运筹学及运输问题

合集下载

运筹学运输问题相关知识点

运筹学运输问题相关知识点

运筹学运输问题相关知识点运筹学,旨在通过数学模型和优化方法来解决各种决策问题,其中运输问题是运筹学中的一个重要分支。

运输问题旨在帮助我们确定如何在不同地点之间运输物品以达到最佳效益。

首先,运输问题基于以下几个基本假设:一是物流成本在运输过程中是线性的,二是物品在不同地点之间的运输是无差异的,三是供应和需求之间是平衡的。

在解决运输问题时,需要考虑以下几个关键要素:1.运输网络:此步骤涉及识别和描述供应地点、运输路径和需求地点。

通常使用图形表示来可视化运输网络,以便更好地理解和分析问题。

2.供应量和需求量:确定每个供应地点可提供的物品数量和每个需求地点所需的物品数量。

供应量和需求量之间必须达到平衡。

3.运输成本:每个运输路径的费用是决策的重要因素。

这可以涉及运输距离、运输方式、燃料成本等因素。

通常通过构建费用矩阵来表示各个路径的费用。

4.运输方案:确定如何分配物品以满足需求,并选择最佳的运输路径。

这通常通过使用线性规划模型来实现,以最小化总运输成本为目标。

解决运输问题的常见方法包括:1.西北角规则:该方法从供应和需求具有最大值的角度着手,逐步分配物品,直到达到平衡。

这种方法简单易行,但不一定能够找到全局最优解。

2.最小成本法:该方法根据运输路径的成本递增顺序,逐一分配物品,直到平衡为止。

这种方法能够找到最优解,但可能需要更多的计算量。

3.转运法:该方法通过寻找“供应地点里程+需求地点里程最小”的路径来决策,直至达到平衡。

这种方法在有多个供应地点和多个需求地点时非常实用。

除了基本的运输问题之外,还有其他一些相关的运筹学问题,如多品种运输问题、多目标运输问题和带有时间窗口的运输问题等。

这些问题在实际应用中都有广泛的应用,并且可以通过相应的数学模型和优化方法来解决。

综上所述,运筹学中的运输问题是一个重要的决策问题。

它涉及到寻找最佳的物品配送方案,以最小化总运输成本。

通过合适的数学模型和算法,我们可以有效地解决这类问题,为实际的物流管理提供有力的支持。

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)运筹学运输问题个人总结前言运筹学是一门应用数学学科,旨在通过数学模型和优化算法解决现实生活中的决策问题。

其中,运筹学运输问题是运筹学的基础领域之一,涉及到在给定条件下最佳化资源利用、降低成本、提高效率等方面的问题。

正文在个人学习运筹学运输问题的过程中,我总结了以下几个重要要点:1.运输网络规划:运输问题的首要任务是确定运输网络的结构和连接方式。

这包括确定供应商、仓库、需求点之间的连接关系,以及各个节点的运输容量和成本等。

通过合理规划运输网络,可以实现资源的合理分配和供需的良好匹配。

2.运输成本优化:在确定了运输网络之后,需要通过优化算法求解最佳的运输方案。

这涉及到在满足各种限制条件下,如最小化运输成本、最大化资源利用率等指标的优化问题。

常用的算法包括线性规划、整数规划、动态规划等。

3.路线优化和物流调度:针对具体的运输任务,需要进行路线优化和物流调度。

通过合理的路径规划和物流调度,可以降低运输时间和成本,提高物流效率。

常用的算法包括最短路径算法、最优传送门问题等。

4.风险管理和决策支持:在运输过程中,会存在各种不确定性和风险因素。

因此,需要通过风险管理和决策支持技术来应对不确定情况。

常见的方法包括风险评估、灵敏度分析、决策树等。

结尾通过学习和研究运筹学运输问题,我深刻认识到其在现代物流和供应链管理中的重要性。

合理的运输规划和优化能够帮助企业降低成本、提高效率,实现可持续发展。

通过不断学习和实践,我将不断提升自己在这一领域的能力,并在实践中探索更多有创新性和实用性的解决方案。

运筹学运输问题个人总结(续)路线优化和物流调度在路线优化和物流调度方面,我学到了以下几个重要的观点:•路线优化:通过使用最短路径算法、最优传送门问题等优化算法,可以找到最佳路径来减少运输时间和成本。

