第2章 习题与答案

合集下载

第二章习题解题过程和参考答案

第二章习题解题过程和参考答案

第二章习题解题过程和参考答案第二章习题解题过程和参考答案2-1 试建立题2-1图所示各系统的微分方程 [其中外力)(t f ,位移)(t x 和电压)(t u r为输入量;位移)(t y 和电压)(t u c为输出量;k (弹性系数),μ(阻尼系数),R (电阻),C (电容)和m (质量)均为常数]。

解:2-1(a) 取质量m 为受力对象,如图,取向下为力和位移的正方向。

作用在质量块m 上的力有外力f(t),重力mg ,这两个力向下,为正。

有弹簧恢复力[]0)(y t y k +和阻尼力()dy t dtμ,这两个力向上,为负。

其中,0y 为0)(=t f 、物体处于静平衡位置时弹簧的预伸长量。

根据牛顿第二定理F ma ∑=,有[]22()()()()dy t d y t f t mg k y t y m dt dtμ+-+-= 其中:0ky mg =代入上式得22)()()()(dt t y d mdt t dy t ky t f =--μ整理成标准式:22()()()()d y t dy t m ky t f t dt dtμ++=μμ()f t[()k y t +()dy t dt或也可写成:22()()1()()d y t dy t k y t f t dt m dt m mμ++=它是一个二阶线性定常微分方程。

2-1(b) 如图,取A 点为辅助质点,设该点位移为()Ax t ,方向如图。

再取B 点也为辅助质点,则该点位移即为输出量()y t ,方向如图A 点力平衡方程:1()()[()()][]AAdx t dy t k x t x t dt dtμ-=- ① B 点力平衡方程:2()()()[]Adx t dy t k y t dt dtμ=- ②由①和②:12[()()]()A k x t x t k y t -= 得:21()()()Akx t x t y t k=-二边微分:21()()()Adx t k dx t dy t dt dt k dt=-③将③代入②:221()()()()[]k dx t dy t dy t k y t dt k dt dtμ=--整理成标准式:1221()()()k k k dy t dx t y t k dt dtμ++=或也可写成:()A t AB1211212()()()()k k k dy t dx t y t dt k k k k dtμ+=++它是一个一阶线性定常微分方程。

第二章课后习题答案

第二章课后习题答案

第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。

第2章-像经济学家一样思考(习题及答案)

第2章-像经济学家一样思考(习题及答案)

第2章像经济学家一样思考习题一、名词解释1、生产可能性边界2、自给经济3、计划经济4、市场经济5、混合经济6、微观经济学7、宏观经济学8、实证分析9、规范分析10、内生变量11、外生变量二、正误题(请判断下列描述的正误,正确的打√,错误的打×)1、越现实的模型总是越好。

2、经济模型要么反映现实.要么没有价值。

3、假设使解释世界变得相对容易,因为它们简化了现实,并集中了我们的注意力。

4、当建立国际贸易的模型时,似设世界只由一个国家组成是合理的。

5、当人们作为科学家时,他们必须努力做到客观。

6、如果一种经济在其生产可能性边界上运行,它肯定有效地使用了自己的资源.7、如果一种经济在其生产可能性边界上运行,它要多生产一种物品就必须少生产另一种物品。

8、生产可能性边界之外的点是可以达到的,而且是有效率的。

9、如果一种经济中有相当多的失业,这种经济就在生产可能性边界之内生产。

10、生产可能性边界向外凸出,是因为任何两种物品生产之间的权衡取舍都是不变的。

11、生产技术进步引起生产可能性边界向外移动。

12、宏观经济学涉及研究家庭和企业如何做出决策.以及它们如何在特定市场上相互交易。

13、“通货膨胀上升往往引起短期中失业减少”的表述是规范的。

14、当经济学家做出实证表述时,他们更可能是以科学家的身份出现。

15、无法用证据否定规范表述。

16、大多数经济学家认为,关税和进口限额通常减少了一般经济福利。

三、单项选择题1、一国生产可能性曲线以内一点表示A 通货膨胀B 失业或者说资源没有被充分利用C 该国可能利用的资源减少以及技术水平降低D 一种生产品最适度产出水平2、生产可能性曲线说明的基本原理是。

A 一国资源总能被充分利用B 假定所有经济资源得到充分利用,则只有减少Y物品生产才能增加X物品的生产C 改进技术引起生产可能性曲线向内移动D 经济能力增长唯一决定于劳动力数量3、下列命题中哪一个不是实证分析命题?A 1982年8月联储把贴现率降到10%B 1981年失业率超过9%C 联邦所得税对中等收入家庭是不公平的D 社会保险税的课税依据现在已超过30000美元4、以下问题中哪一个不属微观经济学所考察的问题?A 一个厂商的产出水平B 失业率的上升或下降C 联邦货物税的高税率对货物销售的影响D 某一行业中雇佣工人的数量5、经济学家提出模型的主要理由是。

电路的基本分析方法 练习题及答案第2章

电路的基本分析方法 练习题及答案第2章

第2章 电路的基本分析方法习题答案2-1 在8个灯泡串联的电路中,除4号灯不亮外其它7个灯都亮。

当把4号灯从灯座上取下后,剩下7个灯仍亮,问电路中有何故障?为什么?解:4号灯灯座短路。

如开路则所有灯泡都不亮。

2-2 额定电压相同、额定功率不等的两个白炽灯能否串联使用,那并联呢? 解:不能串联使用,因其电阻值不同,串联后分压不同,导致白炽灯无法正常工作。

在给定的电压等于额定电压的前提下,可以并联使用。

2-3 如图2-34所示,R 1=1Ω,R 2=5Ω,U =6V ,试求总电流强度I 以及电阻R 1、R 2上的电压。

图2-34 习题2-3图解:A 151621=++=R R U I=,V 551= V 111=2211=⨯==⨯=IR U IR U2-4 如图2-35所示,R 1=3Ω,R 2=6Ω,U =6V ,试求总电流I ;以及电阻R 1,R 2上的电流。

