水电站毕业设计——蜗壳单线图

合集下载

基于CATIA的混流式水轮机蜗壳设计_陈忠玉

基于CATIA的混流式水轮机蜗壳设计_陈忠玉

机电技术 2012年4月70作者简介:陈忠玉(1959-),女,工程师,主要从事水轮发电机组装配工艺设计。

基于CATIA 的混流式水轮机蜗壳设计陈忠玉(东方电气集团东风电机有限公司,四川 乐山 614000)摘 要:阐述了大型混流式水轮机金属蜗壳的两个设计要点:其一,绘制具有复杂曲面的壳节;其二,提交合理的蜗壳分半方案。

以某电站大型混流式水轮机蜗壳设计为例,应用CATIA 软件建立三维实体模型,并利用伸展功能,展开壳节,然后进行产品分半方案分析,最后提出了合理的设计方案,为后续产品的生产、下料以及运输,提供了有利的理论支持。

关键词:蜗壳;模型;CATIA中图分类号:TK 733+.1 文献标识码 :A 文章编号: 1672-4801(2012)02-070-02蜗壳部件作为水轮机的流道之一,其设计的合理性,影响到整个机组的发电效率、运行稳定性以及空化性能,它水力性能的好坏,关键在于两点[1]:1) 蜗壳流道是否光滑;2) 分半是否合理,将各壳节组焊成整体后,强度是否足够。

对于上述问题,本文在某电站蜗壳的设计中,采用从三维到二维的方法,即运用CATIA 建立光滑的蜗壳三维模型,再将壳节伸展,并投影到平面,进行尺寸标注;同时,以蜗壳单线图的具体尺寸为依据,采用错边法,进行分半设计,提出了合理的分半方案。

1 蜗壳的设计对于混流式水轮机而言,金属蜗壳是由多个壳节拼焊而成[2]。

因此,其三维实体模型构建的步骤为:1) 按蜗壳型线图尺寸,绘制各断面草图;2) 利用截面扫掠命令,生成金属壳节;3) 延展每段曲面壳节,完成设计。

1.1 蜗壳断面的绘制蜗壳断面,是根据蜗壳流道型线尺寸划分的多个截面的统称。

将这些断面按照一定方式搭接,可以准确地绘制出流场的三维模型。

在该步骤的操作中,首先以电站的水头H 、转轮型号以、转轮直径D 等特征参数为依据,采用文献[1]中的方法,确定出各断面的详细尺寸。

然后根据尺寸绘制出各断面的草图(如图1所示)。

毕业设计说明书

毕业设计说明书

毕业设计说明书摘要本次毕业设计根据水电站的水力参数和要求,确定了水轮机的机型及型号(HL240/D41-LJ-200)。

通过选型计算及相应的运行工况分析,绘制出水轮机运转综合特性曲线。

在满足选型设计的条件下,进行了导水机构运动图的绘制;进行了水轮机蜗壳水力设计;并绘制了蜗壳水力单线图、尾水管设计、水轮机结构设计,其中包括水轮机剖面图及导叶加工图,并且建立了活动导叶的三维模型。

最后对蜗壳的强度进行了计算。

关键词:水轮机;选型设计;结构设计;强度计算AbstractBased on the actual request and hydraulic parameters provided of Songlinpo hydropower station , the type selection design and structure design were completed. The seleted type of turbine type is HL220/D41-LJ-200. Through the type selection design calculation as well as the corresponding operating situation analysis, designer draws the performance combined characteristic curve of turbine and carries out the corresponding feasibility analysis about the selected runner. After meeting the request of the type selection design, designer goes on guide mechanism motion diagram and the structure hydraulic turbine design, including the hydraulic design of the casing and design of the draft tube, then draws their hydraulic single line drawings, the hydraulic turbine’s assembly drawing and the guide vane drawing,and the author modeled the 3D model of guide vane. The final task of the design is the intensity calculation of the casing.Key words: Hydraulic Turbine;Type Selection Design;Structure Design;Intensity Calculation目录0前言 (1)1水电站的水轮机选型设计 (2)1.1水轮机的选型设计概述 (2)1.2水轮机选型的任务 (2)1.3水轮机选型的原则 (2)1.4水轮机选型设计的主要参数 (3)1.5确定电站装机台数及单机功率 (3)1.6选择机组类型及模型转轮型号 (3)1.7初选设计(额定)工况点 (4)1.8确定转轮直径D1 (5)1.9确定额定转速n (6)1.10效率及单位参数的修正 (7)1.11核对所选择的真机转轮直径D1 (8)1.12确定水轮机导叶的最大可能开度 (12)1.13计算水轮机额定流量Q r (13)1.14水轮机允许吸出高度H s (14)1.15确定水轮机的安装高程 (17)1.16计算水轮机的飞逸转速 (18)1.17计算轴向水推力P o c (18)1.18估算水轮机的质量 (18)1.19绘制水轮机运转综合特性曲线 (19)2水轮机导水机构运动图的绘制 (24)2.1导水机构的基本类型 (24)2.2导水机构的作用 (24)2.3导水机构结构设计的基本要求 (25)2.4导水机构运动图绘制的目的 (25)2.5导水机构运动图的绘制步骤 (26)3水轮机金属蜗壳水力设计 (28)3.1蜗壳类型的选择 (28)3.2金属蜗壳的水力设计计算 (29)4尾水管设计 (33)4.1尾水管概述 (33)4.2尾水管的基本类型 (33)4.3弯肘形尾水管中的水流运动 (33)5水轮机结构设计 (34)5.1概述 (43)5.2水轮机主轴的设计 (34)5.3水轮机金属蜗壳的设计 (35)5.4水轮机转轮的设计 (35)5.5导水机构设计 (37)5.6水轮机导轴承结构设计 (39)5.7水轮机的辅助装置 (41)6活动导叶的零件设计与三维模型 (43)6.1活动导叶的零件设计 (43)6.2活动导叶的三维模型 (43)7金属蜗壳强度计算 (44)7.1金属蜗壳受力分析 (44)7.2蜗壳强度计算 (44)7.3计算程序及结果 (46)8结论 (50)总结与体会 (51)谢辞 (51)参考文献 (52)0 前言水轮机是水电站的重要设备之一,它是靠自然界水能进行工作的动力机械。