另外,还可以考虑交通拥堵等因素,选择避开高峰期的最佳路径。

•物流调度:对于大规模的运输网络,物流调度成为一个重要的挑战。

运筹学胡运权第三版第三章运输问题

运筹学胡运权第三版第三章运输问题
产销平衡运输问题的数学模型可表示如下:
§1运 输 问 题 及 其 数 学 模 型
二、运输问题数学模型的特点: 运输问题一定有最优解;基变量的个数=m+n-1 运输问题约束条件的系数矩阵:
x1m
x2m
xm1
xmm
x11
x12

x21
x22

xm2


m行
n行
§1运 输 问 题 及 其 数 学 模 型
解 的 最 优 性 检 验
运输问题及其数学模型
用表上作业法求解运输问题
运输问题的进一步讨论
应用问题举例
本章内容
3运输问题进一步讨论
01.
产销不平衡的运输问题 有转运的运输问题
02.
1.当产大于销时,即 产销不平衡问题 平衡后的数学模型为: 加入假想销地(假想仓库),销量为 ,由于实际并不运 送,它们的运费为 = 0;
解 的 最 优 性 检 验
解 的 最 优 性 检 验
销地产地
B1
B2
B3
B4
产量
ui
A1
16
u1(1)
A2
10
u2(0)
A3
22
u3(-4)
销量
8
14
12
14
48
vj
v1(2)
v2(9)
v3(3)
v4(10)
4
2
8
12
5
4
10
11
3
9
6
11
表3-9
1.增加一位势列和位势行并计算位势
其中
8
10
2
6
8
产量
A1

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

运筹学运输问题案例

运筹学运输问题案例

运筹学运输问题案例
以下是一个简单的运筹学运输问题的案例:
假设有一个公司需要将产品从三个工厂运输到四个销售点。

工厂和销售点的位置以及它们之间的运输成本如下:
工厂A到销售点1:10元
工厂A到销售点2:20元
工厂A到销售点3:30元
工厂A到销售点4:40元
工厂B到销售点1:20元
工厂B到销售点2:30元
工厂B到销售点3:10元
工厂B到销售点4:40元
工厂C到销售点1:30元
工厂C到销售点2:10元
工厂C到销售点3:20元
工厂C到销售点4:20元
公司希望找到一种运输策略,使得总运输成本最低。

可以使用运筹学中的运输模型来解决这个问题。

首先,我们需要确定每个工厂向每个销售点运输的货物数量。

为了最小化总成本,可以使用线性规划来求解这个问题。

在Excel或其他电子表格软件中,可以使用“Solver”插件来找到最优解。

根据最优解,我们可以计算出最低总运输成本。

例如,如果最优解是工厂A 向销售点1运输3个单位,向销售点2运输2个单位,向销售点3运输1
个单位,向销售点4运输0个单位;工厂B向销售点1运输2个单位,向
销售点2运输3个单位,向销售点3运输0个单位,向销售点4运输1个
单位;工厂C向销售点1运输1个单位,向销售点2运输0个单位,向销
售点3运输3个单位,向销售点4运输2个单位,那么最低总运输成本为150元。

管理运筹学 第七章 运输问题之表上作业法

管理运筹学  第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。

运筹学运输问题-图文

运筹学运输问题-图文
❖ 建模:设xij为从产地Ai运往销地Bj的物资数量(i=1, …m;j=1,…n。
销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1

(典型例题)《运筹学》运输问题

(典型例题)《运筹学》运输问题
第四天送洗:y451200
xj0,yij0,zij0,(i=1,┈,4;j=1,┈,5)
2008/11
--22--
--《Ⅵ 产量
新购 1 第一天 M 第二天 M 第三天 M
第四天 M
1 1 1 1 0 5200
0.2 0.1 0.1 0.1 0 1000
2008/11
--21--
建立模型:
--《运筹学》 运输问题--
设 xj—第j天使用新毛巾的数量;yij—第i天送第j天使用快洗 餐巾的数量;zij—第i天送第j天使用慢洗餐巾的数量;
Min z=∑xj+∑∑0.2yij+∑∑0.1zij
第一天:x1=1000
需 第二天:x2+y12=700
求 约
m1
xij b j (j 1,2,...,n)
i1
x 0 (i 1,...,m,m 1; j 1,...,n) ij
2008/11
--16--
--《运筹学》 运输问题--
销>产问题单位运价表
产地销地 B1 B2 ┈
A1
C11 C12 ┈
A2
C21 C22 ┈
┊ ┆┊┈
Am Cm1 Cm2 ┈
2008/11
--8--
产销平衡表
--《运筹学》 运输问题--
单位运价表
B1 B2 B3 B4 产量
A1 (1) (2) 4 3 7 A2 3 (1) 1 (-1) 4 A3 (10) 6 (12) 3 9 销量 3 6 5 6
B1 B2 B3 B4 A1 3 11 3 10 A2 1 9 2 8 A3 7 4 10 5
Ⅰ Ⅱ
示。又如果生产出来的柴