图2-35 习题2-4图解:总电阻为:Ω263632121=+⨯+=R R R R R=A 326=∴=R U I=由分流公式得:A 13633A 2363621122121=⨯++=⨯++I=R R R =I I=R R R =I2-5 电路如图2-36(a)~(f)所示,求各电路中a 、b 间的等效电阻R ab 。

(a) (b) (c)(d) (e) (f)2-36 习题2-5图解:(a) Ω4.3)6//4()2//2(ab =+=R(b) Ω2)33//()66//4ab =++(=R (c)Ω2)]6//3()6//3//[(13ab =++)(=R(d) Ω2)6//1)6//3(ab =+)(=R (e) Ω7)10//10(}6//6//]2)8//8{[(ab =++=R (f) Ω6}6//]64)4//4{[()4//4(ab =+++=R2-6 求图2-37所示电路中的电流I 和电压U 。

图2-37 习题2-6电路图解:图2-37等效变换可得:由上图可得;Ω8)816//)]}99//(6[5.7{=+++(总=RA 5.1812==总I 则根据并联电路分流作用可得:A 5.05.1)816()]99//(6[5.7)]99//(6[5.7=1=⨯++++++I则A 15.05.1=13=-=-I I I 总 I 3再次分流可得:A 75.0169999=4=⨯+++IA 25.016996=2=⨯++I所以I =0.75A ,U = U +-U - =9×I 2-8×I 1 = 9×0.25-8×0. 5=-1.75V2-7 电路如图2-38(a)~(g)所示,请用电源等效变换的方法进行化简。

高等工程数学第二章习题及答案

高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。

第2章 线性表习题及参考答案

第2章 线性表习题及参考答案

第二章线性表习题一判断题1.线性表的逻辑顺序与存储顺序总是一致的。

2.顺序存储的线性表可以按序号随机存取。

3.顺序表的插入和删除操作不需要付出很大的时间代价,因为每次操作平均只有近一半的元素需要移动。

4.线性表中的元素可以是各种各样的,但同一线性表中的数据元素具有相同的特性,因此是属于同一数据对象。

5.在线性表的顺序存储结构中,逻辑上相邻的两个元素在物理位置上并不一定紧邻。

6.在线性表的链式存储结构中,逻辑上相邻的元素在物理位置上不一定相邻。

7.线性表的链式存储结构优于顺序存储结构。

8.在线性表的顺序存储结构中,插入和删除时,移动元素的个数与该元素的位置有关。

9.线性表的链式存储结构是用一组任意的存储单元来存储线性表中数据元素的。

10.在单链表中,要取得某个元素,只要知道该元素的指针即可,因此,单链表是随机存取的存储结构。

二单选题 (请从下列A,B,C,D选项中选择一项)1.线性表是( ) 。

(A) 一个有限序列,可以为空;(B) 一个有限序列,不能为空;(C) 一个无限序列,可以为空;(D) 一个无序序列,不能为空。

2.对顺序存储的线性表,设其长度为n,在任何位置上插入或删除操作都是等概率的。

插入一个元素时平均要移动表中的()个元素。

(A) n/2 (B) n+1/2 (C) n -1/2 (D) n3.线性表采用链式存储时,其地址( ) 。

(A) 必须是连续的;(B) 部分地址必须是连续的;(C) 一定是不连续的;(D) 连续与否均可以。

4.用链表表示线性表的优点是()。

(A)便于随机存取 (B)花费的存储空间较顺序存储少(C)便于插入和删除 (D)数据元素的物理顺序与逻辑顺序相同5.某链表中最常用的操作是在最后一个元素之后插入一个元素和删除最后一个元素,则采用( )存储方式最节省运算时间。

(A)单链表 (B)双链表 (C)单循环链表 (D)带头结点的双循环链表6.循环链表的主要优点是( )。

第二章课后习题及答案

第二章课后习题及答案

第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。

A •强化法B •系统脱敏法C.代币法D •来访者中心疗法2•在对学生进行心理辅导时,常使用的“强化法”属于()。

A •行为改变技术B •认知改变法C.运动改变法D •精神分析法3•在心理辅导的行为演练中,系统脱敏法是由()首创。

A .皮亚杰B •沃尔帕C艾利斯D •罗杰斯4•心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。

A •强化法B •系统脱敏法C.理性一情绪疗法D •来访者中心疗法5 •行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。

A .皮亚杰B •斯金纳C.艾利斯D .奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。

A .强化法B .理性一情绪疗法C.代币法D .来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。

A .系统脱敏法B •代币法C.行为塑造法D .来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。

这种心理辅导方法是()。

A .强化法B •系统脱敏法C.来访者中心法D .理性一情绪疗法9.()不是行为改变的基本方法。

A .强化法B .代币法C.自我控制法D .演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。

A .全身松弛训练B .系统脱敏法C.行为塑造法D .肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师教师耐心解答并给予表扬和鼓励。

的这种做法属于行为改变方法中的()。

第二章习题答案参考

第二章习题答案参考

第二章 金属切削机床设计22. 什么是传动组的级比和级比指数?常规变速传动系的各传动组的级比指数有什么规律性? 传动组的级比是指主动轴上同一点传往被动轴相邻两传动线的比值,用ϕxi 表示。