蜗壳的型式及主要尺寸的确定

蜗壳的型式及主要尺寸的确定

蜗壳的型式及主要尺寸的确定根据设计资料提供,水轮机型号为 HL160—LJ —410及水电站工作水头H=118.5m>40m ,故采用金属蜗壳。

金属蜗壳只承受内水压力,而机墩传下的荷载和水轮机层的荷载是由金属蜗壳外围的混凝土承受。

为使金属蜗壳与其外围混凝土分开,受力互不传递,我国通常是在金属蜗壳上半部表面铺设沥青、麻刀、锯末或软木沥青、塑料软垫3——5cm 厚的软垫层,靠近座环处不铺。

使外压不传到金属蜗壳,内水压力不传到蜗壳外的混凝土上。

蜗壳主要参数的选择① 设计资料提供,每台机组的最大引用流量,则蜗壳进口处的流量s m Q Q 300max 00088.117123360345360=⨯==ϕ②、蜗壳进口断面平均流速《水力机械》第二版P99图4—30(b)曲线得s m V c 9= ③、座环内、外径选择由水轮机的型号 HL160—LJ —410,查到cm D 4101=的座环尺寸, 当H=118.5m<170m 时,其座环内径mm D b 5450=, 115m<H=118.5m<170m,其座环外径mm D a 6450= 金属蜗壳的水力计算设i ϕ为从蜗壳鼻端起算至计算断面i 的包角,则该计算断面处的ma x360Q Q ii ϕ=cii V Q πϕρ0m a x 360=i a i r R ρ2+=蜗壳断面计算表0 0 0 0 3.23 15 5.13 0.57 0.43 4.08 30 10.25 1.14 0.60 4.43 45 15.38 1.71 0.74 4.70 60 20.50 2.28 0.85 4.93 75 25.63 2.85 0.95 5.13 90 30.75 3.42 1.04 5.31 105 35.88 3.99 1.13 5.48 120 41.00 4.56 1.20 5.63 135 46.13 5.13 1.28 5.78 150 51.25 5.69 1.35 5.92 165 56.38 6.26 1.41 6.05 180 61.50 6.83 1.48 6.18 195 66.63 7.40 1.54 6.30 210 71.75 7.97 1.59 6.41 225 76.88 8.54 1.65 6.52 240 82.00 9.11 1.70 6.63 255 87.13 9.68 1.76 6.74 270 92.25 10.25 1.81 6.84 285 97.38 10.82 1.86 6.94 300 102.50 11.39 1.90 7.03 315 107.63 11.96 1.95 7.13 330 112.75 12.53 2.00 7.22 345117.8813.102.047.31根据计算结果作蜗壳单线图。

水电站课程设计计算书

水电站课程设计计算书

水电站厂房课程设计计算书1.蜗壳单线图的绘制 1.1 蜗壳的型式根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。

可知采用金属蜗壳。

又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。

1.2 蜗壳主要参数的选择金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345ϕ=。

通过计算得出最大引用流量max Q 值,计算如下: ○1水轮机额定出力:15000156250.96frfN N KW η=== 式中:60000150004f KWN KW ==,0.96f η=。