《管理运筹学》02-7运输问题

《管理运筹学》02-7运输问题
在运输问题中,混合整数规划可以处理更为复 杂的约束条件和多阶段决策过程。
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。

运筹学 第二章 运输问题

运筹学 第二章 运输问题
1
=
j
j = 1
(
(
这就是运输问题的数学模型,它包含 m·n 变量, m + n 个约束条件。如果用单纯形法求解,先得在各约 束条件上加入一个人工变量(以便求出初始基可行解)。 因此,即使是 m = 3 , n = 4 这样的简单问题, 变量数 就有19个之多,计算起来非常复杂。因此,我们有必 要针对运输问题的某些特点,来寻求更为简单方便的 求解方法。
销地产地
B1
B2
B3
B4
A1
x11
x12
A2
x21
x24
A3
x32
x34
x11 、 x12 、 x32 、 x34 、 x24 、 x21 构成一个闭回路. 这里有: i1 = 1 , i2 = 3 , i3 = 2;j1 = 1 ,j2 = 2 ,j3 = 4. 若把闭回路 的顶点在表中画出, 并且把相邻两个变量用一条直线相连 (今后就称这些直线为闭回路的边)。
第二节 表上作业法1. 表上作业法的基本概念与重要结论针对运输问题的数学模型结构的特殊性,它的约束方 程组的系数矩阵具有如下形式( 具体见下一张幻灯片 ),该 矩阵中, 每列只有两个元素为1,其余都是0。根据这个特 点,在单纯形法的基础上,创造出一种专门用来求解运输 问题的方法,这种方法我们称为表上作业法。运输问题也是一个线性规划问题,当用单纯形法进 行求解时,我们首先应当知道它的基变量的个数;其次, 要知道这样一组基变量应当是由哪些变量来组成。由运输 问题系数矩阵的形式并结合第一章单纯形算法的讨论可以 知道: 运输问题的每一组基变量应由 m+n-1个变量组成。 (即基变量的个数 = 产地个数 + 销售地个数 – 1) 进一步我 们想知道, 怎样的 m+n-1个变量会构成一组基变量?

运筹学运输问题的实验结论

运筹学运输问题的实验结论

运筹学运输问题的实验结论
根据运筹学的实验研究,以下是针对运输问题得出的一些结论:
1. 最优解存在:对于运输问题,总是存在一个最优解。

这意味着通过合理的运输方案,可以最大程度地满足需求,最小化成本。

2. 可行解集是有界的:在运输问题中,可行解集合是有界的,即存在某个上界,使得解决方案不能超过该上界。

这意味着在解决问题时需要在这个有界的解空间中进行搜索。

3. 需要使用线性规划方法:运输问题可以被看作是一个线性规划问题,可以使用线性规划方法来求解。

线性规划方法可以通过建立数学模型,将运输问题转化为最小化或最大化一个线性函数的问题。

4. 早期建立实验模型可以节省时间和资源:在实验研究中,建立一个运输问题的实验模型可以帮助决策者更准确地了解运输问题的本质,并在实践中节省时间和资源。

5. 利用敏感性分析来评估方案:敏感性分析可以评估运输方案的稳定性,即在不同的环境或条件下,方案的性能如何变化。

通过敏感性分析,可以评估不同变量的变化对运输方案的影响,以制定更有鲁棒性的方案。

需要注意的是,这些结论是基于实验和研究的结果得出的,可能仍然存在一些特定情况或具体问题中的例外。

因此,在具体
应用中,仍然需要灵活考虑,结合实际情况来决策和解决运输问题。

运筹学运输问题的方法

运筹学运输问题的方法

运筹学运输问题的方法
运筹学中的运输问题可以通过以下方法进行解决:
1. 确定初始方案:最小元素法、付格尔法和西北角法等,其中最小元素法是先找出运费最小的,然后优先满足。