级比ϕxi 中的指数X i 值称为级比指数,它相当于由上述相邻两传动线与被动轴交点之间相距的格数。

设计时要使主轴转速为连续的等比数列,必须有一个变速组的级比指数为1,此变速组称为基本组。

基本组的级比指数用X 0表示,即X 0 = 1,后面变速组因起变速扩大作用,所以统称为扩大组。

第一扩大组的级比指数X 1一般等于基本组的传动副数P 0,即X 1 = P 0。

第二扩大组的作用是将第一扩大组扩大的变速范围第二次扩大,其级比指数X 2等于基本组的传动副数和第一扩大组传动副数的乘积,即X 2 = P 0×P 1。

如有更多的变速组,则依次类推。

上述设计是传动顺序和扩大顺序相一致的情况,若将基本组和各扩大组采取不同的传动顺序,还有许多方案。

25. 某机床主轴转速n =100~1120 r/min ,转速级数z =8,电动机转速n 电=1440 r/min ,试设计该机床主传动系,包括拟定结构式和转速图,画出主传动系图。

解:2.111001120min max ===n n R n ===-712.11Z n R φ 1.41查表可获得8级转速为 100,140,200,280,400,560,800,1120拟定8级转速的结构式:根据级比规律和传动副前多后少、传动线前密后疏的的原则确定4212228⨯⨯=241.141.111max ≤===ϕ主u 符合要求4/182.2/141.133min ≥===--ϕ主u 符合要求最后扩大组的变速范围:8441.1)12(4)1(≤===--i i P x i R ϕ符合要求 绘制传动系统图如下:26. 试从ϕ=1.26,z =18级变速机构的各种传动方案中选出其最佳方案,并写出结构式,画出转速图和传动系图。

第2章 基本放大电路习题及答案

第2章 基本放大电路习题及答案

第2章 基本放大电路一、选择题(注:在每小题的备选答案中选择适合的答案编号填入该题空白处,多选或不选按选错论) 1 在基本放大电路的三种组态中:①输入电阻最大的放大电路是 ;②输入电阻最小的放大电路是 ;③输出电阻最大的是 ;④输出电阻最小的是 ; ⑤可以实现电流放大的是 ;⑥电流增益最小的是 ;⑦可以实现电压放大的是 ;⑧可用作电压跟随器的是 ;⑨实现高内阻信号源与低阻负载之间较好的配合的是 ;⑩可以实现功率放大的是 。

A.共射放大电路B.共基放大电路C.共集放大电路D.不能确定 2 在由NPN 晶体管组成的基本共射放大电路中,当输入信号为1kHz,5mV 的正弦电压时,输出电压波形出现了底部削平的失真,这种失真是 。

A.饱和失真B.截止失真C.交越失真D.频率失真 3 晶体三极管的关系式i E =f(u EB )|u CB 代表三极管的 。

A.共射极输入特性B.共射极输出特性C.共基极输入特性D.共基极输出特性 4 在由PNP 晶体管组成的基本共射放大电路中,当输入信号为1kHz,5mV 的正弦电压时,输出电压波形出现了顶部削平的失真,这种失真是 。

A .饱和失真 B.截止失真 C.交越失真 D.频率失真5 对于基本共射放大电路,试判断某一参数变化时放大电路动态性能的变化情况(A.增大,B.减小,C.不变),选择正确的答案填入空格。

1).R b 减小时,输入电阻R i 。

2).R b 增大时,输出电阻R o 。

3).信号源内阻R s 增大时,输入电阻R i 。

4).负载电阻R L 增大时,电压放大倍数||||o us sU A U 。

5).负载电阻R L 减小时,输出电阻R o 。

6.有两个放大倍数相同、输入和输出电阻不同的放大电路A 和B ,对同一个具有内阻的信号源电压进行放大。

在负载开路的条件下测得A 的输出电压小。

这说明A 的 。

A.输入电阻大 B.输入电阻小 C.输出电阻大 D.输出电阻小7.三极管的穿透电流I CEO是集-基反向饱和电流的倍. A. a B. 1+β C. β8.如图1所示的电路中的三极管为硅管,β=50,通过估算,可判断电路工作在______区。

第二章习题与答案

第二章习题与答案

第二章会计科目、会计账户和借贷复式记账法一、单项选择题1.账户是根据()开设的,用来连续、系统地记载各项经济业务的一种手段。

A.会计凭证B.会计对象C.会计科目D.财务指标2.根据借贷记账法的原理,记录在账户贷方的是()。

A.费用的增加B.收入的增加C.负债的减少D.所有者权益的减少3.会计科目是()的名称。

A.会计账户B.会计等式C.会计对象D.会计要素4借贷记账法的记账规则是()。

A.同增、同减、有增、有减B.同收、同付、有收、有付C.有增必有减,增减必相等D.有借必有贷,借贷必相等5.在借贷记账法中,账户的哪一方记录增加,哪一方记录减少是由()决定的。

A.账户的性质B.记账规则C.账户的结构D.业务的性质6.复试记账法的基本理论依据是()的平衡原理。

A.资产=负债+所有者权益B.收入–费用=利润C.期初余额+本期增加数-本期减少数=期末余额D.借方发生额=贷方发生额8.按照借贷记账法的记录方法,下列四组账户中,增加额均记在贷方的是()。