○2'31max 3322221156251.11 1.159.819.812.2546.20.904rp N Q m s D H η===<⨯⨯⨯(水轮机在该工况下单位流量''311 1.15M Q Q m s ==由表3-6查得)。

○3'23max1max 1 1.11 2.2538.2Q Q D m s ==⨯=。

由蜗壳进口断面流量max 0360c Q Q ϕ=,得334538.236.61/360c Q m s =⨯=。

蜗壳进口断面平均流速V c 由《水电站》(第4版)P36页图2-8(a )查得,5.6/c V m s =。

由《水力机械》第二版,水利水电出版社)附录二表5查得:3250,3850b a D mm D mm ==,则1625 1.625,1925 1.925b a r mm m r mm m ====。

其中:b D —座环内径;a D —座环外径;b r —座环内半径;a r —座环外半径。

座环示意图如下图所示:图1 座环示意图(单位:mm )1.3 蜗壳的水力计算(1)对于蜗壳进口断面(断面0): 断面面积 35375.66.561.36m V Q F c c c ===断面的半径 m F cc 443.1537.6===ππρ从轴中心到蜗壳外缘的半径:m r R c a c 811.4443.12925.12=⨯+=+=ρ 即断面0:m 443.10=ρ,m r r a 925.10==,m R R c 811.40==。

蜗壳断面设计

蜗壳断面设计

第五章反击式水轮机的基本结构第三节:反击式水轮机的引水室一、简介一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。

阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量水轮机引水室的作用:1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周受水流的作用力均匀,以便提高运行的稳定性。

2.水流进入导水机构签应具有一定的旋转(环量),以保证在水轮机的主要工况下导叶处在不大的冲角下被绕流。

二、引水室引水室的应用范围1.开敞式引水室2.罐式引水室3.蜗壳式引水室混凝土蜗壳一般用于水头在40M以下的机组。

由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图金属蜗壳的包角340度到350度三、金属蜗壳和混凝土蜗壳的形状及参数1.蜗壳的型式水轮机蜗壳可分为金属蜗壳和混凝土蜗壳当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳;一般用于大、中型低水头水电站。

当水头大于40M时,由于混凝土不能承受过大的内水压力,常采用钢板焊接或铸钢蜗壳,统称为金属蜗壳。

蜗壳应力分布图椭圆断面应力分析图金属蜗壳按制造方法有焊接铸焊和铸造三种。

,尺寸较大的中、低水头混流一般采用钢板焊接,其中铸造和铸焊适用于尺寸不大的高水头混流水轮机2.蜗壳的断面形状金属蜗壳的断面常作成圆形,以改善其受力条件,当蜗壳尾部用圆断面不能和座环蝶形边相接时,采用椭圆断面。

金属蜗壳与有蝶形边座环的连接图金属蜗壳的断面形状图混凝土蜗壳的断面常做成梯形,以便于施工和减小其径向尺寸、降低厂房的土建投资混凝土蜗壳断面形状图当蜗壳的进口断面的形状确定后,其中间断面形状可由各断面的顶角点的变化规律来决定,有直线变化和向内弯曲的抛物线变化规律混凝土蜗壳的断面变化规律3.蜗壳的包角对于金属蜗壳,其过流量较小,允许的流速较大因此其外形尺寸对厂房造价影响较小,为获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般对于混凝土蜗壳其过流量较大,允许的流量较小,因此其外形尺寸常成为厂房大小的控制尺寸,直接影响厂房的土建投资,一般4.蜗壳的进口流速当蜗壳断面形状及包角确定后,蜗壳进口断面平均流速是决定蜗壳尺寸的主要参数。

金属&混凝土蜗壳计算步骤

金属&混凝土蜗壳计算步骤
o
20 ~ 30
水力性能好。
10 ~ 20
o
; 20 ~ 30
o
可抬高机组高程。
上伸形
b / a 1 . 5 ~ 1 . 85
Hale Waihona Puke “Г”形b / a 2 .0 ~ 2 .2 ( b m ) / a 1 . 2 ~ 1 . 85
10 ~ 15
o
可抬高机组高程; 平顶上部便于接力器布 置
1—1960年前国内产品的统计曲线;2—1960~1970年国内产品的统计曲线;3— 推荐
三、反击式水轮机引水室
③进口断面计算:
进口断面平均流速:Vo K 进口断面面积: 0 Qo / Vo ; F 进口断面半径: 0= 进口断面中心距:0 a
F0 V0
H;
r
K
Db
bo 2


2
1) 令φi=345°,330°,315°,…,用下列 三、反击式水轮机引水室 公式计算圆断面参数
x
i
c

2
2 R0
2
i
c
h
2
i
x h
ai R0 x, Ri ai i
2)由ai, ρi ,Ri可以画出各圆断面及相应平 面单线图;
三、反击式水轮机引水室
圆断面绘制
积Si,
i
k
360 k Q
Si
oQ
360 S o
计算断面对应的φi, — — 进口断面包角 S
0
o
进口断面图解积分值。
蜗壳的计算
三、反击式水轮机引水室
绘制φi =f(r360 k ib=f(ri)及 i)、Q

