={1,m },若3-m ∈A ,则非零实数m 的值是________. 【解析】由题意知,若3-m =1,则m =2,符合题意;若3-m =2,则m =1,此时集合B 不符合元素的互异性,故m ≠1; 若3-m =3,则m =0,不符合题意. 故m =2. 故答案为2.【方法点睛】与集合中元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是数集还是点集; (2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.在解决集合中含有字母的问题时,一定要返回代入验证,防止与集合中元素的互异性相矛盾. 考点二 集合间的基本关系例5.已知集合{}1,2,3,4,5A =,{}(,),,,B x y x A y A x y x y A =∈∈<+∈,则集合B 的子集的个数是 . 【解析】∵集合{}1,2,3,4,5A =,{}(,),,,B x y x A y A x y x y A =∈∈<+∈ ∴{}(1,2),(2,3),(1,3),(1,4)B = ∴集合B 的子集个数是4216=. 故答案为16.例6.设集合{}2,4A =,{}2,2B a =,(其中0a <),若A B =,则实数a =________. 【解析】∵集合{}2,4A =,{}2,2B a =,且A B = ∴24a = 又0a < ∴2a =- 故答案为-2.例7.已知集合{}1,2a A =,集合{}1,1,4B =-,且A B ⊆,则正实数a =________.【解析】∵集合{}1,2a A =,集合{}1,1,4B =-,且A B ⊆ ∴24a = ∴2a = 故答案为2.例8.已知集合{}15A x x =≤<,{}3B x a x a =-<≤+,若()B A B ⊆,则实数a 的取值范围为________.【解析】∵()B A B ⊆∴B A ⊆①当B =∅时,满足B A ⊆,此时3a a -≥+,即32a ≤-. ②当B ≠∅时,要使B A ⊆,则3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,解得312a -<≤-由①②可知,实数a 的取值范围为(,1]-∞-. 故答案为(,1]-∞-.【方法点睛】判断集合间关系的3种方法①列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系;②结构法:从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断; ③数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系,运用数轴图示法时要特别注意端点是实心还是空心.注意:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 考点三 集合的基本运算例9.设全集{}*5,U x x x N =<∈,集合{}1,2A =,{}2,4B =,则()U C AB = .【解析】∵集合{}{}*5,1,2,3,4U x x x N =<∈=,且集合{}1,2A =,{}2,4B = ∴{}1,2,4AB =∴{}()3U C AB =故答案为{}3.例10.已知全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,则实数a =________. 【解析】由题意知,2235a a +-=,解得a =-4或a =2.① 当a =-4时,|2a -1|=9,而9U ∉,所以a =-4不满足题意,舍去; ② 当a =2时,|2a -1|=3,3U ∈,满足题意. 故实数a 的值为2. 故答案为2.例11.设集合{}(,)1A x y y ax ==+,集合{}(,)B x y y x b ==+,且{}(2,5)A B =,则a b +=____.【解析】∵集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =∴521a =+,且52b =+ ∴2a =,3b = ∴5a b += 故答案为5.例12.设A ,B 是非空集合,定义{}()()A B x x A B x A B ⊗=∈∉且.已知集合{}02A x x =<<,{}0B y y =≥,则A B ⊗=________.【解析】∵{}02A x x =<<,{}0B y y =≥ ∴{}0AB x x =≥,{}02A B x x =<<∴{}02A B x x x ⊗==≥或 故答案为{}02x x x =≥或.【方法点睛】解集合运算问题4个技巧① 看元素构成:集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键; ② 对集合化简:有些集合是可以化简的,先化简集合再研究其关系并进行运算,可使问题简单明 了、易于解决;③ 数形结合:常用的数形结合形式有数轴、坐标系和Venn 图;④新定义型问题:以集合为依托,对集合的定义、运算、性质加以深入的创新,但最终化为原来的集合知识和相应数学知识来解决.【名校新题】一、填空题1.(2019·江苏徐州第一次质量检测)已知集合{}0,1,2,3A =,{}|02B x x =<…,则A B =_________.【解析】取集合,A B 的公共部分即可,所以,{1,2}A B ⋂= 故答案为:{}1,22.(2019·苏北七市第二次质量检测)已知集合{}13A a =,,,{45}B =,.若A B ={4},则实数a 的值为____.【解析】∵A B ⋂= {}4,∴a=4 故答案为43.(2019·江苏金陵中学高考第四次模拟)设全集U ={}5N x x x *<∈,,集合A ={1,2},B ={2,4},则∁U (A ⋃B)=_______.【解析】集合U ={}5N x x x *<∈,={}1,2,3,4,且A ={1,2},B ={2,4},得A ⋃B ={1,2,4},所以∁U (A ⋃B)={3} 故答案为:{3}4.(2019·江苏南通四月质量检测)已知集合 ,B ,则A B _____.【解析】∵由题意可知A∩B 中的元素是2的整数倍,且在(-2,3)内, ∴A∩B ={0,2}. 故答案为:{0,2}.5.(2019·江苏徐州高考考前模拟)集合{}1,0,1A =-,{}|20B x x =-<<,则A B 中元素的个数是______.【解析】A 中仅有1B -∈,故AB 中元素的个数为1,填1 .6.(2019·江苏宿迁调研测试)已知集合[)1,4,(,)A B a ==-∞,若A B ⊆,则实数a 的取值范围是 。