A.资产类和负债类B.负债类和所有者权益类C.成本类和损益类D.损益类中的收入和支出类9.会计科目与账户之间的区别在于()。

A.反映经济内容不同B.账户有结构而会计科目无结构C.分类的对象不同D.反映的结果不同10.按照借贷记账法的记录方法,下列账户的贷方登记增加额的是()。

A.库存现金B.应收账款C.应付账款D.原材料11.按照借贷记账法的记录方法,下列账户中,账户的借方登记增加额的是()。

A.实收资本B.应付职工薪酬C.累计折旧D.所得税费用12.目前我国会计制度规定,企业会计采用的记账方法是()。

A.增减记账法B.现金收付记账法C.借贷记账法D.财产收付记账法13.账户的基本结构分为左右两方,其基本依据是()。

A.登记收支业务B.借贷原理C.收付原理D.资金在运动中量的增加和减少14.不属于损益类会计科目的是()。

A.投资收益B.管理费用C.主营业务成本D.生产成本15.下列属于资产类的会计科目是()。

02第二章习题及参考答案

02第二章习题及参考答案

【单元测试题二——商品与货币】一、单项选择题1、商品的二因素指的是()A 使用价值和价值B 价值和价格C 抽象劳动和具体劳动D 价值和交换价值2、体现商品生产者之间相互交换劳动的社会经济关系的商品属性是()A 使用价值B 价值C 交换价值D价格3、不同的商品能够按照一定的比例进行交换,说明这两种商品必定具有在质上相同的东西。

这个同质的东西就是商品的()A 使用价值B 供求关系C 价值D 自然属性4、下列说法正确的是()A 使用价值是价值的物质承担者B 价值是使用价值的物质承担者C 没有使用价值的物品不一定没有价值D 没有价值的物品一定没有使用价值5、生产商品的劳动二重性是指()A 简单劳动和复杂劳动B 私人劳动和社会劳动C 必要劳动和剩余劳动D具体劳动和抽象劳动6、理解马克思主义政治经济学的枢纽是()A 劳动价值论B 劳动二重性理论C 剩余价值理论D资本积累理论7、凝结在商品中的无差别的一般人类劳动叫做商品的()A 使用价值B 交换价值C 价值D 价格8、商品价值量是由()A 商品生产者的个别劳动时间决定B 生产商品的社会必要劳动时间决定的C 商品的效用决定的D 市场供求状况决定的9、商品生产者要获得更多赢利,就必须使自己生产商品的()A个别劳动时间等于社会必要劳动时间B个别劳动时间等于剩余劳动时间C个别劳动时间高于社会必要劳动时间D个别劳动时间低于社会必要劳动时间10、决定商品价值量的社会必要劳动时间是以()为计量单位的。

A 体力劳动为尺度的B 脑力劳动为尺度的C 简单劳动为尺度的D 复杂劳动为尺度的11、劳动生产率与商品价值量的关系是A 与单位商品的价值量成反比B 与单位商品的价值量成正比C 与商品价值总量成反比D 与商品价值总量成反比12、单位商品的价值量与生产该商品的社会必要劳动时间的关系是A成正比 B 成反比 C 有时成正比,有时成反比 D 无比例关系13、如果部门劳动生产率下降,同一劳动在单位时间内创造的()A使用价值量减少,单位产品的价值量增加B使用价值量减少,单位产品的价值量减少C价值量增加,单位产品的价值量增加D价值量减少,单位产品的价值量减少14、部门劳动生产率越高,同一劳动在同一时期内生产的产品数量越多,则其创造的价值总量A 越多B 越少C 不变D 无法确定15、私人劳动转化为社会劳动的表现是A 商品交换成功B 提高产品质量C 劳动生产率的提高D 竞争16、简单商品经济的基本矛盾是()A使用价值和价值的矛盾B具体劳动和抽象劳动的矛盾C个别价值和社会价值的矛盾D私人劳动和社会劳动的矛盾17、由商品的赊买赊卖所引起的货币职能是()A 价值尺度B 流通手段C 支付手段D 贮藏手段18、打破商品直接交换所受的限制,引起商品交换买卖脱节的货币职能是()A 价值尺度B 流通手段C 支付手段D 贮藏手段19、货币的本质是A 金银B 一般等价物C 固定地充当一般等价物的商品D 商品20、可以用观念上的货币执行的,是货币的A 支付手段职能B 流通手段职能C 价值尺度职能D 贮藏货币职能21、在商品买卖中起媒介作用的货币,所执行的是A 价值尺度职能B 流通手段职能C 贮藏手段职能D 支付手段职能22、商品经济的基本规律是()A 竞争规律B 价值规律C 剩余价值规律D 货币流通规律23、在商品交换中,价格与价值A 偶然不一致B 经常不一致C 经常相一致D 完全相一致24、1只羊=2把斧子这个价值表现形式是A 简单的或偶然的价值形式B 总和的或扩大的价值形式C 一般价值形式D 货币形式25、货币充当表现和衡量一切商品价值量大小的尺度的职能是()A 价格标准B 价值尺度C 价格D 流通手段二、多项选择题26、具体劳动和抽象劳动的联系与区别是A 具体劳动是劳动的具体形式,抽象劳动是一般人类劳动B 具体劳动是体力劳动,抽象劳动是脑力劳动C 具体劳动反映人与自然的关系,抽象劳动反映社会生产关系D 两者是生产商品的同一劳动的两个不同方面27、部门劳动生产率的提高,会使A 单位商品价值量提高B单位商品价值量降低C 生产的使用价值量增加D生产的使用价值量降低28、个别企业提高劳动生产率后,可以增加单位时间内生产的使用价值量,而对价值量的影响是A 单位时间内创造的价值量降低B 单位时间内创造的价值量提高C单位商品的价值量下降 D 单位商品的价值量不变29、价值形式的发展经历的四个阶段是A 简单的或偶然的价值形式B扩大的价值形式C 一般价值形式D 货币形式30、执行流通手段职能的货币A 必须是现实的货币B 可以是观念上的货币C 可以是纸币D 必须是金属货币31、货币的基本职能包括A 价值尺度B 流通手段C 支付手段D 贮藏货币32、可能引起经济危机的货币职能有A 价值尺度B 流通手段C 支付手段D 贮藏货币33、商品二因素之间的关系是A 价值的存在要以使用价值的存在为前提B 使用价值的存在不以价值的存在为前提C 使用价值是价值的物质承担者D 价值是使用价值的物质承担者34、简单劳动和复杂劳动的关系是A 形成商品价值量的劳动以简单劳动为基准B 形成商品价值量的劳动以复杂劳动为基准C 简单劳动是多倍的复杂劳动D 复杂劳动是多倍的简单劳动35、商品是()A 生产者用来满足自己需要的劳动产品B 用来交换的劳动产品C 使用价值和价值的统一D 一定社会生产关系的体现三、名词解释36. 商品37. 商品的价值38. 货币39. 货币流通规律40. 通货膨胀41. 市场机制四、判断题42.自家种的粮食由于可以拿出去卖钱,因此是商品。