甲岩水电站厂房蜗壳灌浆管路设计

甲岩水电站厂房蜗壳灌浆管路设计

F M] . 安徽 : 安徽文化音像 出版社. 2 0 0 4 . E 2 3 朱耀文 , 余小宝 , 汪文亮 , 等. 三峡三期 右岸 电站 厂房工程蜗壳
二期混凝土施工技术E J 3 . 葛洲坝集团科技, 2 0 0 6 , 4 : 3 8 —4 1 .
[ 3 ] D L / T 5 1 4 8 —2 0 0 1 , 水工建筑物水泥灌浆施工技术规范E s ] . 北
容易 固定 , 对混 凝 土 的 浇筑 影 响 较 小 。便 于底 部 浆
液 回填密 实 , 能防止 蜗壳 抬动 变形 , 从 而不 影 响后期
0 . 2 MP a , 1 O 个 灌浆 孔 同步 施灌 , 若 排 气 管未 出浆 , 则应 从 未 出浆排气 管进 行反 灌 。灌浆 浆液 水灰 比视 脱 空情况 可采 用 1:1 、 0 . 8:1 、 0 . 6:1 。在 设 计 压 力下 , 灌 浆管 停 止 进浆 5 mi n后 可 结 束 灌 浆 。灌 浆 时 应对 蜗壳 进行 观测 , 遇 有异 常情 况 应 立 即停 灌 并 及 时采用 措 施 ( 如调整灌浆压力 ) , 以防蜗壳失稳 。
云 南 水 力 发 电
YU NNAN W ATER P( ) WE R
第2 9 卷 第4 期
甲岩 水 电站厂 房 蜗 壳灌 浆管 路 设 计
伏 瑞
( 中国水 电顾 问集 团昆明勘测设 计研究院 , 云南 昆明 摘 6 5 0 0 5 1 )
要:蜗壳混凝 土全部为二期浇筑, 混凝土 的硬化干缩会致使混凝土与蜗壳钢板之间产生缝 隙, 同时蜗壳 底部 及阴角部位施工
灌浆 结束 7 ~1 4 d 后, 采用 锤 击法 进行 检 测 , 若脱 空 面 积不 小于 0 . 5 m。 , 应 进行 钻孔 补灌 。

水电站厂房项目座环及蜗壳安装方案

水电站厂房项目座环及蜗壳安装方案

目录1、概述 (1)1.1 工程概况 (1)1.2 水轮机座环及主要部件参数 (1)2、施工依据 (1)3、施工重点及难点 (2)4、施工方法 (2)4.1一般性规定 (2)4.2座环安装 (3)4.3蜗壳安装 (4)4.4座环、蜗壳安装质量控制点 (7)5、施工组织机构及设备配置计划 (8)5.1施工组织机构 (8)5.2人员及物资配置计划 (9)6、工期计划 (10)7、危险源辨识及安全保证措施 (10)7.1座环安装现场危险点分析与预控 (10)7.2质量保证措施 (12)7.3安全保证措施 (13)7.4环境及文明施工保障措施 (13)座环及蜗壳安装施工方案1、概述1.1 工程概况冗各电站主要任务是发电,坝后式开发,正常蓄水位495m,相应库容3290万m3,为周调节水库,电站装机容量3×30MW,多年平均发电量3.357亿kW•h,保证出力21.19MW,装机利用小时数3730h,工程规模属中型,工程等别为三等。