付格尔法是算出行差额和列差额,依次对差额最大的行或列中运费较小的先分配。

西北角法也是一种求初始可行解的方法。

2. 判定最优解:可以采用闭回路法或者位势法求检验数。

闭回路法是对所选回路上进行“奇+偶-”的操作,而位势法则是直接用公式:检验数=cij-ui-vj。

3. 调整优化解:以检验数<0且最小的数开始入基,对偶数点选择最小的xij出基。

接着为满足表格平衡,使奇数点加上xij,偶数点减xij,记住出基的点为空格点了,这样才能保证有数点一直是m+n-1个。

对于产销不平衡的问题,则考虑增设一个仓库存放多出来的部分,或者增设一个产地弥补不足的部分,这些运费均为0,后做法同上。

4. 重复上述步骤:如果还未得到最优解,则重复步骤2和3,直到求得最优解。

总的来说,运筹学的运输问题需要综合运用多种方法进行求解,通过不断调整和优化解,最终得到最优解。

运筹学第三章 运输问题

运筹学第三章 运输问题
则称该运输问题为产销平衡问题;否则,称 产销不平衡。首先讨论产销平衡问题。
8
1.运输问题模型及有关概念
表4-3 运输问题数据表
销地
产地
A1 A2

Am
销量
B1 B2 … Bn
c11
c12 … c1n
c21
c22 … c2n
┇ ┇ ┇┇
cm1
cm2 … cmn
b1
b2 … bn
产量
a1 a2

am
设 xij 为从产地 Ai 运往销地 Bj 的运
式(4-8)中的变量称为这个闭回路的顶点。
22
1.运输问题模型及有关概念
例如,x13, x16, x36, x34, x24, x23 ; x23, x53, x55, x45, x41, x21 ; x11, x14, x34, x31等都是闭回路。
若把闭回路的各变量格看作节点, 在表中可以画出如下形式的闭回路:
得到下列运输量表:
4
1.运输问题模型及有关概念
Min Z s.t.
= 6x11+4x12+6x13+6x21+5x22+5x23 x11+ x12 + x13 = 200
x21 + x22+ x23 = 300
x11 + x21 = 150
x12 + x22 = 150
x13 + x23 = 200
2.每列只有两个 1,其余为 0,分别 表示只有一个产地和一个销地被使用。
7
1.运输问题模型及有关概念
一般运输问题的线性规划模型及求解思路
一般运输问题的提法:
假设 A1, A2,…,Am 表示某物资的m个 产地;B1,B2,…,Bn 表示某物资的n个销地; ai表示产地 Ai 的产量;bj 表示销地 Bj 的 销量;cij 表示把物资从产地 Ai 运往销地 Bj 的单位运价(表4-3)。如果 a1 + a2 + … + am = b1 + b2 + … + bn