第二章 数据通信基础 习题与答案

第二章 数据通信基础 习题与答案

第二章数据通信基础习题与答案一、判断题1、( √)计算机中的信息都就是用数字形式来表示的。

2、( √)信道容量就是指信道传输信息的最大能力,通常用信息速率来表示,单位时间内传送的比特数越多,表示信道容量越大。

3、( ×)波特率就是指信息传输的错误率,就是数据通信系统在正常工作情况下,衡量传输可靠性的指标。

4、( ×)在单信道总线型网络中,带宽=信道容量×传输效率。

5、( √)在共享信道型的局域网中,信号的传播延迟或时延的大小与采用哪种网络技术有很大关系。

6、( √)DTE就是指用于处理用户数据的设备,就是数据通信系统的信源与住宿。

7、( √)DCE就是数据通信设备,就是介于数据终端设备与传输介质之间的设备。

8、( ×)Modem属于DTE。

9、( √)在单工通信的两个节点中,其中一端只能作为发送端发送数据不能接收数据,另一端只能接收数据不能发送数据。

10、( √)在半双工通信的双方可以交替地发送与接收信息,不能同时发送与接收,只需要一条传输线路即可。

11、( ×)在全双工通信的双方可以同时进行信息的发送与接收,只需要一条传输线路即可。

12、( √)在局域网中,主要采用的就是基带数据传输方式。

13.( √)信道带宽的单位就是赫兹。

14.( ×)数据通信系统主要技术指标中的信道容量=吞吐量×传输效率。

15.( ×)比特率与波特率就是两个相同的概念。

16.( √)基带传输与宽带传输的主要区别在于数据传输速率不同。

17.( √)分组交换就是以长度受到限制的报文分组为单位进行传输交换的。

18.( √)电路交换有建立连接、传输数据与拆除连接三个通信过程。

19.( √)分组交换比电路交换线路利用率高,但实时性差。

20.( √)ATM(即异步传输模式)就是一种广域网主干线常采用的技术。

21.( √)数据传输率就是指单位时间内信道内传输的信息量,即比特率。

第二章课后习题与答案

第二章课后习题与答案

第2章人工智能与知识工程初步1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。

解:定义谓词dP(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。

将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2)有人每天下午都去打篮球。

解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:a(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。

解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4)不是每个计算机系的学生都喜欢在计算机上编程序。

解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。

解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。

解:(2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。

解:(3) 学习班的学员有男、有女、有研究生、有本科生。

解:参例2.14(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。

解:参例2.10(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。

解:2.19 请把下列命题用一个语义网络表示出来: (1) 树和草都是植物; 解:(2) 树和草都有叶和根; 解:(3) 水草是草,且生长在水中; 解:(4) 果树是树,且会结果; 解:(5) 梨树是果树中的一种,它会结梨。

第2章_进程管理习题及答案

第2章_进程管理习题及答案

第二章进程管理习题及答案一、填空题1.进程的静态描述由三部分组成:①、②和③。

【答案】①PCB、②程序部分、③相关的数据结构集【解析】PCB是系统感知进程的唯一实体。

进程的程序部分描述了进程所要完成的功能,而数据结构集是程序在执行时必不可少的工作区和操作对象。

后两部分是进程完成所需功能的物质基础。

2.进程存在的标志是。

【答案】进程控制块PCB【解析】系统根据PCB感知进程的存在和通过PCB中所包含的各项变量的变化,掌握进程所处的状态以达到控制进程活动的目的。

3.①是现代操作系统的基本特征之一,为了更好地描述这一特征而引入了②这一概念。

【答案】①程序的并发执行,②进程【解析】程序的并发执行和资源共享是现代操行系统的基本特征。

程序的并发执行使程序失去了程序顺序执行时所具有的封闭性和可再现性。

在程序并发执行时,程序这个概念不能反映程序并发执行所具有的特性,所以引入进程概念来描述程序并发执行所具有的特点。

4.给出用于进程控制的四种常见的原语①、②、③和④。

【答案】①创建原语、②撤消原语、③阻塞原语、④唤醒原语【解析】进程控制是系统使用一些具有特定功能的程序段来创建、撤消进程以及完成进程各状态间的转换,从而达到多个过程高效率地并行执行和协调,实现资源共享的目的。