数学(理)一轮教学案:第一章第1讲 集合的概念及运算 Word版含解析

数学(理)一轮教学案:第一章第1讲 集合的概念及运算 Word版含解析

第一章集合与常用逻辑用语第1讲集合的概念及运算1集合的基本概念(1)集合元素的性质:确定性、互异性、无序性.(2)元素与集合的关系:属于记为∈,不属于记为∉.(3)常见集合的符号集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R(4)集合的表示方法:列举法、描述法、图示法.2集合间的基本关系表示关系文字语言符号语言相等集合A与集合B中的所有元素相同A⊆B且B⊆A⇔A=B子集A中任意一个元素均为B中的元素A⊆B或B⊇A真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B或B A空集空集是任何集合的子集,是任何非空集合的真子集∅⊆A∅B(B≠∅)注意点元素互异性的应用(1)利用集合元素的互异性找到解题的切入点.(2)在解答完毕时,注意检验集合的元素是否满足互异性以确保答案正确.1.思维辨析(1){1,2,3}={2,3,1}.()(2)空集中只有一个元素0.()(3)集合{x2+x,0}中实数x可取任意值.()(4)任何集合都至少有两个子集.()(5)集合{x|y=x-1}与集合{y|y=x-1}是同一个集合.()(6)若A={0,1},B={(x,y)|y=x+1},则A⊆B.()答案(1)√(2)×(3)×(4)×(5)×(6)×2.若集合A={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A答案 D解析A={x∈N|x≤10}={0,1,2,3}而a=22,∴a∉A.3.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案 C解析由U={1,2,3,4,5,6,7},A={1,3,5,6},∴∁U A={2,4,7},故选C.4.已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是()A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}答案 C解析由x2-5x-6<0,解得-1<x<6,所以A={x|-1<x<6}.由2x<1,解得x<0,所以B={x|x<0}.又图中阴影部分表示的集合为(∁B)∩A,因为∁U B={x|x≥0},所以(∁U B)∩A={x|0≤x<6},故选C. U[考法综述]集合元素的三大特性是理解集合概念的关键,一般涉及集合与元素之间的关系及根据集合中元素的特性(特别是集合中元素的互异性),来确定集合中元素的个数,或求参数的取值范围,属于基础题.命题法1 集合的基本概念典例1 (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0D .0或98 [解析] (1)当x =0,y =0,1,2时,x -y 的值分别为0,-1,-2;当x =1,y =0,1,2时,x -y 的值分别为1,0,-1;当x =2,y =0,1,2时,x -y 的值分别为2,1,0;∴B ={-2,-1,0,1,2}.∴集合B 中元素的个数是5个.(2)集合A 是方程ax 2-3x +2=0在实数范围内的解集,且A 中只有一个元素,所以方程ax 2-3x +2=0只有一个实数根.若a =0,则方程为-3x +2=0,解得x =23,满足条件;若a ≠0,则二次方程ax 2-3x +2=0有两个相等的实数根,即Δ=(-3)2-8a =0,解得a =98,所以a =0或a =98.[答案] (1)C (2)D【解题法】 解决集合概念问题的一般思路研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.命题法2 集合之间的关系典例2已知集合A={x|x<-3或x>7},B={x|x<2m-1},若B⊆A,则实数m的取值范围是________.[解析]由题意知2m-1≤-3,m≤-1,∴m的取值范围是(-∞,-1].[答案](-∞,-1]【解题法】利用集合关系求参数取值范围及集合相等问题(1)根据两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且常要对参数进行讨论.注意点:注意区间端点的取舍.(2)若两个集合相等,首先分析某一集合的已知元素在另一个集合中与哪一个元素相等,有几种情况,然后列方程(组)求解.1.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A答案 D解析由真子集的概念知B A,故选D.2.若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案 A解析ax2+ax+1=0只有一个根,当a=0时方程无解,当a≠0,Δ=0时,即a2-4a=0,a=4,故选A.3.已知集合A={x|ax=1},B={x|x2-1=0},若A⊆B,则a的取值构成的集合是()A.{-1} B.{1}C.{-1,1} D.{-1,0,1}答案 D解析 B ={x |(x +1)(x -1)=0}={-1,1}.若A ⊆B ,则有以下情况:当a =0时,A =∅,满足A ⊆B ;当a ≠0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =1a ,若A ⊆B ,则A ={-1}时,a =-1;A ={1}时,a =1;故当a =0,-1,1时满足A ⊆B .4.设集合P ={x |x >1},Q ={x |x 2-x >0},则下列结论正确的是( )A .P ⊆QB .Q ⊆PC .P =QD .P ∪Q =R答案 A解析 ∵Q ={x |x 2-x >0}={x |x >1或x <0}, 又P ={x |x >1},∴P ⊆Q ,故选A. 1 集合的运算及性质 名称 交集 并集 补集 符号 A ∩B A ∪B ∁U A 数学语言 A ∩B ={x |x ∈A 且x ∈B }A ∪B ={x |x ∈A 或x ∈B }∁U A ={x |x ∈U 且x ∉A } 图形运算性质A ∩B ⊆A , A ∩B ⊆B , A ∩∅=∅B ⊆A ∪B , A ⊆A ∪B , A ∪∅=AA ∪(∁U A )=U , A ∩(∁U A )=∅, ∁U (∁U A )=A2 集合间运算性质的重要结论 (1)A ∪B =A ⇔B ⊆A . (2)A ∩B =A ⇔A ⊆B . (3)A ∩B =A ∪B ⇔A =B .(4)狄摩根定律:∁U (A ∪B )=(∁U A )∩(∁U B ); ∁U (A ∩B )=(∁U A )∪(∁U B ). 注意点 空集的特殊性在解题中,若未指明集合非空时,要考虑空集的可能性,如A ⊆B ,则有A =∅和A ≠∅两种可能,此时应分类讨论.1.思维辨析(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)若A∩B=A∩C,则B=C.()(5)已知集合M={1,2,3,4},N={2,3},则M∩N=N.()(6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则∁U P={2}.()答案(1)×(2)×(3)√(4)×(5)√(6)√2.已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}答案 A解析A={x|(x-2)(x+1)≤0}={x|-1≤x≤2},又B为整数集,所以A∩B={-1,0,1,2},故选A.3.已知集合A={0,1,2},集合B满足A∪B={0,1,2},则集合B 有________个.答案8解析由A∪B={0,1,2}得B⊆A,所以B是A的子集.由A中有3个元素知B有23=8个.[考法综述]集合的基本运算是历年高考的热点,常与函数、不等式、方程等知识综合考查,主要以选择题形式出现.命题法求交集、并集和补集典例(1)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.[-2,-1] B.[-1,1]C.[-1,2) D.[1,2)(2)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析](1)由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.(2)利用数轴分析求解.∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0,或x≥1}.在数轴上表示,如图所示.∴∁U(A∪B)={x|0<x<1}.[答案](1)A(2)D【解题法】解决集合运算问题的方法在进行集合运算时,要尽可能地利用数形结合的思想使抽象问题直观化.(1)用列举法表示的集合进行交、并、补的运算,常采用Venn图法解决,此时要搞清Venn图中的各部分区域表示的实际意义.(2)用描述法表示的数集进行运算,常采用数轴分析法解决,此时要注意“端点”能否取到.(3)若给定的集合是点集,常采用数形结合法求解.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B =()A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}答案 A解析因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A∩B={-1,0}.选A.2.已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}答案 A解析由已知得∁U B={2,5,8},∴A∩(∁U B)={2,5}.3.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A.[0,1) B.(0,2]C.(1,2) D.[1,2]答案 C解析∵P={x|x≥2或x≤0},∴∁R P={x|0<x<2},∴(∁R P)∩Q=(1,2).4.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅答案 C解析A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.5.设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N =()A.[0,1] B.[0,1)C.(0,1] D.(0,1)答案 B解析∵M={x|x≥0,x∈R}.N={x|x2<1,x∈R}={x|-1<x<1,x∈R}.∴M∩N={x|0≤x<1},即M∩N=[0,1).故选B.6.已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{0,1} B.{-1,0,2}C.{-1,0,1,2} D.{-1,0,1}答案 C解析M={-1,0,1},N={0,1,2},M∪N={-1,0,1,2},故选C.7.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4)答案 C解析 A ={x ||x -1|<2}={x |-1<x <3},B ={y |y =2x ,x ∈[0,2]}={y |1≤y ≤4},∴A ∩B ={x |-1<x <3}∩{y |1≤y ≤4}={x |1≤x <3}.8.设全集U =R ,A ={x |y =lg (1-x )},则∁R A =( ) A .(-∞,1) B .(0,1) C .[1,+∞) D .(1,+∞)答案 C解析 ∵y =lg (1-x ),∴1-x >0,即x <1,∴∁R A ={x |x ≥1}.9.已知集合A ={x |x =2k +1,k ∈Z },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3≤0,则A ∩B =( )A .[-1,3]B .{-1,3}C .{-1,1}D .{-1,1,3}答案 C解析 ∵B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3≤0={x |-1≤x <3},又集合A 为奇数集,∴A ∩B ={-1,1},故选C.10.已知全集U =R ,A ={x |x >1},B ={x |x 2-2x >0},则∁U (A ∪B )=( )A .{x |x ≤2}B .{x |x ≥1}C .{x |0≤x ≤1}D .{x |0≤x ≤2} 答案 C解析 由x 2-2x >0得x >2或x <0,即B ={x |x <0,或x >2},∴A∪B={x|x<0,或x>1},∴∁U(A∪B)={x|0≤x≤1}.11.集合M={2,log3a},N={a,b},若M∩N={1},则M∪N=()A.