大坝为碾压混凝土重力坝,最大坝高70m,枢纽主要由重力坝、坝身设闸3孔溢洪道、左岸发电引水隧洞、压力钢管、地下发电厂房及室内开关站等建筑物组成。

1.2 水轮机座环及主要部件参数2、施工依据设备的制造及安装应遵照设计图纸以及国家和行业颁发的下述标准、规程和规范。

选用的技术规范、规程和标准,应是已颁布的最新版本。

本招标文件必须遵守执行的现行技术规范主要有(不限于此):(1)设计院提供的蓝图及工艺措施说明(2)水轮机厂家提供的图纸以及工艺措施要求(3)《水轮发电机组安装技术规范》(GB8564)(4)《钢焊缝手工超声波探伤方法和探伤结果分析》(GB11345)(5)《涂装前钢材表面锈蚀等级和除锈等级》(GB8923)(6)《钢熔化焊接接头射线照相和质量分级》(GB3323)(7)《钢结构高强度螺栓连接的设计、施工及验收规程》(JGJ82)(8)《水电水利工程金属结构设备防腐蚀技术规程》(DL/T5358)(9)《水工金属结构焊接技术条件》(SL36)(10)《水工金属结构焊工考试规则》(SL35)(11)《机械加工通用技术条件》(Q/ZB75)(12)《装配通用技术条件》(Q/ZB76)(13)《电力建设安全工作规程》(SDJ63)(14)《电力建设施工及验收技术规范(金属焊缝射线检验篇)》(SDJ60)(15)《现场设备、工业管道焊接工程施工及验收规范》(GB 50236)(16)《碳钢焊条》(GB/T5117)(17)《低合金钢焊条》(GB/T5118)3、施工重点及难点座环是立式混流式机组的安装基准件,尺寸大、重量重,而且安装精度要求高,应充分重视它的安装工作。

水电站厂房蜗壳结构设计分析一体化研究

水电站厂房蜗壳结构设计分析一体化研究

图 1 参数化蜗壳模型

%STU
IJ0KLMNOP ./QR
DEF4GH
!" #$
./BC
Байду номын сангаас
%&'()*+#$,-./
0./123456 789 :;<= >8:?1@A./BC
图 2 主要技术路线
2.1 CATIA程序开发 CATIA二次开发采用 CAA(ComponentApplica
1 蜗壳结构型式
水电站厂房常见蜗壳结构型式主要包括充水保 压蜗壳、垫层蜗壳和直埋蜗壳。这三种蜗壳结构形 式在其金属蜗壳几何体型上是相似的,但是在结构 受力特点上是不一样的。本文主要是研究这三种蜗 壳型式的一体化并进行程序开发。
垫层蜗壳是在金属蜗壳外表面部分敷设弹性垫
层材料,从而减小运行时钢蜗壳向外包钢筋混凝土 传递的荷载。充水保压蜗壳是在施工时采取措施, 临时封闭蜗壳的进口和出口,向蜗壳内充水加压,然 后浇筑外包混凝土,在外包混凝土达到设计强度后 才卸掉蜗壳内加压的水,使蜗壳上部与外围混凝土 之间形成间隙。在运行时,当蜗壳受内水压力变形 使间隙闭合后,外包混凝土才承受蜗壳传递过来的 荷载,从而达到减小外包混凝土所承担荷载的目的。 直埋蜗壳由金属蜗壳和外围混凝土直接联合作用共 同承受全部内水压力,直埋蜗壳施工工艺相对简单, 但是外包混凝土承担的荷载比另外两种蜗壳结构型 式大。
不论是哪一种蜗壳结构,其三维建模核心主要 是金属蜗壳模型,蜗壳三维模型创建主要根据蜗壳 的单线图数据创建,在 CATIA中可以直接关联 EX CEL表格创建参数,建立参数化的蜗壳结构模型,不 同的 蜗 壳 模 型 只 需 要 改 变 EXCEL数 据 即 可,见 图 1。