运筹学运输问题生活案例

运筹学运输问题生活案例

运筹学运输问题生活案例运筹学是一门研究如何在有限资源下做出最佳决策的学科,其中运输问题是其中一个重要的应用领域。

下面我将从多个角度给出一些关于运筹学运输问题的生活案例。

1. 物流配送,物流公司面临着如何合理安排货物的运输路线和运输方式的问题。

运筹学可以通过优化算法来确定最佳的配送路线,以最小化成本和时间。

例如,一个快递公司可以利用运筹学方法来确定每辆送货车的最佳路线,以便在最短的时间内将包裹送达目的地。

2. 交通拥堵,城市交通拥堵是一个普遍存在的问题。

运筹学可以帮助城市交通管理部门优化交通流量,减少拥堵。

例如,通过调整交通信号灯的配时,可以最大程度地减少交叉口的等待时间,提高交通效率。

3. 航空航班调度,航空公司需要合理安排航班的起降时间和航线,以最大程度地利用飞机资源并提高乘客的满意度。

运筹学可以通过航班调度算法来帮助航空公司做出最佳决策。

例如,考虑到飞机的燃油消耗、乘客的转机需求和机场的容量限制等因素,可以确定最佳的航班起降时间和航线。

4. 供应链管理,供应链中的物流运输是一个重要的环节。

运筹学可以帮助企业优化供应链中的物流运输安排,以最小化库存成本和运输成本。

例如,通过运筹学方法,可以确定最佳的运输路径和运输模式,以确保产品按时到达目的地,同时最大程度地降低成本。

5. 城市垃圾收集,城市垃圾收集也是一个需要合理安排的运输问题。

通过运筹学方法,可以确定最佳的垃圾收集路线和收集车辆的分配,以最小化运输成本和提高垃圾收集的效率。

以上是一些关于运筹学运输问题的生活案例。

运筹学在各个领域都有广泛的应用,通过优化算法和决策模型,可以帮助解决各种运输问题,提高效率,降低成本。

《运筹学》第三章运输问题

《运筹学》第三章运输问题

Vogel近似法
考虑运输成本差异, 进行逼近最优解。
运输问题的扩展和变体
1
生产产能约束
考虑生产能力限制,同时优化货物的运输方案。
2
供需不平衡
存在供需不平衡时如何有效分配货物,避免浪费和延误。
3
多目标运输问题
同时考虑多个目标,如最小化成本和最大化利润。
运输问题的应用实例和案例分析
物流领域的应用
通过运输问题的优化,提升物流效率,降低成本。
运输问题的基本模型
运输方案的表示
常用的表示方法包括运输矩阵和网络图。
目标函数和约束条件
目标函数通常是最小化运输成本,约束条件包 括供需平衡和容量限制。
运输问题的解决方法
最小成本法
逐步分配货物,直至 达到最小总成本。
北北角法
按照最小单位运输成 本进行分配,直至l's Approximation Method)法为基础, 逐步分配货物。
《运筹学》第三章运输问 题
运输问题是运筹学中重要的问题之一,涉及到各种场景下的货物运输优化。 本章将介绍运输问题的定义、基本模型、解决方法,以及其在物流和生产调 度中的应用实例。
运输问题的概念和应用领域
• 运输问题是一种优化问题,旨在找到使运输成本最小的货物运输方案。 • 运输问题广泛应用于物流管理、供应链优化以及交通规划等领域。
生产调度中的应用
合理安排生产计划,提高生产线的利用率。
总结和展望
运输问题是优化领域的重要研究方向,未来随着物流技术的发展将有更多的应用场景和解决方法出现。

运筹学运输问题笔记

运筹学运输问题笔记

运筹学运输问题笔记
运筹学运输问题是指在运输中寻找最优方案的问题,主要包括供应商到销售点、工厂到市场、仓库到经销商等物流过程。

常见的运输问题有:
1. 指派问题:将n个工作任务分配给m个工作人员,每个工作任务有一个工作量和时间上的限制,目标是在满足约束条件的前提下,最小化总代价或最大化总利润。

2. 运输问题:用最少的代价将一批货物从若干个供应商运送到若干个销售点,满足供求平衡条件。

可以使用线性规划方法,将供应商和销售点之间的运输路线看作一个网络,利用线性规划的方法求解最小代价或最大收益。

3. 配给问题:采购部门需要为生产线提供原材料,同时工厂需要将成品配给销售部门。

目标是在满足约束条件的前提下,最小化总代价或最大化总利润。

4. 路径问题:给定一个网络,寻找两个点之间的最短路径。

可以采用广度优先搜索等方法解决。

5. 负载平衡问题:当多个任务需要在多个工作站上完成时,如何平衡各个工作站的负载。

可以采用贪心算法、动态规划等方法解决。

在实际应用中,以上问题常常彼此关联,可以采用综合算法或求解器进行求解。

运筹学运输问题应用实例

运筹学运输问题应用实例

运筹学运输问题应用实例运筹学是一门研究企业决策问题的学科,包括线性规划、整数规划、网络优化、排队论、决策理论等多个分支。

运筹学可以应用于许多领域,其中之一就是运输问题。

运输问题是指在给定的供应和需求条件下,如何合理地安排物资或者人员的调度和运输,使得运输成本最小、效率最高。

以下是几个运输问题的实例,展示了运筹学在现实生活中的应用:1.货物运输问题:某物流公司需要将若干货物从不同的供应地点运送到不同的需求地点,运输成本根据不同的供应-需求对有所差异。