{0,1,2} B.{0,1,3}C.{0,2,3} D.{1,2,3}答案 D解析因为M∩N={1},所以log3a=1,即a=3,所以b=1,即M={2,1},N={3,1},所以M∪N={1,2,3},故选D.12.已知全集U,集合A⊆B⊆U,则有()A.A∩B=B B.A∪B=AC.(∁U A)∩(∁U B)=∁U B D.(∁U A)∪(∁U B)=∁U B答案 C解析∵A⊆B⊆U,∴A∩B=A,故选项A不正确;A∪B=B,故选项B不正确;(∁U A)∩(∁U B)=∁U(A∪B)=∁U B,故选项C正确;(∁A)∪(∁U B)=∁U(A∩B)=∁U A,故选项D不正确.故选C.U13.设集合U=R,A={x|2x(x-2)<1},B={x|y=ln (1-x)},则图中阴影部分表示的集合为()扫一扫·听名师解题A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}答案 B解析易知A={x|2x(x-2)<1}={x|x(x-2)<0}={x|0<x<2},B={x|y =ln (1-x)}={x|1-x>0}={x|x<1},则∁U B={x|x≥1},阴影部分表示的集合为A∩(∁U B)={x|1≤x<2}.创新考向以集合为载体的创新问题是近几年高考命题的一个热点,这类问题以集合为依托,考查学生理解问题、解决创新问题的能力.其命题形式常见的有新概念、新法则、新运算、新性质等.创新例题已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49C.45 D.30答案 C解析集合A={(x,y)|x2+y2≤1,x,y∈Z},所以集合A中有5个元素(即5个点),即图中圆内及圆上的整点.集合B={(x,y)||x|≤2,|y|≤2,x,y∈Z}中有25个元素(即25个点),即图中正方形ABCD 内及正方形ABCD上的整点.集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}中的元素可看作正方形A1B1C1D1内及正方形A1B1C1D1上除去四个顶点外的整点,共7×7-4=45个.创新练习1.设集合S={A0,A1,A2},在S上定义运算⊕:A i⊕A j=A k,其中k为i+j被3除的余数,i,j∈{1,2,3},则使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)总共有()A.1对B.2对C.3对D.4对答案 C解析i=1时,j=1符合要求,i=2时,j=2符合要求;i=3时,j=3符合要求,所以使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)有(1,1),(2,2),(3,3),共3对.2.若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.答案 6解析因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上,符合条件的有序数组的个数是6.3.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集.则S 4的所有奇子集的容量之和为________.答案 7解析 根据题意,S 4的所有奇子集为{1}、{3}、{1,3},分析可得{1}的容量为1,{3}的容量为3,{1,3}的容量为3,则其容量之和为1+3+3=7.创新指导1.准确转化:解决集合创新问题时,一定要读懂题目的本质含义,紧扣题目所给条件,结合题目要求进行恰当转化,切忌同已有概念或定义相混淆.2.方法选取:对于集合创新问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解,同时注意培养学生领悟新信息、运用新信息的能力.已知集合A ={x |ax -1=0},B ={x |1<log 2x ≤2,x ∈N },且A ∩B =A ,则a 的所有可能值组成的集合是( )A .∅B.⎩⎨⎧⎭⎬⎫13 C.⎩⎨⎧⎭⎬⎫13,14 D.⎩⎨⎧⎭⎬⎫13,14,0 [错解][错因分析] 集合A 为方程ax -1=0的实数解构成的集合,由A ∩B =A ,知A ⊆B ,A 可以为非空集合,也可以是空集.在解题中,很容易漏掉对A =∅的讨论,导致误选C.[正解] 由A ∩B =A ,得A ⊆B .因为B ={x |1<log 2x ≤2,x ∈N }={x |2<x ≤4,x ∈N }={3,4},当A =∅时,则方程ax -1=0无实数解,所以a =0,此时显然有A ⊆B ,符合题意.当A ≠∅时,则由方程ax -1=0,得x =1a . 要使A ⊆B ,则1a =3或1a =4,即a =13或a =14.综上所述,a 的所有可能取值组成的集合是⎩⎨⎧⎭⎬⎫0,13,14.故选D. [答案] D [心得体会]………………………………………………………………………………………………时间:45分钟基础组1.[2016·武邑中学模拟]已知集合A ={0,1},B ={x |x ⊆A },则下列集合A 与B 的关系正确的是( )A .A ⊆B B .A BC .B AD .A ∈B答案 D解析 因为x ⊆A ,所以B ={∅,{0},{1},{0,1}},则集合A ={0,1}是集合B 中的元素,所以A ∈B .故选D.2.[2016·枣强中学一轮检测]已知集合A ⊆B ,A ⊆C ,B ={0,1,2,3,5,9},C ={2,4,8,10},则A 可以是( )A .{1,2}B .{2,4}C .{4}D .{2} 答案 D解析 解法一:因为A ⊆B ,A ⊆C ,所以A ⊆(B ∩C ),故集合A 可以是{2},故选D.解法二:逐项验证,可知当A ={1,2}时,不满足A ⊆C ;同理可知当A ={2,4}和A ={4}时,不满足A ⊆B ,故选D.3.[2016·衡水中学周测]若集合A ={2,3,4},B ={x |x =m +n ,m ,n ∈A ,m ≠n },则集合B 的非空子集的个数是( )A .4B .7C .8D .15答案 B解析 解法一:因为x =m +n ,m ,n ∈A ,m ≠n ,所以B ={5,6,7},故B 的非空子集有{5},{6},{7},{5,6},{5,7},{6,7},{5,6,7},共7个.解法二:因为x =m +n ,m ,n ∈A ,m ≠n ,所以B ={5,6,7},根据公式可得集合B 的非空子集的个数是23-1=7.4.[2016·冀州中学月考]已知集合A ={x |y =lg (x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,1)D .(1,+∞)答案 B解析 因为A ={x |y =lg (x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).因为A ⊆B ,画出数轴,如图所示,得c ≥1.故选B.5.[2016·武邑中学周测]设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2答案 C解析 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,从而ba =-1,所以有a =-1,b =1,所以b -a =2,故选C.6.[2016·衡水中学月考]已知集合A =(-2,5],B =[m +1,2m -1].若B ⊆A ,则m 的取值范围是( )A .(-3,3]B .[-3,3]C .(-∞,3]D .(-∞,3)答案 C解析 当B =∅时,m +1>2m -1即m <2,B ⊆A . 当B ≠∅时,由题意可画数轴m ≥2且⎩⎪⎨⎪⎧m +1>-22m -1≤5解得2≤m ≤3.综上可知m ∈(-∞,3],故选C.7.[2016·枣强中学猜题]设集合M ={-1,0,1},N ={a ,a 2},则使M ∩N =N 成立的a 的值是( )A .1B .0C .-1D .1或-1答案 C解析 若M ∩N =N ,则N ⊆M .结合集合元素的互异性得⎩⎪⎨⎪⎧a 2=1,a =-1,所以a =-1.故选C. 8.[2016·衡水中学期中]若集合A ={x |1≤3x ≤81},B ={x |log 2(x 2-x )>1},则A ∩B =( )A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]答案 A解析 因为A ={x |1≤3x ≤81}={x |30≤3x ≤34}={x |0≤x ≤4},B ={x |log 2(x 2-x )>1}={x |x 2-x >2}={x |x <-1或x >2},所以A ∩B ={x |0≤x ≤4}∩{x |x <-1或x >2}={x |2<x ≤4}=(2,4].9.[2016·武邑中学期中]已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分表示的集合是( )A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1) 答案 D解析 由题意可知,M =(-3,1),N =[-1,1],∴阴影部分表示的集合为M ∩(∁U N )=(-3,-1).10.[2016·衡水中学期末]设全集U 是实数集R ,集合M ={x |x 2>2x },N ={x |log 2(x -1)≤0},则(∁U M )∩N 为( )A .{x |1<x <2}B .{x |1≤x ≤2}C .{x |1<x ≤2}D .{x |1≤x <2}答案 C解析 x 2>2x ⇒x >2或x <0.M ={x |x >2或x <0},log 2(x -1)≤0⇒0<x -1≤1,1<x ≤2,N ={x |1<x ≤2},(∁U M )∩N ={x |1<x ≤2},故选C.11.[2016·冀州中学猜题]已知全集U ={0,1,2,3,4},A ={1,2,3},B ={2,4},则下图中阴影部分表示的集合为( )A .{0,2}B .{0,1,3}C .{1,3,4}D .{2,3,4}答案 C解析 集合A ∪B ={1,2,3,4},A ∩B ={2},阴影部分表示的集合为{1,3,4}.12.[2016·武邑中学仿真]已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=( )A .(1,2)B .[0,2]C .∅D .[1,2]答案 D解析 ∵2x <1,∴x -2x >0,∴x <0或x >2,∴M ={x |x <0或x >2},∴∁R M ={x |0≤x ≤2}.∵y =x -1+1,∴y ≥1,∴N ={y |y ≥1},∴N ∩(∁R M )=[1,2],故选D.能力组13.[2016·衡水中学模拟]已知集合A ={0,1},则满足条件A ∪B ={0,1,2,3}的集合B 共有( )A .1个B .2个C .3个D .4个答案 D解析 由题知B 集合必须含有元素2,3,可以是{2,3},{2,1,3},{2,0,3},{2,0,1,3},共四个,故选D.14.[2016·冀州中学期中]已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围为( )A .-32<a ≤-1 B .a ≤-32 C .a ≤-1 D .a >-32 答案 C解析 因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3, 得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②得,a ≤-1.15. [2016·衡水中学仿真]已知集合A ={x |2x 2-2x <8},B ={x |x 2+2mx -4<0},若A ∩B ={x |-1<x <1},A ∪B ={x |-4<x <3},则实数m 等于________.答案 32解析 由2x 2-2x <8,得x 2-2x <3,解得-1<x <3,所以A ={x |-1<x <3}.因为A ∩B ={x |-1<x <1},A ∪B ={x |-4<x <3},所以B ={x |-4<x <1}.由不等式与方程之间的关系可得,-4,1是方程x 2+2mx-4=0的两根,所以-4+1=-2m,即-2m=-3,解得m=32.16.[2016·枣强中学预测]已知集合A={y|y=x2+2x,-2≤x≤2},B={x|x2+2x-3≤0},在集合A中任意取一个元素a,则a∈B的概率是________.答案2 9解析依题意,函数y=x2+2x=(x+1)2-1(-2≤x≤2)的值域是A={y|-1≤y≤8};由x2+2x-3≤0得-3≤x≤1,即B={x|-3≤x≤1},则A∩B={x|-1≤x≤1},因此所求的概率等于1-(-1) 8-(-1)=2 9.。