毕业设计论文河床式水电站设计及混凝土蜗壳结构计算

毕业设计论文河床式水电站设计及混凝土蜗壳结构计算

毕业设计(论文)_河床式水电站设计及混凝土蜗壳结构计算中文摘要沙溪口水电站计划建在福建省南平市上游的西溪上,是闽江流域的一个梯级电站,属于河床式水电站。

本电站主要组成建筑物有溢流坝、非溢流坝、厂房和船闸。

坝体型式为混凝土重力坝,溢流坝段布置于河床中部,厂房布置在河床右岸,船闸布置在左岸。

非溢流坝坝顶高程93m,上游面坡度为1:0.2,下游面坡度1:0.80,溢流坝堰顶高程82.78m。

溢流坝段全长340m,设有18孔溢流孔,每孔净宽取为17.0 m,沿主河槽宣泄绝大部分洪水。

水库正常蓄水位为88.00m,设计洪水位为90.00m,校核洪水位为91.00m,死水位为84.00m。

电站设计水头为10.3m,总装机容量为320MW,安装有4台轴流式水轮发电机组,每台装机容量为8MW。

水轮机型号均为ZZ560-LH-850,转轮直径为8.5m,水轮机安装高程66.47m,发电机层高程86.005m,取安装场高程与发电机层同高。

下游校核洪水位81.50m,主厂房顶高程为108.00 m,厂房总长148.2m,宽74m。

220kV及110kV开关站布置在尾水平台右侧。

船闸闸室100m×20m×2.5m(长×宽×最小水深),位于溢流坝左侧。

沙溪口水电站具备发电,航运,过木等的综合效益,是福建电网的骨干电厂。

关键词沙溪口水电站、河床式厂房、重力坝、溢流坝、水轮机、发电机、抗滑稳定性、扬压力、轴流式水轮机、发电机层结构设计AbstractShaxikou Hydropower Station is prepared to built at Xixi stream, upstream the city of Nanping in Fujian Province. It is one of the cascade development in the Minjiang river basin. It is a powerhouse in river channel.The main structures of Shaxikou Hydropower Station is consist of overflow spillway dam, non-overflow spillway dam, powerhouse and lock. The dams are concrete gravity dams. The overflow spillway dam lies in the centre of the riverbed. The powerhouse lies on the right, and the lock is located on the left.The top of the non-spillway dam is at an elevation of 93 meters. The upstream of the dam is vertical, the lower slope degree is 1:0.2,and the upper slope degree is 1:0.80. the crest of the weir is at an elevation of 82.78 meters. The overflow spillway dam is about 340 meters long in total, with 18 openings each of 17 meters wide, discharging most of the flood flow along the main river channel.The normal water lever of the reservoir is 88.00 meters,while the design flood water level of the reservoir reaches at 90.00 meters. The checking flood water level is about 91 meters. And the dead water level is only 84.00 meters.The design cross-head is10.3 meters. The project has a total installed capacity of 320MW. It houses four axial-flow turbines coupled with generators 8MW each. The type of the turbine is ZZ560-LH-850. The diameter of the turbine is 8.50 meters. The runner setting is at an elevation of 66.47 meters. The generator floor is at an elevation of 86.005 meters. And it is the same with the service or erection bay. However, the checking tailwater lever is 81.5 meters. The top of the powerhouse is at an elevation of 108 meters. And the powerhouse is about 146.2 meters long and 74.0 meters wide. 220KV anf 110KV switchyard is located on the platform at the right side of downstream tailrace.The lock with the dimension of 100m×20m×2.5m(L×W×Min.water depth) is located on the left side of the spillway.Shaxikou Hydropower Station has the comprehensive benefits ofgenerating electricity,shipping transportation, navigation afloating woods and etc.. It has a very important position in the electricity network of Fujian Province.KEYWORDSShaxikou Hydropowerstation, power house in river channel,concrete gravity dam, over flow dam, combinatory,hydro-generator, stability against sliding, uplift pressure,axial flow type turbine, structure design of generator floor,目录中文摘要----------------------------------------------------------------------------------------------------------- 2 -ABSTRACT------------------------------------------------------------------------------------------------------- 3 -目录----------------------------------------------------------------------------------------------------------------- 5 -1.1流域概况 (7)1.2水文气象条件 (7)1.3水库地质 (10)1.4坝址工程地质条件及坝轴线选定 (11)1.5建筑材料 (14)1.6综合利用 (14)1.7枢纽布置 (14)第二章重力坝挡水坝段设计 ----------------------------------------------------------------------------- - 16 -2.1剖面设计 (16)2.1.1坝顶高程 ---------------------------------------------------------------------------------------- - 16 -2.1剖面设计 (17)2.1.1坝顶高程 ---------------------------------------------------------------------------------------- - 17 -2.1.2坝顶宽度 ---------------------------------------------------------------------------------------- - 18 -2.1.3廊道的布置 ------------------------------------------------------------------------------------- - 19 -2.1.4剖面形态 ---------------------------------------------------------------------------------------- - 19 -2.2坝体稳定分析和应力校核 (20)2.2.1设计洪水位时 ---------------------------------------------------------------------------------- - 20 -2.2.2校核洪水位时 ---------------------------------------------------------------------------------- - 24 -第三章重力坝溢流坝段设计 ----------------------------------------------------------------------------- - 30 -3.1溢流坝段孔口尺寸拟定 (30)3.2溢流坝段剖面设计 (30)3.2.1堰顶高程 ---------------------------------------------------------------------------------------- - 31 -3.2.2堰面曲线 ---------------------------------------------------------------------------------------- - 31 -3.2.3 消能方式------------------------------------------------------------------------------------------ - 32 -3.3坝体稳定分析和应力校核 (34)3.3.1设计洪水位时 (34)水利水电工程专业毕业设计3.3.2校核洪水位时 (38)第四章水电站建筑物设计 ------------------------------------------------------------------------------ - 43 -4.1特征水头的选择 (43)4.2水电站水轮机组的选型 (45)4.2.1ZZ460水轮机方案的主要参数选择 ---------------------------------------------------- - 45 -4.2.2ZZ560水轮机方案的主要参数选择 ---------------------------------------------------- - 48 -4.2.3HL310型水轮机方案的主要参数选择------------------------------------------------- - 51 -4.3蜗壳和尾水管的计算 (54)4.4发电机的选择与尺寸估算 (57)4.4.1 水轮机发电机主要尺寸估算 ---------------------------------------------------------------- - 57 -4.4.2 发电机外形平面尺寸估算 ------------------------------------------------------------------- - 58 -4.4.3发电机外形轴向尺寸计算 ------------------------------------------------------------------- - 59 -4.4.4 发电机重量估算 ------------------------------------------------------------------------------- - 60 -4.5调速器与油压装置的选择 (61)4.5.1 调速功计算 ------------------------------------------------------------------------------------- - 61 -4.5.2 接力器的选择 ---------------------------------------------------------------------------------- - 61 -4.5.3 调速器的选择 ---------------------------------------------------------------------------------- - 62 -4.5.4 油压装置 ---------------------------------------------------------------------------------------- - 63 -4.6厂房起吊设备的选择 (64)4.7主厂房各层高程及长宽尺寸的确定 (66)4.7.1 水轮机组安装高程 ---------------------------------------------------------------------------- - 66 -4.7.2 尾水管地板高程和厂房基础开挖高程 ---------------------------------------------------- - 67 -4.7.3 水轮机层地面高程 ---------------------------------------------------------------------------- - 67 -4.7.4发电机楼板高程和安装场高程 ------------------------------------------------------------- - 67 -4.7.5 吊车梁轨顶高程 ------------------------------------------------------------------------------- - 68 -4.7.6 屋顶面高程 ------------------------------------------------------------------------------------- - 68 -4.7.7 厂房总高 ---------------------------------------------------------------------------------------- - 68 -4.7.8 主厂房平面尺寸的设计 ---------------------------------------------------------------------- - 68 -4.8水电站厂房的稳定计算 (69)第五章混凝土蜗壳的结构计算 ------------------------------------------------------------------------ - 73 -5.1内力计算 (73)5.1.1荷载及其计算----------------------------------------------------------------------------------------- - 73 -5.1.2 载常数计算 ------------------------------------------------------------------------------------------- - 74 -5.1.3形常数计算-------------------------------------------------------------------------------------------- - 74 -5.1.4内力计算----------------------------------------------------------------------------------------------- - 75 -5.2配筋计算 (77)5.2.1顶板----------------------------------------------------------------------------------------------------- - 77 -5.2.2边墙,按照对称配筋-------------------------------------------------------------------------------- - 78 -5.3抗裂计算 (78)5.3.1顶板----------------------------------------------------------------------------------------------------- - 78 -5.3.2 边墙 ---------------------------------------------------------------------------------------------------- - 79 -参考文献-------------------------------------------------------------------------------------------------------- - 81 -后记-------------------------------------------------------------------------------------------------------------- - 82 -1.1 流域概况闽江西溪为福建省最大河流上游的西支,流经福建省十四个县市,与闽江北支建溪汇合于南平市。