如何设计最优的运输方案,使得总运输成本最小?解决方法:可以使用线性规划模型来描述这个问题。

将各个供需点之间的距离、运输成本等作为变量,建立一个目标函数和一系列约束条件,并通过求解线性规划问题来得到最优的运输方案。

2.配送车辆路径问题:某公司有若干辆配送车辆,需要将货物按照一定的规则分配到不同的配送点,并且保证每个配送点都能得到及时的配送。

如何合理地安排车辆的路径,使得配送成本最小、效率最高?解决方法:可以使用网络优化模型来描述这个问题。

将配送点、车辆、交通网络等抽象成一个图,其中每个节点表示一个配送点或者车辆,边表示两个节点之间的路径。

然后通过求解网络优化问题,找到最优的车辆路径。

3.乘客调度问题:某出租车公司需要根据乘客的叫车需求,合理地调度出租车,以提高乘客的满意度,并最大化车辆的利用率。

如何在不同的时间和地点调度出租车,使得乘客的等待时间最小、出租车的行驶里程最小?解决方法:可以使用排队论模型来描述这个问题。

根据乘客到达的服从分布,建立一个排队论模型,模拟乘客叫车的过程。

然后根据这个模型,确定最佳的出租车调度策略。

4.航班调度问题:某航空公司需要合理地调度飞机的起飞和降落时间,以提高航班的准点率和乘客的满意度。

如何在不同的起降时间和航线之间进行合理的安排,并考虑飞机的机场停靠时间和维修等因素?解决方法:可以使用决策理论和整数规划模型来描述这个问题。

运筹学运输与派送问题

运筹学运输与派送问题

运筹学运输与派送问题运筹学中的运输与派送问题是一类常见的优化问题,通常涉及将货物或资源从起始地点运输到目的地,并尽量优化运输成本或效率。

以下是一些常见的运输与派送问题的类型和解决方法:1. 车辆路径问题(Vehicle Routing Problem, VRP):给定一组客户和车辆,目标是确定每辆车的行驶路径,使得所有客户的需求得到满足,且总的运输成本最小。

可以使用启发式算法、元启发式算法、精确算法等求解。

2. 车辆装载问题(Vehicle Loading Problem, VLP):目标是最大限度地减少车辆的数量,或者在给定数量的车辆中装载更多的货物,使得总运输成本最小。

可以使用整数规划、分支定界法等求解。

3. 装箱问题(Bin Packing Problem, BPP):给定一组物品,每个物品都有自己的重量和体积,目标是使用最少的箱子数将所有物品装入箱子中,每个箱子的容量有限制。

可以使用贪婪算法、元启发式算法等求解。

4. 派送问题(Delivery Problem):给定一组客户和一组车辆,目标是确定每辆车的派送路线,使得所有客户的需求得到满足,且总的运输成本最小。

与VRP类似,可以使用启发式算法、元启发式算法、精确算法等求解。

5. 配载与调度问题(Scheduling and Routing Problem):涉及多个任务或工作需要完成,目标是确定任务的完成顺序、使用哪些资源、何时开始和结束等,以最小化总成本或最大化总效益。