1.1集合的概念与运算.pptx

1.1集合的概念与运算.pptx

间 的
子 集
集合 A 中任意一个元素均为集合 B 中的元素

本 为集合 B 中的元素,且集合 B 中至少有一个元素不是集合 A 中的元素
示关系 文字语言
空集 空集是任何集合的子集,是任何非空集合的真子集
符号语 言 A=B A⊆ B
A⫋ B
第1讲 集合的概念与运算
A∪B=B∪A A∪A=A A∪⌀=⌀∪A=A 如果 A⊆ B,则 A∪B=B
A∪∁UA=U A∩∁UA=⌀ ∁U(∁UA)=A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
1.已知集合 A={x∈N|- 3≤x≤ 3},则必有( )
A.-1∈A
B.0∈A
第1讲 集合的概念与运算
考纲解读 主干梳理
考点层析
考向1
考向2
考向2
考向4 易错辨析点拨
考向 1 集合的基本概念
【例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}中元素的个数 是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为
B=( )
A.[-2,-1]
B.[-1,2)
C.[-1,1]
D.[1,2)
解析:由已知,可得 A={x|x≥3 或 x≤-1},则 A∩B={x|-2≤x≤-1}=[-2,-1].故选
A.
答案:A
第1讲 集合的概念与运算 要点梳理 考点自测
考纲解读 主主干干梳梳理理 考点层析
12345
3.设集合 A={x|1≤x≤2},B={x|x≥a},若 A⊆ B,则 a 的取值范围是( )

第1讲 集合(解析版)

第1讲 集合(解析版)