把那些在管态下执行的具有特定功能的程序段称为原语。

5.进程被创建后,最初处于①状态,然后经②选中后进入③状态。

【答案】①就绪,②进程调度程序,③运行【解析】进程的从无到有,从存在到消亡是由进程创建原语和撤消原语完成的。

被创建的进程最初处于就绪状态,即该进程获得了除处理机以外的所有资源,处于准备执行的状态;从就绪状态到运行状态的转换是由进程调度程序来完成的。

6.进程调度的方式通常有①和②方式两种。

【答案】①可剥夺、②非剥夺【解析】所谓可剥夺方式,是指就绪队列中一旦有优先级高于当前运行进程的优先级的进程存在时,便立即发生进程调度,转让处理机。

而非剥夺方式则是指:即使在就绪队列中存在有优先级高于当前运行进程的进程,当前进程仍将继续占有处理机,直到该进程完成或某种事件发生(如I/O事件)让出处理机。

第二章习题与答案

第二章习题与答案

第二章习题与答案第二章练习题一、单项选择题:1、在防范外汇风险的措施中,()是指在同一时期内创造一个与存在风险相同、货币相同金额、相同期限的反方向流动。

A、多种货币组合法B、提前或推迟收付法C平衡法D组对法2、()是指在某种货币存在外汇风险的情况下,经济实体可以通过创造一个与该种货币相联系的另一种货币的反方向流动来消除某种货币的外汇风险。

A、平衡法;B、组对法C、货币保值法;D、计价货币选择法3、由于外汇汇率波动而引起的应收资产与应付债务价值变化的风险,即为()A、技术操作性风险;B、经济风险C、会计风险;D、交易风险4、()是指根据会计制度规定,在对经济主体的资产负债表进行会计处理中,将功能货币转换成记账货币时,由于汇率变动造成账面损失的可能性。

A、交易风险;B会计风险C、经济风险;D、技术操作性风险5、由于意料之外的汇率变动通过影响企业产品的销售数量,价格和成本,引起企业在将来一定时期减少收益或现金流量的一种潜在的可能性,称为()A、交易风险;B、技术操作性风险C、会计风险;D、经济风险6、现汇交易是指外汇买卖成交后()办理收付的外汇业务A必须在当天营业终了前;B、在三天之内C、在两个营业日之内;D、在七天之内7、利用不同地点的外汇市场之间的汇率差异,同时在不同地点进行外汇买卖,以赚取汇率差额的外汇交易称为()A现汇交易;B、期汇交易C、套汇;D、套利8、无形市场,又称英美式外江市场,是指()A、设立在英国和美国的外汇市场B、外汇黑市或地下交易市场C、通过电话、电传、电报等交易的市场D、自由外汇市场9、掉期外汇交易是一种()A、娱乐活动;B、赌博行为C、投机活动;D、保值手段二、多项选择题:1、外汇风险主要包括()等类型A、政治风险;B、经济风险C、交易风险;D、统计风险;E、会计风险2、经济风险是由于预料之外的汇率变动对企业的()等产生影响,从而引起企业在未来一定期间收益增加或减少的一种潜在的可能性。

理论力学第二章课后习题答案

理论力学第二章课后习题答案

理论力学第二章课后习题答案·12·理论力系第2章平面汇交力系与平面力偶系一、是非题(恰当的在括号内踢“√”、错误的踢“×”)1.力在两同向平行轴上投影一定相等,两平行相等的力在同一轴上的投影一定相等。

2.用解析法求平面呈报力系的合力时,若挑选出相同的直角坐标轴,其税金的合力一定相同。

(√)3.在平面汇交力系的平衡方程中,两个投影轴一定要互相垂直。

(×)4.在维持力偶矩大小、转为维持不变的条件下,可以将例如图2.18(a)右图d处为平面力偶m移至例如图2.18(b)所示e处,而不改变整个结构的受力状态。

(×)(a)图2.185.如图2.19所示四连杆机构在力偶m1m2的作用下系统能保持平衡。

6.例如图2.20右图皮带传动,若仅就是包角发生变化,而其他条件均维持维持不变时,并使拎轮旋转的力矩不能发生改变。

(√图2.19图2.201.平面呈报力系的均衡的充要条件就是利用它们可以解言的约束反力。

2.三个力汇交于一点,但不共面,这三个力3.例如图2.21右图,杆ab蔡国用数等,在五个力促进作用下处在平衡状态。

则促进作用于点b的四个力的合力fr=f,方向沿4.如图2.22所示结构中,力p对点o的矩为plsin。

5.平面呈报力系中作力多边形的矢量规则为:各分力的矢量沿着环绕着力多边形边界的某一方向首尾相接,而合力矢量沿力多边形半封闭边的方向,由第一个分力的起点指向最后一个分力的终第面汇交力系与平面力偶图2.21图2.226.在直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小但在非直角坐标系中,力对坐标轴的投影与力沿坐标轴分解的分力的大小不相等。

1.例如图2.23右图的各图为平面呈报力系所作的力多边形,下面观点恰当的就是(c)。

(a)图(a)和图(b)就是平衡力系则(b)图(b)和图(c)就是平衡力系则(c)图(a)和图(c)就是平衡力系则(d)图(c)和图(d)就是平衡力系则f2f2f1(a)(b)(c)2.关于某一个力、分力与投影下面说法正确的是(b)。