水电站课程设计

水电站课程设计

《水电站》课程设计说明书院系:水电学院专业:水利水电工程姓名:学号:指导:袁吉栋老师目录第一章基本资料 (1)第二章机组台数与单机容量的选择 (2)第三章水轮机型号、装置方式的确定 (2)第四章水轮机特性曲线的绘制 (9)第五章蜗壳的设计 (11)第六章尾水管的设计 (12)第七章发电机的选择 (14)第八章调速设备的选择 (16)第一章基本资料某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。

电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。

该电站水库库容小不担任下游防洪任务。

经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式。

经水工模型试验,采用消力戽消能型式。

经水能分析,该电站有关动能指标为:水库调节性能年调节保证出力 4万kw装机容量 16万kw多年平均发电量 42000 kwh最大工作水头 38.0 m加权平均水头 36.0 m设计水头 36.0 m最小工作水头 34.0 m平均尾水位 152.0 m设计尾水位 150.0 m发电机效率 96%-98%第二章机组台数与单机容量的选择水电站总装机容量等于机组台数和单机容量的乘积,在总装机容量确定的情况下可以拟订出不同的机组台数方案,当机组台数不同时,则当单机容量不同,水轮机的转轮直径、转速也就不同。

有时甚至水轮机的型号也会改变,从而影响水电站的工程投资、运行效率、运行条件以及产品供应。

在确定水电站机组台数和单机容量时,综合考虑下面的因素: (一) 机组台数与工程建设费用的关系;(二) 机组台数与设备制造、运输、安装及枢纽布置的关系; (三) 机组台数与水电站运行效率的关系; (四) 机组台数与水电站维护的关系; (五) 机组台数与电气主接线的关系;从而初步确定水电站采用4台机组,每台机组装机容量4万千瓦。

4万千瓦×4=16万千瓦满足水电站要求。

第三章 水轮机型号、装置方式的确定由基本资料,根据水电站的工作水头范围,在反击式水轮机系列型号谱表中查得HL240型水轮机和ZZ440型水轮机都可以使用。

水电站课程设计计算说明书(原创)

水电站课程设计计算说明书(原创)