第1讲集合一、思维导图:请同学们根据思维导图回忆本讲的知识点:二、知识梳理:1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B)A⊆B(或B⊇A)真子集集合A⊆B,并且A≠BA B(或B A)集合相等两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素A=B运算 自然语言符号语言Venn 图交集 由所有属于集合A 且属于集合B 的元素构成的集合A ∩B ={x |x ∈A ,且 x ∈B }并集 由所有属于集合A 或者属于集合B 的元素构成的集合A ∪B ={x |x ∈A ,或x ∈B }补集设A ⊆S ,由S 中不属于A的所有元素组成的集合称为S 的子集A 的补集∁S A ={x |x ∈S ,且x ∉A }集合运算中常用的结论 (1)集合中的逻辑关系 ①交集的运算性质.,, ,,.②并集的运算性质.,, ,,.③补集的运算性质.∁U (∁U A)=A ,∁U ∅=U ,∁U U =∅. ④结合律与分配律.结合律: . 分配律: . (2)由个元素组成的集合的子集个数的子集有个,非空子集有个,真子集有个,非空真子集有个.(3).三、高考试题:1. (2022.新高考1)若集合{4},{31}M x x N x x =<=≥∣∣,则M N =( )A. {}02x x ≤< B. 123x x ⎧⎫≤<⎨⎬⎩⎭C. {}316x x ≤< D. 1163xx ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D2. (2022.新高考2)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则AB =( )A B B A ⋂=⋂A B A ⋂⊆A B B ⋂⊆A I A ⋂=A A A ⋂=A ⋂∅=∅A B B A ⋃=⋃A A B ⊆⋃B A B ⊆⋃A I I ⋃=A A A ⋃=A A ⋃∅=()()A B C A B C ⋃⋃=⋃⋃()()A B C A B C ⋂⋂=⋂⋂()()()A B C A B A C ⋂⋃=⋂⋃⋂()()()A B C A B A C ⋃⋂=⋃⋂⋃*(N )n n ∈A A 2n 21n -21n -22n -()()()()Card A B Card A Card B Card A B ⋃=+-⋂A. {1,2}-B. {1,2}C. {1,4}D.{1,4}-【答案】B【解析】{}|02B x x =≤≤,故{}1,2AB =,故选:B.3. (2022.全国乙(理))设全集{1,2,3,4,5}U =,集合M 满足∁U M ={1,3},则( ) A. 2M ∈ B. 3M ∈C. 4M ∉D. 5M ∉【答案】A【解析】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A 4. (2022.全国甲(理))设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则∁U (A ∪B)=( )A. {1,3}B. {0,3}C. {2,1}-D. {2,0}-【答案】D【解析】由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以∁U (A ∪B )={−2,0}.故选:D.5. (2022.北京)已知全集{33}U x x =-<<,集合{21}A x x =-<≤,则∁U A =( ) A. (2,1]- B.(3,2)[1,3)--C. [2,1)-D.(3,2](1,3)--【答案】D【解析】由补集定义可知:{|32U A x x =-<≤-或13}x <<,即(3,2](1,3)UA =--,故选:D .6. (2022.浙江)设集合{1,2},{2,4,6}A B ==,则A B ⋃=( ) A. {2} B. {1,2}C. {2,4,6}D. {1,2,4,6}【答案】D 【解析】{}1,2,4,6AB =,故选:D.7.(2021.全国乙卷(文))已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则∁U (M ∪N)=( ) A .{}5 B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A【解析】由题意可得:{}1,2,3,4MN =,则(){}5UM N =.故选:A.8.(2021.全国乙(理))已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S ∩T =( ) A .∅ B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,ST T =.故选:C.9.(2021.全国甲(文))设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【解析】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=,故选:B.10.(2021.全国甲(理))设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤< D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.11.(2021.新高考1)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .12.(2021.新高考2)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则A ∩∁U B =( ) A .{3} B .{1,6} C .{5,6} D .{1,3}【答案】B【解析】因为全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4}, 所以{1UB =,5,6},故{1UAB =,6}.故选:B .13.(2020.新高考1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A. {x |2<x ≤3} B. {x |2≤x ≤3} C. {x |1≤x <4} D. {x |1<x <4} 【答案】C 【解析】[1,3](2,4)[1,4)AB ==,故选:C14.(2020.全国(文科)(新课标Ⅰ))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3AB =,故选:D.15.(2020.全国(理科)(新课标Ⅰ))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0}, 且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B. 16.(2020.全国(文科)(新课标Ⅰ))已知集合A ={x ||x |<3,x ⅠZ },B ={x ||x |>1,x ⅠZ },则A ∩B =( )A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选:D.17.(2020.全国(理科)(新课标Ⅰ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则∁U (A ∪B)=( ) A .{−2,3} B .{−2,2,3} C .{−2,−1,0,3} D .{−2,−1,0,2,3}【答案】A【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.18.(2020.全国(文科)(新课标Ⅰ))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B【解析】由题意,{5,7,11}A B ⋂=,故AB 中元素的个数为3.故选:B19.(2020.全国(理科)(新课标Ⅰ))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.。

1集合的概念与运算【讲义】

1集合的概念与运算【讲义】

第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.§1.1 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a 的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22y x y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a 当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间. 即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 M N ≠∅ , 则 a 的取值范围是.【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅ . ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅ . ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅ .故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍) 此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1; {1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ= ,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立.【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅ ,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证2 P个.该校的班级数不多于1。

第1讲 集合的概念与运算(1)

第1讲 集合的概念与运算(1)

第1讲集合的概念与运算一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+) Z Q R [注意] N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素相同A=B集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁U A={x|x∈U且x∉A}(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B.(2)A ∩A =A ,A ∩∅=∅. (3)A ∪A =A ,A ∪∅=A. (4)A ∩(∁U A)=∅,A ∪(∁U A)=U ,∁U (∁U A)=A.集合的基本概念(1)已知集合A ={1,2,3,4,5},B ={(x ,y)|x ∈A 且y ∈A 且x -y ∈A},则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________.【解析】 (1)由x ∈A ,y ∈A ,x -y ∈A ,得x -y =1或x -y =2或x -y =3或x -y =4,所以集合B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B 中有10个元素.(2)因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意.所以m =-32.【答案】 (1)D (2)-32与集合中元素有关问题的求解策略1.已知集合A ={x|x ∈Z ,且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5解析:选C.因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2解析:选C.因为{1,a +b ,a}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1.所以b -a =2.3.设集合A ={0,1,2,3},B ={x|-x ∈A ,1-x ∉A},则集合B 中元素的个数为( ) A .1 B .2 C .3D .4解析:选A.若x ∈B ,则-x ∈A ,故x 只可能是0,-1,-2,-3,当0∈B 时,1-0=1∈A ; 当-1∈B 时,1-(-1)=2∈A ; 当-2∈B 时,1-(-2)=3∈A ; 当-3∈B 时,1-(-3)=4∉A ,所以B ={-3},故集合B 中元素的个数为1.集合间的基本关系(1)已知集合A ={x|x 2-3x +2=0,x ∈R },B ={x|0<x<5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x|-1<x <3},B ={x|-m<x<m},若B ⊆A ,则m 的取值范围为______. 【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)当m ≤0时,B =∅,显然B ⊆A. 当m>0时,因为A ={x|-1<x<3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m<m.所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 【答案】 (1)D (2)(-∞,1][提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.1.已知集合A ={x|x 2-2x>0},B ={x|-5<x<5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B解析:选B.因为A ={x|x>2或x<0},因此A ∪B ={x|x>2或x<0}∪{x|-5<x<5}=R .故选B. 2.已知集合A ={x|x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( ) A .7 B .8 C .15D .16解析:选A.法一:A={x|-1≤x≤3,x∈N*}={1,2,3},其真子集有:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.法二:因为集合A中有3个元素,所以其真子集的个数为23-1=7(个).3.设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是( )A.{a|a≤2} B.{a|a≤1}C.{a|a≥1} D.{a|a≥2}解析:选D.由A∩B=A,可得A⊆B,又A={x|1<x<2},B={x|x<a},所以a≥2.故选D.4.已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析:由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).答案:64集合的基本运算1.已知集合U={-1,0,1},A={x|x=m2,m∈U},则∁U A=________.解析:因为A={x|x=m2,m∈U}={0,1},所以∁U A={-1}.答案:{-1}2.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=________,A∪B=________,(∁R A)∪B=________.解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞)3.已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.解析:易得M={a}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=±1.答案:0或1或-1角度一集合的运算(1)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}(2)设全集U=R,集合A={x|-3<x<1},B={x|x+1≥0},则∁U(A∪B)=( )A.{x|x≤-3或x≥1} B.{x|x<-1或x≥3}C.{x|x≤3} D.{x|x≤-3}【解析】(1)依题意得∁U A={1,6,7},故B∩∁U A={6,7}.故选C.(2)因为B={x|x≥-1},A={x|-3<x<1},所以A∪B={x|x>-3},所以∁U(A∪B)={x|x≤-3}.故选D.【答案】(1)C (2)D集合基本运算的求解策略角度二利用集合的运算求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( )A.-1<a≤2 B.a>2C.a≥-1 D.a>-1(2)集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1C.2 D.4【解析】(1)因为A∩B≠∅,所以集合A,B有公共元素,作出数轴,如图所示,易知a>-1.(2)根据并集的概念,可知{a,a2}={4,16},故a=4.【答案】(1)D (2)D根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到.(2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.(3)根据求解结果来确定参数的值或取值范围.1.)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( ) A.{2} B.{2,3}C.{-1,2,3} D.{1,2,3,4}解析:选D.通解:因为A∩C={1,2},B={2,3,4},所以(A∩C)∪B={1,2,3,4}.故选D.优解:因为B={2,3,4},所以(A∩C)∪B中一定含有2,3,4三个元素,故排除A,B,C,选D.2.)已知集合A={-1,0,1,2},B={x|x2-1≥0},则下图中阴影部分所表示的集合为( )A.{-1} B.{0}C.{-1,0} D.{-1,0,1}解析:选B.阴影部分对应的集合为A∩∁R B,B={x|x2-1≥0}={x|x≤-1或x≥1},则∁R B={x|-1<x<1},则A∩∁R B={0},故选B.3.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D.因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,解得m≥2或m≤-2.作业1.已知全集U=R,集合A={x|x<-1或x>1},则∁U A=( )A.(-∞,-1)∪(1,+∞) B.(-∞,-1]∪[1,+∞)C.(-1,1) D.[-1,1]解析:选D.因为全集U=R,集合A={x|x<-1或x>1},所以∁U A={x|-1≤x≤1},故选D.2.)设集合A={x∈Z|x>4},B={x|x2<100},则A∩B的元素个数为( )A.3 B.4 C.5 D.6解析:选C.因为B={x|-10<x<10},所以A∩B={x∈Z|4<x<10}={5,6,7,8,9}.所以A∩B 的元素个数为5,故选C.3.已知集合A={0},B={-1,0,1},若A⊆C⊆B,则符合条件的集合C的个数为( ) A.1 B.2 C.4 D.8解析:选C.由题意得,含有元素0且是集合B的子集的集合有{0},{0,-1},{0,1},{0,-1,1},即符合条件的集合C共有4个.故选C.4.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图所示的阴影部分表示的集合是( )A.(-2,1) B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1] D.[0,1]解析:选C.因为集合A={x|x(x+2)<0},B={x||x|≤1},所以A={x|-2<x<0},B={x|-1≤x≤1},所以A∪B=(-2,1],A∩B=[-1,0),所以阴影部分表示的集合为∁A∪B(A∩B)=(-2,-1)∪[0,1],故选C.5.)已知全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},则A∩B=______,∁U A=______.解析:因为全集U={1,2,3,4,5},集合A={1,3,4},B={3,5},所以A∩B={3},则∁U A ={2,5}.答案:{3} {2,5}6.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=________.解析:由于A∪B={x|x≤0或x≥1},结合数轴,∁U(A∪B)={x|0<x<1}.答案:{x|0<x<1}7.已知集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],则a的值是________.解析:因为集合A={1,2,3,4},集合B={x|x≤a,a∈R},A∪B=(-∞,5],所以a=5.答案:5。