可以使用线性规划、整数规划、动态规划等求解。

在解决运输与派送问题时,通常需要考虑各种因素,如车辆数量、运输距离、运输时间、运输成本、客户需求等。

根据问题的具体情况,可以选择合适的算法或模型进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变化:
1)有时目标函数求最大。如求利润最大或营业额最大等; 2)当某些运输线路上的能力有限制时,在模型中直接加 入约束条件(等式或不等式约束); 3)产销不平衡时,可加入假想的产地(销大于产时)或 销地(产大于销时)。
• 定理: 设有m个产地n个销地且产销平衡的 运输问题,则基变量数为m+n-1。
第3步 确定换入基的变量
当存在非基变量的检验数kl < 0 且kl =min{ij}时, 令Xkl 进基。从表中知可选x24进基。 第4步 确定换出基的变量 以进基变量xik为起点的闭回路中,所有偶顶点中的最小 运量作为调整量θ,θ对应的基变量为出基变量。
闭回路的概念
称集合{xi1 j1 , xi1 j2 , xi2 j2 , xi2 j3 ,
A1 A2 销量
B1 6 6 150
B2 4 5 150
B3 6 5 200
产量 200 300
解:产销平衡问题:总产量 = 总销量=500 设 xij 为从产地Ai运往销地Bj的运输量,得到下列运输 量表:
B1 x11 x21 150 B2 x12 x22 150 B3 x13 x23 200 产量 200 300
解:第1步 求初始方案,见下表所示。 总的运输费=(3×1)+(6×4) +(4×3) +(1×2)+(3×10)+(3×5)=86元
B1
A1
3 11
B2
3
B3 4
1
2 8 5
B4 3
10
产量
7
A2
A3 销量
3
1 7 9 4
4
3 6 9
6 6
10
3
5
第2步 最优解的判别(检验数的求法)
求出一组基可行解后,判断是否为最优解,仍然是用检 验数来判断,记xij的检验数为λij由第一章知,求最小值的运 输问题的最优判别准则是:
x31}共有8个顶点,这8个顶点间用水平或垂直线段连接起
来,组成一条封闭的回路。
B1
B2
B3
B4 B5 X25 X35
A1 X11 X12 A2 X23 A3 X31 A4 X42 X43
一条回路中的顶点数一定是偶数,回路遇到顶点必须转90 度与另一顶点连接,上表中的变量x 32及x33不是闭回路的顶点, 只是连线的交点。
第二步
第三步
例3.2 某运输资料如下表所示:
单位 销地 运价
B1 B2 B3 B4
3 1 7 3 11 9 4 6 3 2 10 5 10 8 5 6
产量 7 4 9
产地
A1 A2 A3
销量
问:应如何调运可使总运输费用最小?
最小元素法
基本思想是就近供应,即从运价最小的地方开始供应(调 运),然后次小,直到最后供完为止。
3 运输规划
( Transportation Problem )
本章主要内容:
1.运输规划问题的数学模型
2.表上作业法 3.运输问题的应用
1.运输规划问题的数学模型
例3.1 某公司从两个产地A1、A2将物品运往三个销地B1, B2, B3,各产地的产量、各销地的销量和各产地运往各销地 每件物品的运费如下表所示,问:应如何调运可使总运 输费用最小?
• 运输问题的一般形式:产销平衡
A1、 A2、…、 Am 表示某物资的m个产地; B1、B2、…、Bn 表示某物质的n个销地;ai 表示产地Ai的产量; bj 表示销地Bj 的销量; cij 表示把物资从产地Ai运往销地Bj的单位运价。设 xij 为从产地Ai运往销地Bj的运输量,得到下列一般运输量问题 的模型:
所有非基变量的检验数都大于等于,则运输方案 最优
求检验数的方法有三种: 闭回路法 位势法(▲) 运价矩阵法
运价矩阵法
11 (3)(10) 11 (3)(10) 3 3 行加 ( 1 ) 9 ( 2 ) 8 ( 2 ) 10 ( 3 ) 9 7 (4) 10 (5) 12 (9) 15 (10) 2 (0)(0) 1 ( 列减 0) 1 (0) -1 10 (0) 12 (0)
2.表上作业法
表上作业法是一种求解运输问题的特殊方法, 其实质是单纯形法。
步骤 第一步 描述 求初始基行可行解(初始调运方案) 求检验数并判断是否得到最优解当非基变 量的检验数σij全都非负时得到最优解,若 存在检验数σij <0,说明还没有达到最优, 转第三步。 调整运量,即换基,选一个变量出基,对 原运量进行调整得到新的基可行解,转入 第二步 方法 西北角法、 最小元素法、 元素差额法 闭回路法、 位势法 运价矩阵法 闭回路调整法
, xis js , xis j1 }
(其 中i1 , i 2 ,, i s;j1 , j2 ,, j s 互 不 相 同 )
为一个闭回路 ,集合中的变量称为回路的顶点,相邻两个变 量的连线为闭回路的边。如下表
例下表中闭回路的变量集合是{x11,x12,x42,x43,x23,x25,x35,
A1 A2 销量
Min C = 6x11+ 4x12+ 6x13+ 6x21+ 5x22+ 5x23 s.t. x11+ x12 + x13 = 200 x21 + x22+ x23 = 300 x11 + x21 = 150 x12 + x22 = 150 x13 + x23 = 200 xij ≥ 0 ( i = 1、2;j = 1、2、3)
闭回路
{ x11 , x41 , x43 , x 33 , x 32 , x12 }
B1 A1 A2 A3 X11
B2 X12 X32
B3
X33 X43
A4
X41
例如变量组 A { x 21 , x 25 , x 35 , x 31 , x11 , x12 }不能构成一条闭回路, 但A中包含有闭回路 { x 2 1 , x 2 5 , x 3 5 , x 3 1 } 变量组 B { x 33 , x 32 , x12 , x11 , x 21 }变量数是奇数,显然不是 闭回路,也不含有闭回路;
min z cij xij
i 1 j 1
m
n
n x ij a i i 1, , m j 1 m s .t x ij b j j 1, , n i 1 x ij 0, i 1, , m; j 1, , n
相关文档
最新文档