第二章数据通信基础习题与答案

第二章数据通信基础习题与答案

第二章数据通信基础习题与答案一、判断题1. ( v)计算机中的信息都是用数字形式来表示的。

2. ( V )信道容量是指信道传输信息的最大能力,通常用信息速率来表示,单位时间内传送的比特数越多,表示信道容量越大。

3. ( X )波特率是指信息传输的错误率,是数据通信系统在正常工作情况下,衡量传输可靠性的指标。

4. ( X )在单信道总线型网络中,带宽=信道容量X传输效率。

5. ( v )在共享信道型的局域网中,信号的传播延迟或时延的大小与采用哪种网络技术有很大关系。

6. ( V ) DTE是指用于处理用户数据的设备,是数据通信系统的信源和住宿。

7. ( V ) DCE是数据通信设备,是介于数据终端设备与传输介质之间的设备。

8. ( X ) Modem属于DT吕9. ( V )在单工通信的两个节点中,其中一端只能作为发送端发送数据不能接收数据,另一端只能接收数据不能发送数据。

10. ( V )在半双工通信的双方可以交替地发送和接收信息,不能同时发送和接收,只需要一条传输线路即可。

11. ( X )在全双工通信的双方可以同时进行信息的发送与接收,只需要一条传输线路即可。

12. ( V )在局域网中,主要采用的是基带数据传输方式。

13.( V )信道带宽的单位是赫兹。

14. ( X )数据通信系统主要技术指标中的信道容量=吞吐量X传输效率。

15.( X )比特率和波特率是两个相同的概念。

16. ( V )基带传输与宽带传输的主要区别在于数据传输速率不同。

17. ( V )分组交换是以长度受到限制的报文分组为单位进行传输交换的。

18. ( V )电路交换有建立连接、传输数据和拆除连接三个通信过程。

19. ( V )分组交换比电路交换线路利用率高,但实时性差。

20. ( V ) ATM即异步传输模式)是一种广域网主干线常采用的技术。

21. ( V )数据传输率是指单位时间内信道内传输的信息量,即比特率。

22. ( X )使用调制解调器进行网络数据传输称为基带传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章数据类型和运算符习题及解答一.选择题。

1.下列是用户自定义标识符的是A)_w1 B)3_xy C)int D)LINE-3答案:A解析: C语言规定用户标识符由英文字母、数字和下划线组成,且第一个字符必须是字母或下划线,由此可见选项B),D)是错的;此外,C语言不允许用户将关键字作为标识符,而选项C)选项项中的int是C语言的关键字。

2.C语言中最简单的数据类型包括A)整型、实型、逻辑型 B)整型、实型、字符型C)整型、字符型、逻辑型 D)字符型、实型、逻辑型答案:B解析:本题考查C语言的数据类型。

在C语言中,没有专门的逻辑型数据类型,可以用0和1来表示逻辑值。

所以,在本题的选择答案中,不应该包括逻辑型。

3.下列符号常量定义中正确的是()。

A.#define PI 3.14 B.#define PI 3.14;C.define PI 3.14 D.define PI 3.14;答案:A解析:用#define命令行定义PI代表常量,对此程序进行编译时,预处理首先将出现PI的地方用3.14字符串替换。

符号常量定义是宏命令,define前必须加#号;如果3.14后加了“;”号,替换时PI会被“ 3.14;”字符串替换,3.14是常量,但“3.14;”就不是常量了,故只有A正确。

4.以下选项中不正确的实型常量是A)1.607E-1 B)0.7204e C)-77.77 D)234e-2答案:B解析:实型常量表示时字母E或e前必须有数字,其后数字必需为整数,故B错。

5.若变量已正确定义并赋值,以下符合C语言语法的表达式是A)a:=b+1 B)a=b=c+2 C)int 18.5%3 D)a=a+7=c+b答案:B解析:选项A)中包含一个不合法的运算符“:=”;选项C)应改为(int)18.5%3;选项D)可理解为两个表达式:a+7=c+b和a=a+7,其中第一个是错的,因为C语言规定赋值号的左边只能是单个变量,不能是表达式或常量等。

因此,正确答案是选项B),它实际上相当于a=(b=c+2),进而可分解为两个表达式:b=c+2和a=b。

6.下列可用于C语言用户标识符的一组是A)void, define, WORD B)a3_b3, _123,CarC)For, -abc, IF Case D)2a, DO, sizeof解析: C语言规定标识符只能由字母、数字和下划线三种字符组成,且第一个字符必须为字母或下划线,排除选项C)和D)。

C语言中还规定标识符不能为C语言的关键字,而选项A)中void为关键字,故排除选项A)。

7.C语言中运算对象必须是整型的运算符是A)%= B)/ C)= D)<=答案:A解析: C语言规定:取余运算符的运算对象必须是整型,复合运算符“%=”中包含%运算,它的运算对象也必须是整型。

8.若变量a,i已正确定义,且i已正确赋值,合法的语句是A)a= =1 B)++i; C)a=a++=5; D)a=int(i);答案:B解析:选项A是一个表达式,因为缺少分号,所以不是语句;选项C)包含一个不合法的运算符“++=”;选项D)应改为a=(int)i;。

9.设x,y和z都是int型变量,且x=3,y=4,z=5,则下面表达式中,值为0的表达式是A)x&&y B)x<=y C)x||++y&&y-z D)!(x<y&&!z||1)答案:D解析:该题考查逻辑与“&&”和逻辑或“||”以及逻辑非“!”符号的用法。

选项A)即3&&4为真,选项B)即3<=4为真,选项C)是一个逻辑或与逻辑与的混合运算,只要执行了逻辑或左半部分,程序将直接停止执行逻辑或右半部分程序,因为x的值为真,此时选项C)变为1&&-1为真。

选项D)不用计算,括号内逻辑或右边的值为1,因而括号内的值为1,再进行逻辑非运算得0。

10.有以下程序main(){int i=1,j=1,k=2;if((j++||k++)&&i++)printf("%d,%d,%d\n",i,j,k);}执行后输出结果是A)1,1,2 B)2,2,1 C)2,2,2 D)2,2,3答案:C解析:该题目的关键是要搞清楚“&&”和“||”两个逻辑运算符的运算功能。