2021版新高考数学一轮复习讲义:第一章第一讲 集合的概念与运算 (含解析)

2021版新高考数学一轮复习讲义:第一章第一讲 集合的概念与运算 (含解析)

第一章集合与常用逻辑用语第一讲集合的概念与运算ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测知识梳理知识点一集合的基本概念一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a与集合A,a∈A或a∉A,二者必居其一.(3)常见集合的符号表示.数集自然数集正整数集整数集有理数集实数集符号N N*Z Q R(4)(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.知识点二集合之间的基本关系关系定义表示相等集合A与集合B中的所有元素都相同A=B子集A中的任意一个元素都是B中的元素A⊆B真子集A是B的子集,且B中至少有一个元素不属于A A B 空集用∅表示.(2)若集合A中含有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A⊆B,B⊆C,则A⊆C.知识点三集合的基本运算符号交集A∩B 并集A∪B 补集∁U A 语言图形语言意义A∩B={x|x∈A且x∈B}A∪B={x|x∈A或x∈B}∁U A={x|x∈U且x∉A}重要结论1.A∩A=A,A∩∅=∅.2.A∪A=A,A∪∅=A.3.A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B⇔A∩(∁U B)=∅.双基自测题组一走出误区1.(多选题)下列命题错误的是(ABCD)A.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为1或-1或0.B.方程x-2 020+(y+2 021)2=0的解集为{2 020,-2 021}.C.若A∩B=A∩C,则B=C.D.设U=R,A={x|lg x<1},则∁U A={x|lg x≥1}={x|x≥10}.题组二走进教材2.(必修1P5B1改编)若集合P={x∈N|x≤ 2 021},a=45,则(D)A.a∈P B.{a}∈PC.{a}⊆P D.a∉P[解析]452=2 025>2 021,∴a∉P,故选D.3.(必修1P7T3(2)改编)若A={x|x=4k-1,k∈Z},B={x=2k-1,k∈Z},则集合A与B 的关系是(B)A.A=B B.A BC.A B D.A⊆B[解析]因为集合B={x|x=2k-1,k∈Z},A={x|x=4k-1,k∈Z}={x|x=2(2k)-1,k ∈Z},集合B表示2与整数的积减1的集合,集合A表示2与偶数的积减1的集合,所以A B,故选B.题组三考题再现4.(2019·全国卷Ⅰ,5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=(C)A.{1,6} B.{1,7}C .{6,7}D .{1,6,7}[解析] 依题意得∁U A ={1,6,7},故B ∩∁U A ={6,7}.故选C .5.(2019·北京,5分)已知集合A ={x |-1<x <2},B ={x |x >1},则A ∪B =( C ) A .(-1,1) B .(1,2) C .(-1,+∞)D .(1,+∞)[解析] 由题意得A ∪B ={x |x >-1},即A ∪B =(-1,+∞),故选C .6.(2019·全国卷Ⅱ,5分)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( A ) A .(-∞,1) B .(-2,1) C .(-3,-1)D .(3,+∞)[解析] 因为A ={x |x 2-5x +6>0}={x |x >3或x <2},B ={x |x -1<0}={x |x <1},所以A ∩B ={x |x <1},故选A .KAO DIAN TU PO HU DONG TAN JIU 考点突破·互动探究考点一 集合的基本概念——自主练透例1 (1)(多选题)已知集合A ={x |x =3k +1,k ∈Z },则下列表示正确的是( ABD ) A .-2∈A B .2 021∉A C .3k 2+1∉AD .-35∈A(2)(2019·华师大第二附中10月月考)已知集合A ={x |x ∈Z ,且32-x∈Z },则集合A 中的元素个数为( C )A .2B .3C .4D .5(3)已知集合A ={a +2,(a +1)2,a 2+3a +3},若1∈A ,则2 020a 的值为1;若1∉A ,则a 不可能取得的值为-2,-1,0,-1+52,-1-52.[解析] (1)当-2=3k +1时,k =-1∈Z ,故A 正确;当2 021=3k +1时,k =67313∉Z ,故B 正确;当-35=3k +1时,k =-12∈Z ,故D 正确.故选A 、B 、D .(2)∵32-x ∈Z ,∴2-x 的取值有-3,-1,1,3.又∵x ∈Z ,∴x 的取值为5,3,1,-1,故集合A中的元素个数为4,故选C .(3)若a +2=1,则a =-1,A ={1,0,1},不合题意;若(a +1)2=1,则a =0或-2,当a =0时,A ={2,1,3},当a =-2时,A ={0,1,1},不合题意;若a 2+3a +3=1,则a =-1或-2,显然都不合题意;因此a =0,所以2 0200=1.∵1∉A ,∴a +2≠1,∴a ≠-1;(a +1)2≠1,解得a ≠0,-2;a 2+3a +3≠1解得a ≠-1,-2.又∵a +2、(a +1)2、a 2+3a +3互不相等,∴a +2≠(a +1)2得a ≠-1±52;a +2≠a 2+3a+3得a ≠-1;(a +1)2≠a 2+3a +3得a ≠-2;综上a 的值不可以为-2,-1,0,-1+52,-1-52.名师点拨 ☞(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)集合中元素的互异性常常容易忽略,特别是含有字母的集合,在求出字母的值后,要注意检验集合中元素是否满足互异性.分类讨论的思想方法常用于解决集合问题.考点二 集合之间的基本关系——师生共研例2 (1)已知集合A ={1,2,3},集合B ={x |x ∈A },则集合A 与集合B 的关系为( C ) A .A ⊆B B .B ⊆A C .A =BD .不能确定(2)(2020·江西赣州五校协作体期中)已知集合A ={x |x =sin n π3,n ∈Z },且B ⊆A ,则集合B 的个数为( C )A .3B .4C .8D .15(3)(多选题)设集合M ={x |x =k 3+16,k ∈Z },N ={x |x =k 6+23,k ∈Z },则下面不正确的是( ACD )A .M =NB .M NC .NMD .M ∩N =∅(4)已知集合A ={x |x 2-2 020x +2 019<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是[2_019,+∞).[解析] (1)B ={x |x ∈A }={1,2,3}=A ,故选C . (2)∵集合A ={x |x =sinn π3,n ∈Z }={0,32,-32},且B ⊆A ,∴集合B 的个数为23=8,故选C .(3)解法一:(列举法),由题意知 M ={…-12,-16,16,12,56,76,…}N ={…-16,0,16,13,12,23,56,…}显然M N ,故选A 、C 、D . 解法二:(描述法) M ={x |x =2k +16,k ∈Z },N ={x |x =k +46,k ∈Z } ∵2k +1表示所有奇数,而k +4表示所有整数(k ∈Z ) ∴M N ,故选A 、C 、D . (4)A ={x |1<x <2 019},∵A ⊆B , ∴借助数轴可得a ≥2 019,∴a 的取值范围为[2 019,+∞).名师点拨 ☞判断集合间关系的3种方法 列举法根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.(如第(1)、(2)题)结构法从元素的结构特点入手,结合通分、化简、变形等技巧,从元素结构上找差异进行判断.(如第(3)题)数轴法在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(如第(4)题)(1)(2020·辽宁锦州质检(一))集合M ={x |x =3n ,n ∈N },集合N ={x |x =3n ,n ∈N },则集合M 与集合N 的关系是( D )A .M ⊆NB .N ⊆MC .M ∩N =∅D .M ⊆/ N 且N ⊆/ M(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =(12)x ,x ∈R },则下列不正确的是( ABD )A .M =NB .N ⊆MC .M =∁R ND .(∁R N )∩M =∅(3)已知集合A ={x |x 2-3x -10≤0},B ={x |mx +10>0},若A ⊆B ,则m 的取值范围是(-2,5).[解析] (1)因为1∈M,1∉N,6∈N,6∉M ,所以M ⊆/ N 且N ⊆/ M ,故选D .(2)由题意得y =x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,∴M =(-∞,0],N =(0,+∞),∴M =∁R N .故选A 、B 、D .(3)化简A ={x |x 2-3x -10≤0}={x |-2≤x ≤5},当m >0时,x >-10m ,因为A ⊆B ,所以-10m <-2,解得m <5,所以0<m <5.当m <0时,x <-10m ,因为A ⊆B ,所以-10m >5,解得m >-2,所以-2<m <0.当m =0时,B =R ,符合A ⊆B .综上所述,所求的m 的取值范围是(-2,5).考点三 集合的基本运算——多维探究角度1 集合的运算例3 (1)(2019·天津,5分)设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( D )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}(2)(2019·全国卷Ⅰ,5分)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( C ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2}D .{x |2<x <3}(3)(2020·百校联考)已知集合A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x ≥1},则∁B A=( C )A .[815,54]∪[3,+∞)B .[815,54)∪(3,+∞)C .[815,54]∪(3,+∞)D .[815,54)∪[3,+∞)[解析] (1)由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.(2)方法一:∵N ={x |-2<x <3},M ={x |-4<x <2},∴M ∩N ={x |-2<x <2},故选C . 方法二:由题可得N ={x |-2<x <3}.∵-3∉N ,∴-3∉M ∩N ,排除A ,B ;∵2.5∉M ,∴2.5∉M ∩N ,排除D .故选C .(3)因为A ={x |x -3≤0且4x -5>0},B ={y |y =13x +15,x≥1},所以A =(54,3],B =[815,+∞),故∁B A =[815,54]∪(3,+∞).故选C .角度2 利用集合的运算求参数例4 (1)已知集合A ={0,1,2m },B ={x |1<22-x <4},若A ∩B ={1,2m },则实数m 的取值范围是( C )A .(0,12)B .(12,1)C .(0,12)∪(12,1)D .(0,1)(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}≠∅,若A ∩B =B ,则实数m 的取值范围为[2,3].[解析] (1)B ={x |0<2-x <2}={x |0<x <2},∵A ∩B ={1,2m },∴0<2m <2且2m ≠1,即0<m <1且m ≠12,故选C .(2)由A ∩B =B 知,B ⊆A .又B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3,则实数m 的取值范围为[2,3].[引申1]本例(2)中若B ={x |m +1≤x ≤2m -1}情况又如何? [解析] 应对B =∅和B ≠∅进行分类. ①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,由例得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为(-∞,3].[引申2]本例(2)中是否存在实数m ,使A ∪B =B ?若存在,求实数m 的取值范围;若不存在,请说明理由.[解析] 由A ∪B =B ,即A ⊆B 得⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3,不等式组无解,故不存在实数m ,使A ∪B =B . [引申3]本例(2)中,若B ={x |m +1≤x ≤1-2m },A B ,则m 的取值范围为(-∞,-3].[解析] 由题意可知⎩⎪⎨⎪⎧m +1≤-2,1-2m ≥5,解得m ≤-3.名师点拨 ☞集合的基本运算的关注点1.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. 2.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.3.注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.根据集合运算结果求参数,先把符号语言译成文字语言,然后应用数形结合求解. 〔变式训练2〕(1)(角度1)(2019·浙江,4分)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(∁U A )∩B =( A )A .{-1}B .{0,1}C .{-1,2,3}D .{-1,0,1,3}(2)(角度1)设全集U =R ,集合A ={x |0≤x ≤2},B ={y |1≤y ≤3},则(∁U A )∪B =( D ) A .(2,3] B .(-∞,1]∪(2,+∞) C .[1,2)D .(-∞,0)∪[1,+∞)(3)(角度2)设集合M ={x |y =2x -x 2},N ={x |x ≥a },若M ∪N =N ,则实数a 的取值范围是( B )A .[0,2]B .(-∞,0]C .[2,+∞)D .(-∞,2][解析] (1)由题意可得∁U A ={-1,3},则(∁U A )∩B ={-1}.故选A .(2)∁U A ={x |x <0或x >2},则(∁U A )∪B ={x |x <0或x ≥1},故选D . (3)M ={x |0≤x ≤2},∵M ∪N =N ,∴M ⊆N ,∴a ≤0,故选B .MING SHI JIANG TAN SU YANG TI SHENG 名师讲坛┃·素养提升集合中的新定义问题例5 (2020·江西九江联考)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知M ={y |y =-x 2+2x ,0<x <2},N ={y |y =2x -1,x >0},则M ⊗N =(0,12]∪(1,+∞).[解析] M ={y |y =-x 2+2x,0<x <2}=(0,1],N ={y |y =2x -1,x >0}=(12,+∞),则M ∪N=(0,+∞),M ∩N =(12,1],所以M ⊗N =(0,12]∪(1,+∞).名师点拨 ☞集合新定义问题的“3定”(1)定元素:确定已知集合中所含的元素,利用列举法写出所有元素.(2)定运算:根据要求及新定义运算,将所求解集合的运算问题转化为集合的交集、并集与补集的基本运算问题,或转化为数的有关运算问题.(3)定结果:根据定义的运算进行求解,利用列举法或描述法写出所求集合中的所有元素. 〔变式训练3〕对于集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( C )A .(-94,0]B .[-94,0)C .(-∞,-94)∪[0,+∞)D .(-∞,-94]∪(0,+∞)[解析] A ={y |y ≥-94},B ={y |y <0},A -B ={y |y ≥0},B -A ={y |y <-94},(A -B )∪(B -9A)={y|y≥0或y<-4},故选C.。