运算符“&&”和“||”是双目运算符,要求有两个运算量。

且规定逻辑与运算中,只有前面运算量的值为真时,才需要判别后面的值。

只要前面为假,就不必判别后面的值。

而逻辑或则为只要前为真,就不必判别后面的值;只有前为假,才判别后。

本题中j++值为真,不进行k++的运算,所以k的值保持不变。

11.设int x=1,y=1;表达式(!x||y--)的值是A)0 B)1 C)2 D)-1解析:C语言规定的运算优先级由高到低分别是逻辑非、算术运算、逻辑或。

所以先计算!x,值是0,然后再计算y--,由于是后缀运算符,所以y在本次运算中的值仍然是1,最后计算0||1,值为1。

12.若有说明语句:char c='\72';则变量cA)包含1个字符 B)包含2个字符C)包含3个字符 D)说明不合法,c的值不确定答案:A解析: C语言的字符型常量中,允许用一种特殊形式的字符常量,就是以一个“\”开头的字符。

其中“\ddd”表示用ASCII码(八进制数)表示一个字符,本题中的char c=′\72′即表示占一个字符的变量c的ASCII码值。

13.在C语言中,退格符是A)\nB)\tC)\fD)\b答案:D解析: C语言的转义字符见下表所示。

14.在C程序中,判逻辑值时,用“非0”表示逻辑值“真”,又用“0”表示逻辑值“假”。

在求逻辑值时,用()表示逻辑表达式值为“真”,又用()表示逻辑表达式值为“假”。

A)1 0 B)0 1 C)非0 非0 D)1 1答案:A解析:在C程序中,判断逻辑值时,用非0表示真,用0表示假。

逻辑表达式计算时,逻辑表达式值为真是用1表示的,若逻辑表达式的值为假,则用0表示。

15.字符型数据在机器中是用ASCII码表示的,字符“5”和“7”在机器中表示为A)10100011和 01110111 B)01000101和01100011C)00110101和00110111 D)01100101和01100111答案:C解析:为便于表示各种数据类型,机器中采用了BCD码(表示十进制数)、ASCII 码(字符型)、汉字机内码等等各种码。

数据采用了补码、原码和反码为表示形式。

实型数据表示方法有浮点法和定点法等,考生需熟练掌握各种码的含义,并用之来计算、比较。

需要提出的是,在机器内部,所有码都是由二进制编码而成的,它都是以二进制存储在机器之中的。

字符“5”和“7”的ASCII的值分别为53和55,其二进制形式分别为00110101和00110111。

16.若已定义:int a=25,b=14,c=19;以下三目运算符(?:)所构成语句的执行后a<=25&&b--<=2&&c?printf("***a=%d,b=%d,c=%d\n",a,b,c):printf ("###a=%d,b=%d,c=%d\n",a,b,c);程序输出的结果是A)***a=25,b=13,c=19 B)***a=26,b=14,c=19C)### a=25,b=13,c=19 D)### a=26,b=14,c=19答案:C解析:此题综合考查多种运算符的使用;首先计算表达式a<=25 &&b--<=2 &&c的值,很容易看出b--<=2的值为假,因此表达式为假;根据三目运算的特点,由于前面的表达式为假,应执行printf(“###a=%d,b=%d,c=%d\n”,a,b,c),应注意a的值依然为25,b的值经过b--运算后改变为13,而c的值仍为19。

17.若有定义:int a=7;float x=2.5,y=4.7;则表达式x+a%3*(int)(x+y)%2/4的值是A)2.500000 B)2.750000 C)3.500000 D)0.000000答案:A解析: x+y的值为实型7.200000,经强制类型转化成整型7。

a%3的值为1,1*7的值为7,7%2值为1。

1/4的值为0,而非0.25,因而为两个整数相除的结果为整数,舍去小数部分。

与实型x相加,最终得结果为2.500000。

18.有如下程序段int a=14,b=15,x;char c=′A′;x=(a&&b)&&(c<′B′);执行该程序段后,x的值为A)ture B)false C)0 D)1答案:D解析:在C语言中,逻辑运算符有4个,它们分别是:!(逻辑非)、||(逻辑或)、&&(逻辑与)、^(异或)。

在位运算里面还有&(位与)、|(位或)的运算。

本题考查逻辑与运算符的用法,在表达式x=(a&&b)&&(c<′B′);中,先判断a&&b条件,逻辑与条件的两边都要保证为1,即a和b都成立,当然c<′B′是成立的,显然,该表达式的值为1。

19.在以下一组运算符中,优先级最高的运算符是A)<= B)= C)% D)&&答案:C解析:关系运算符、逻辑与和算术运算符总算术运算符的优先级最高,故选C)。

20.以下选项中,与k=n++完全等价的表达式是A)k=n,n=n+1 B)n=n+1,k=n C)k=++n D)k+=n+1答案:A解析: k=n++的意思是先将n的值赋给k,然后n的值再加1,选项A)符合题意;选项C)是先使n的值加1,然后再赋值给k;选项D)等价于k=k+(n+1)。

21.以下选项错误的是A)main() B)main(){ int x,y,z; { int x,y,z;x=0;y=x-1; x=0,y=x+1;z=x+y;} z=x+y;}C)main() D)main(){ int x; { int x,y,z;int y; x=0;y=x+1;x=0,y=x+1; z=x+y,}z=x+y;}答案:D解析:在选项A)中的语句没有一条是错误的。

选项B)和C)中有一个逗号表达式,选项B)中是x=0,y=x+1;在选项C)中是y=x+1,z=x+y;所以B)和C)中也没有错误。

选项D)中的最后一条语句是以逗号结束的,而C语言中不能用逗号作为一个语句的结束标志,每一条语句最后应该是分号,所以D)选项中的程序是错误的。

相关文档
最新文档