2012-2022十年高考真题分类汇编 专题01 集合概念与运算(解析版)

2012-2022十年高考真题分类汇编  专题01 集合概念与运算(解析版)

专题01 集合概念与运算十年大数据*全景展示年份题号考点考查内容考点1 集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B =,故A B 中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .6【答案】C 【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故AB 中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y += 与直线y x = 相交于两点()1,1,()1,1--,则A B 中有两个元素,故选B .4.【2018新课标2,理1】已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4【答案】A 【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B =中元素的个数是 A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个,故选C .6.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0D .0或4【答案】A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =,故选A .7.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素,故选C . 8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .1{}|,x y x A y A -∈∈【答案】C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则 A .i ∈S B .2i ∈S C .3i ∈S D .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.【答案】3-【解析】不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.考点2 集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则 A .AB B .B AC .A B =D .A B =∅【答案】B 【解析】A=(-1,2),故B ⊂≠A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .AB D .B A【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D . 4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( ) A .N M ⊆ B .MN M = C .M N N = D .{2}M N =【答案】D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则( ) A .P Q ⊆ B .Q P ⊆ C .R C P Q ⊆ D .R Q C P ⊆【答案】D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D . 6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P =,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1][1,+∞)【答案】C 【解析】因为PM P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则( ) A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(-,0)∪(2,+),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,{}2|320,A x x x x =-+=∈R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D .考点3 集合间的基本运算【试题分类与归纳】1.【2011课标,文1】 已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有 (A )2个 (B)4个 (C)6个 (D)8个【答案】B 【解析】∵P=M ∩N={1,3}, ∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N= A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N= ( ) (A ){-2,-1,0,1} (B ){-3,-2,-1,0}(C ){-2,-1,0} (D ){-3,-2,-1 }【答案】C 【解析】因为集合M={}|31x x -<<,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A ){1,4}(B ){2,3}(C ){9,16}(D ){1,2}【答案】A ;【解析】依题意,{}1,4,9,16B =,故{}1,4A B =.5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=∞∞A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,)-∞-⋃+∞,∴A B ⋂=[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A .{1} B .{2} C .{0,1} D .{1,2}【答案】D 【解析】∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N =( )A. )1,2(- B .)1,1(- C .)3,1( D .)3,2(- 【答案】B 【解析】MB =(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅ B .{}2 C .{0} D .{2}- 【答案】B 【解析】∵{}1,2B =-,∴AB ={}2.9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则AB =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A 【解析】由题意知,)1,2(-=B ,∴}0,1{-=⋂B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D . 11.【2015新课标2,文1】已知集合,,则( )A .B .C .D . 【答案】A 【解析】由题知,)3,1(-=⋃B A ,故选A .12.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂= (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23(+∞,所以B A ⋂=3(,3)2,故选D . 13.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】由题知B ={0,1},所以AB ={0,1,2,3},故选C .{}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,314.【2016新课标3,理1】设集合,则T S ⋂=(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2][3,+)【答案】D 【解析】由题知,),3[]2,(+∞⋃-∞=S ,∴T S ⋂=(0,2][3,+),故选D . 15.【2016新课标2,文1】已知集合,则( )(A ) (B ) (C )(D )【答案】D 【解析】由题知,)3,3(-=B ,∴}2,1{=⋂B A ,故选D . 16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B 【解析】由题知,}5,3{=⋂B A ,故选B .17.【2016新课标3,文1】设集合,则=(A ) (B ) (C ) (D ) 【答案】C 【解析】由题知,}10,6,2,0{=B C A ,故选C . 18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A 【解析】由题知,)0,(-∞=B ,∴{|0}AB x x =<,故选A .19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】由{}1AB =得1B ∈,所以3m =,{}1,3B =,故选C .21.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =( )A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞∞∞∞∞{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},{0,2,4,6,8,10},{4,8}A B ==A B {48},{026},,{02610},,,{0246810},,,,,【答案】A 【解析】由题意{1,2,3,4}A B =,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B 【解析】由题意可得,{}2,4AB =,故选B .23.【2018新课标1,理1】已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2}【答案】B 【解析】由题知,A ={x|x <−1或x >2},∴C R A ={x|−1≤x ≤2},故选B . 24.【2018新课标3,理1】已知集合A ={x|x −1≥0},B ={0 , 1 , 2},则A ∩B = A .{0} B .{1} C .{1 , 2} D .{0 , 1 , 2}【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C . 25.【2018新课标1,文1】已知集合,,则( )A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A=( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】由题知,(1,2)AB =-,故选C .31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 32.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】{1,3}UA =-,{1}UA B =-.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】由题知,{}1,2AC =,所以{}{}{}{}1,22,3,41,2,3,4A C B ==,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I∅,则=N M A .MB .NC .ID .∅【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A BA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x << 【答案】B 【解析】因为{1}B x x =≥,所以{|1}RB x x =<,因为{02}A x x =<<,所以()=R AB {|01}x x <<,故选B .36.【2017山东,理1】设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B =( )A .(1,2)B .(1,2]C .(2,1)-D .[2,1)- 【答案】D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤ 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A 【解析】由题意可知{|12}PQ x x =-<<,选A .39.【2016年山东,理1】设集合 则=A .B .C .D .【答案】C 【解析】集合A 表示函数2xy =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =A .[0,1)B .(0,2]C .(1,2)D .[1,2] 【答案】C 【解析】{|02}RP x x ,故(){|1<<2}RP Q =x x ,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【答案】A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则AB 等于( )A .{}1-B .{}1C .{}1,1-D .∅ 【答案】C 【解析】由已知得,故,故选C .44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则MN =A .{}1,4B .{}1,4--C .{}0D .∅ 【答案】D 【解析】 由(4)(1)0x x 得4x 或1x ,得{1,4}M .由(4)(1)0x x 得4x 或1x ,得{1,4}N .显然=∅MN .45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】,,所以,故选A .2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞{},1,,1A i i =--AB ={}1,1-{}{}20,1x x x M ==={}{}lg 001x x x x N =≤=<≤[]0,1MN =46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合 {}1,3,4,6,7B =,则集合U A B =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8【答案】A 【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵{}1,2B =-,∴A B ⋂={}2,故选B .48.【2014浙江,理1】设全集,集合,则 A . B . C . D .【答案】B 【解析】由题意知{|2}U x N x =∈≥,{|Ax N x =∈,所以{|2x N x ∈<≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB = A .{|0}x x ≥ B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<,故选D .50.【2013山东,】已知集合均为全集的子集,且,,则 A .{3} B .{4}C .{3,4}D . 【答案】A 【解析】由题意{}1,2,3A B =,且,所以A 中必有3,没有4,{}3,4U C B =,故{}3.51.【2013陕西,理1】设全集为R ,函数的定义域为M ,则为A .[-1,1]B .(-1,1)C .D .【答案】D 【解析】的定义域为M =[-1,1],故R M =,选D .52.【2013湖北,理1】已知全集为,集合,,则( )A .B .{}|24x x ≤≤C .D .{}2|≥∈=x N x U {}5|2≥∈=x N x A =A C U ∅}2{}5{}5,2{=A C U B A 、}4,3,2,1{=U (){4}U A B ={1,2}B =U AB =∅{1,2}B=U A B =()f x =C M R ,1][1,)(∞-⋃+∞-,1)(1,)(∞-⋃+∞-()f x (,1)(1,)-∞-⋃+∞R 112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或【答案】C 【解析】,,.53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂【答案】D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I ∅,则=N MA .MB .NC .ID .∅ 【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B =,则实数a 的值为_. 【答案】1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( ) A .{4,1}- B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选B . 58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选D .59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B = ( )A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--[)0,A =+∞[]2,4B =[)()0,24,R A C B ∴=+∞【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<< 则PQ = ( ) A .{|12}x x <≤ B .{|23}x x << C .{|23}x x <≤ D .{|14}x x <<【答案】B 【解析】由已知易得{}23P Q x x =<<,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则AB = A .{1,0,1}- B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选D .62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A BA .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x << 【答案】C 【详解】[]()[)1,32,41,4A B ==,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C 【解析】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-,故选C .64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则AB = . 【答案】{}2,4【解析】由交集定义可知{}2,4A B =,故答案为:{}2,4.65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则AB = . 【答案】{}0,2【解析】由题知,{}0,2A B =.考点4 与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有9个元素(即9个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.【2013广东,理8】设整数,集合,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若和都在中,则下列选项正确的是A .,B .,C .,D ., 【答案】B 【解析】特殊值法,不妨令,,则,,故选B .如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,.综合上述四种情况,可得,.4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是( )22{(,)1,,}A x y x y x y =+≤∈Z A {(,)||2,||2,,}B x y x y x y =≤≤∈Z ABCD 12121122{(,)(,),(,)}AB x x y y x y A x y B ⊕=++∈∈1111DC B A 45477=-⨯4n ≥{}1,2,3,,X n =(),,x y z (),,z w x S (),,y z w S ∈(),,x y w S ∉(),,y z w S ∈(),,x y w S ∈(),,y z w S ∉(),,x y w S ∈(),,y z w S ∉(),,x y w S ∉2,3,4x y z ===1w =()(),,3,4,1y z w S =∈()(),,2,3,1x y w S =∈(),,x y z S ∈(),,z w x S ∈x y z <<y z x <<z x y <<z w x <<w x z <<x z w <<w x y z <<<(),,y z w S ∈(),,x y w S ∈x y z w <<<(),,y z w S ∈(),,x y w S ∈y z w x <<<(),,y z w S ∈(),,x y w S ∈z w x y <<<(),,y z w S ∈(),,x y w S ∈(),,y z w S ∈(),,x y w S ∈A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k +丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b -=5(n -m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,k i i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中 121k i i i x x x ====,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1) 子集{135,,a a a }的“特征数列”的前三项和等于 ;(2) 若E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99; E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】 (1) 子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;∴P 的“特征数列”:1,0,1,0 … 1,0. 所以P = },,{99531a a a a .∵E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,,可知:j =1时,123q q q ++=1,∵11q =,∴2q =3q =0;同理4q =1=7a =…=32n q -.Q 的“特征数列”:1,0,0,1,0,0 …1,0,0,1.所以Q = },,,{10097741a a a a a .∴ {=⋂Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=,1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅, 11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-).令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。

第一讲集合的概念及其运算

第一讲集合的概念及其运算

第一讲 集合的概念及其运算集合论是德国数学家康托尔在19世纪末创立的,集合语言是现代数学的基本语言,是表达数学知识、进行数学交流的重要工具。

同时集合是高中数学的基本知识,为历年高考必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.一、 考纲解读1.考试内容:(1)集合的含义与表示;(2)集合间的基本关系;(3)集合的基本运算。

2.考试要求:(1)了解集合的含义、元素与集合的属于关系,全集与空集的含义;(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

能用韦恩(V enn )图表达集合的关系及运算;(3)理解集合之间包含与相等的含义,能识别给定集合的子集。

理解两个集合的并集与交集的含义,会求两个集合的并集与交集。

理解在给定集合中一个子集的补集的含义,会求给定集合子集的补集。

二、知识网络三、知识讲解:1.集合的有关概念(1)某些指定的对象集在一起就构成一个集合,简称集。

其中的每一个对象叫集合的元素,集合中的元素具有确定性、互异性、无序性三个特征。

确定性:集合的元素必须是确定的,任何一个对象都能明确判断出它是或者不是某个集合的元素。

互异性:集合中任意两个元素都是不同的,也就是同一个元素在一个集合中不能重复出现。

无序性:集合与组成它的元素顺序无关。

如集合}{c b a ,,与}{b a c ,,是同一个集合。

(2)元素与集合的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈;如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉。

任一元素a 与集合A 的关系是a A ∈与a A ∉二者必居其一。

(3)集合的分类:根据集合中元素的个数可将集合分为有限集、无限集和空集。

不含任何元素的集合叫做空集,用符号Φ表示。

空集的性质:空集是任何集合的子集,是任何非空集合的真子集。

01第一讲:集合的概念与运算

01第一讲:集合的概念与运算

第一讲:集合的概念与运算一、知识梳理:1. 集合的含义与表示:(1) 一般地,我们把研究对象统称为__________,把一些元素组成的总体叫做____________(简称______).(2) 集合中元素的三个性质:____________,__________,___________. (3)集合中元素与集合的关系分为____________和____________两种,分别用__________和_________表示. (4) 几种常用集合的表示法:数集 自然数集正整数集整数集有理数集 实数集 表示(5) 集合的三种表示法:___________,____________,_______________. 2. 集合间的基本关系:(1)B ⊆的含义是:__________________________________________. (2)若集合B A ⊆且A B ⊆,我们就说____________________________. (3)若集合B A ⊆且B A ≠,则称__________________记着___________. 即若B A ⊆,但存在B x ∈0,且A x ∉0。

(4)不含任何元素的集合叫做________,记为_______,并规定:空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的基本运算:(1)B A ⋃的含义是__________________________________________. (2)B A ⋂的含义是_______ _____________________________. (3)如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为__________________,通常记作________________.(4)对于一个集合A ,由全集U 中___________________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________________. 即________________________________=C U 。

第1讲集合的概念及运算

第1讲集合的概念及运算

(2)设I为全集,S1,S2,S3是I的三个非空 子集,且S1∪S2∪S3=I,则下面论断正确 的是( C )
A. IS1∩(S2∪S3) B.S1 ( IS2∩ IS3) C IS1∩ IS2 ∩ IS3= D.S1 ( IS2∪ IS3)
分析
集合的运算→优先化简→数形结合, 按交、并、补、子集概念依次进行.
A B(或B A).
A A; A; 若A B,B C, 则A C;
有n个元素的集合 的子集的个数是
⑥ 2n .
定义
性质与说明
如果A是B的子集,且B中 空集是任何非空集合的
至少有一个元素不属于A, 真子集;
那么集合A是集合B的真子
真 子
集,记为A B(或B A).

若A B,B C,则A C;
补集等于两个集合的补集的并集,可 利用这个知识点直接解决本题.
(2)元素与集合的关系有两种:
① 属于“∈” ,

.
(3)集合中元素的性质: ③ 确定性、互异性、无序性 .
(4)集合的表示法: ④ 列举法、描述法、图示法、区;间法
(5)集合的分类:按元素个数可分为 ⑤ 空集、有限集、无限集; .
(6)两个集合A与B之间的关系:
定义
性质与说明
子集
如果集合A的任何一 个元素都是集合B的 元素,那么集合A叫 集合B的子集,记为
第1讲
集合的概念及运算
理解集合、子集、真子集、交集、 并集、补集的概念,了解全集、空集、 属于、包含、相等关系的意义,掌握有 关的术语和符号,能使用韦恩图表达集 合的关系及运算.
知识要点
1.集合的有关概念
(1)一般的,某些指定的对象集中在一起 就构成了一个集合,集合中的每个对 象叫这个集合的元素.

集合的概念及运算课件人教新课标

集合的概念及运算课件人教新课标
一个给定集合中的元素是互不相同的.也就是说,集合 中的元素是不重复出现的。
无序性:
元素完全相同的两个集合相等,而与列举顺序无关。
两个集合相等当且仅当构成这两个集合的元 素是完全一样的.
4 集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并置于{ }内
2、描述法:
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的情势
综上,a的取值范围是a≤-3. 12分
规律方法总结
1.子集、全集、补集 (1)子集与真子集的区分与联系:集合A的真子集一定 是其子集,而集合A的子集不一定是真子集;若集合A中 有n个元素,则其子集个数为2n,真子集个数为2n-1. (2)集合A与其补集∁UA的关系为:A∩(∁UA)=∅,A∪ (∁UA)=U.
答案:-2,-1
5.设集合A={(x,y)|x-y=0},B={(x, y)|2x-3y+4=0},则A∩B=________.
答案:{(4,4)}
6 集合S,M,N,P如图所示,则图中阴影部分所
表示的集合是( D ) (A) M∩(N∪P)
(B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
在进行集合的运算时,先看清集合的元素和所满足 的条件,再把所给集合化为最简情势,并合理转化求解, 必要时充分利用数轴、Venn图、图象等工具,并会运用 分类讨论、数形结合等思想方法,使运算更加直观,简 洁.
注意:(1)有关集合的运算,要特别注意元 素的互异性,其办法是将所得到的结果进行检 验.(2)要注意∅的性质.
写字母a、b、c…表示.
2.集合的分类 集合按元素多少可分为:有限集(元素个数是有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 讲:集合的概念与运算一、课程标准1、通过实例,了解集合的含义,体会元素与集合的“属于”关系.2、.理解集合之间包含与相等的含义,能识别给定集合的子集.了解全集与空集的含义.3、.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.4、.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.二、基础知识回顾1、元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性。

(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉。

2、集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A。

(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A。

(3)相等:若A⊆B,且B⊆A,则A=B。

(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集。

3、集合的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4、集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A。

(2)A∪A=A,A∪∅=A,A∪B=B∪A。

A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A。

(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B)。

5、相关结论:(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个。

(2)不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.三、自主热身、归纳总结1、已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5} D.{1,2,3,4,5,7}【答案】C【解析】因为A∩B={1,3,5,7}∩{2,3,4,5}={3,5},故选C.2、已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【答案】D【解析】∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},在数轴上表示如图.∴∁U(A∪B)={x|0<x<1}.3、已知集合A={x|x2-2x-3≤0},B={x|0<x≤4},则A∪B=()A.[-1,4] B.(0,3]C.(-1,0]∪(1,4] D.[-1,0]∪(1,4]【答案】A【解析】A={x|x2-2x-3≤0}={x|-1≤x≤3},所以A∪B={x|-1≤x≤4}.4、已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=________.【答案】{1,3}【解析】由A={1,2,3},B={y|y=2x-1,x∈A},∴B={1,3,5},因此A∩B={1,3}.5、已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.【答案】(-∞,1]【解析】∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1.6、(多选题)已知全集U R =,集合A ,B 满足A B ,则下列选项正确的有( ) A .A B B = B .A B B = C .()U A B =∅ D .()U A B =∅【答案】B 、D【解析】A B ,A B A ∴=,A B B =,()U C A B =≠∅,()U A C B =∅,7、(多选题)已知集合[2A =,5),(,)B a =+∞.若A B ⊆,则实数a 的值可能是( )A .3-B .1C .2D .5 【答案】、A 、B【解答】解:A B ⊆,2a ∴<,四、例题选讲、变式突破考点一 集合的基本概念例1、已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪ x +1x -2≤0,则集合A 的子集的个数为( ) A . 7 B . 8 C . 15 D .16【答案】B【解析】由x +1x -2≤0,可得(x +1)(x -2)≤0,且x ≠2,解得-1≤x <2.又x ∈Z ,可得x =-1,0,1,∴A ={-1,0,1}.∴集合A 的子集的个数为23=8.【变式1】若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98C.0D.0或98【答案】D 【解析】若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.【变式2】设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =( )A .1B .-1C .2D .-2 【答案】选C【解析】因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,则b a =-1,所以a =-1,b =1,所以b -a=2.故选C.【变式3】已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________.【答案】(5,6]【解析】因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.方法总结:1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义。

2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性。

特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性考点2、集合间的基本关系例2、已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k π4+π4,k ∈Z ,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π8-π4,k ∈Z ,则( ) A .M ∩N =∅B .M ⊆NC .N ⊆MD .M ∪N =M 【答案】B【解析】由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2k +4π8-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =2n π8-π4,n ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2k π8-π4或x =2k -1π8-π4,k ∈Z ,所以M ⊆N ,故选B 。

例3、已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.【答案】(-∞,4]【解析】当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4].【变式】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________.【答案】(-∞,1]【解析】当m ≤0时,B =∅,显然B ⊆A .当m >0时,因为A ={x |-1<x <3}.若B ⊆A ,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].方法总结(1)若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.(2)已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.考点三:集合的运算例4、若集合A ={x |2x 2-9x >0},B ={y |y ≥2},则A ∩B =________,(∁R A )∪B =________.【答案】⎝⎛⎭⎫92,+∞ [0,+∞)【解析】(2)因为A ={x |2x 2-9x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪ x >92或x <0,所以∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 0≤x ≤92,又B ={y |y ≥2},所以A ∩B=⎩⎨⎧⎭⎬⎫x ⎪⎪x >92,(∁R A )∪B =[0,+∞). 【变式1】设集合A =⎩⎨⎧⎭⎬⎫x ∈N |14≤2x ≤16,B ={x |y =ln(x 2-3x )},则A ∩B 中元素的个数是________.【答案】1【解析】由14≤2x ≤16,x ∈N ,∴x =0,1,2,3,4,即A ={0,1,2,3,4}.又x 2-3x >0,知B ={x |x >3或x <0},∴A ∩B ={4},即A ∩B 中只有一个元素.【变式2】已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A .{x |-4<x <3}B .{x |-4<x <-2}C .{x |-2<x <2}D .{x |2<x <3}【答案】C【解析】方法一:因为N ={x |-2<x <3},M ={x |-4<x <2},所以M ∩N ={x |-2<x <2},故选C.方法二:由通解可得N ={x |-2<x <3}.因为-3∉N ,所以-3∉M ∩N ,排除A ,B ;因为2.5∉M ,所以2.5∉M ∩N ,排除D ,故选C 。

【变式3】已知集合A ={x |x 2-x -2>0},则∁R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}【答案】B【解析】方法一:A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2},故选B 。

方法二:因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2},故选B 。

相关文档
最新文档