《水电站》课程设计任务书题目:水电站地面式厂房布置设计发题日期:年月日完成日期:年月日专业名称:班号:学生姓名:主要指导教师:其他指导教师:武汉大学水利水电学院水电站教研室1工程概况及设计资料1.1工程概况湘贺水利枢纽位于向河上游,河流全长270公里,流域面积6000平方公里属于山区河流。

本枢纽控制流域面积1350平方公里,总库容22.15亿立方米,为多年调节水库。

本枢纽的目标是防洪和发电。

主要建筑物有重力拱坝,坝高77.5米,弧长370米;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。

水电站总装机60MW,装机4台,单机15MW。

电站担任工农业负荷,全部建成后担任系统灌溉负荷。

电站厂房位于右岸坝下游几十米处,由引水隧洞供水,主洞内径5.5米,支洞内径3.4米,厂内装置4台混流式立式机组,出线方向为下游,永久公路通至左岸。

1.2基本资料1.2.1水库及水电站特征参数1、水库水位水库校核洪水位140.00 m水库设计洪水位137.00 m水库正常高水位125.00 m水库发电死水位108.00 m设计洪水尾水位77.00 m校核洪水尾水位78.50 m2、厂址水位流量关系曲线3、水电站特征水头最大水头56.00 m最小水头38.00 m平均水头50.84 m计算水头48.30 m4、地形地质电站枢纽地形参见地形图。

左岸地势较平缓,右岸地势较陡。

枢纽基岩系凝灰岩,岩石抗压强度较高,厂区有第四纪沉积层,厚约3米,河床砂卵石覆盖层平均深2~4米。

5、供电方式本电站初期为三台机组,远景为四台机组,投入系统运行,根据系统要求本电站能作调相运行,水电站主结线采用扩大单元结线方式,采用110千伏、35千伏及发电机电压10.5千伏三种电压等级送电;高压侧采用桥形结线方式。

电气主结线见图二。

6、对外交通下游左岸有永久公路通过。

1.2.2水电站主要动力设备及辅助设备1、水轮机:型号HL220-LJ-225额定出力15.6 MW额定转速214.3 r/min单机额定(最大)流量36.2m3/s2、水轮发电机:型号SF15-28/550机械柜尺寸:长×宽×高=750×950×1375(mm)电气柜尺寸:长×宽×高=550×804×2360(mm)(2)油压装置型号:YZ-l.04、厂房附属设备(l)水轮机前的蝴蝶阀(2)桥式吊车详见附表1,选定吊车型号,选用有关尺寸.5、电气设备(l)三相三线圈主变二台型号:SFSL1-50000/110/35/10尺寸:长×宽×高=6820×4520×8200(mm)轨距:1435(mm)检修起吊高度:8200(mm)主变压器身重:39.5(吨)(2)厂用变压器二台型号:SJL1-630/10/0.4厂用变压器参考数据:(3)机旁盘每台机六块:控制盘1块,保护盘1块,表计盘1块,动力盘1块,励磁盘2块。

水轮机选型及蜗壳尾水管设计

水轮机选型及蜗壳尾水管设计
(5) 辅助曲线的绘制:以效率η 为纵坐标,出力N为横坐标,用 表中的数据,对每个水头绘制一条工作特性曲线。见图1。
图1
图2
(6) 运转综合特性曲线的绘制
以水头为纵坐标,出力为横坐标,绘出坐标系。 见图2。 在图2上绘出几个特征水头的水平线。 在图1上选取几个整数效率值,画出水平线,与辅 助曲线形成一些交点。
B,即为H<Hr时的出力限
制线。
2. 出力限制线的绘制
① 根据表中三个水头下所得到的出力,可以在运转综合特 性曲线上绘出三个点。连接着三个点即可得到斜向阴影 线。
② 在高水头下,水轮机的出力受发电机最大限制出力的限
制,作竖向阴影线N=Nf。 ③ 整个出力限制线由两部分组成:N=Nf的竖直线段和三个
M n1
N ηM Q'1
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η
nD1 n1 H
η N
Q'1
Q'1
5%出力限制 线
① 为了保证绘制运转综合特性曲线的精确性,在H、 N网格上至少绘出三个水头,其中包括Hmax、Hmin 和Hr(或Hav)。对每一个水头,计算出对应的n'1。 ② 在轮系综合特性曲线上绘制n'1的水平线,并查出其 与等效率线交点的坐标(η M, Q'1); ③ 计算出原型水轮机的效率; ④ 按照公式N=9.81Q'1D12H3/2η 计算水轮机的出力;
三、所需要的有关资料
1. 水轮机产品技术资料:系列型谱、生产厂家、产品目 录、模型综合特性曲线。 2. 水电站技术资料:河流梯级开发方案、水库的调节性 能、水电站布置方案、地形、地质、水质、泥沙情况、 总装机容量、水电站运输、安装技术条件;水文资料: 特征流量及特征水头、下游水位流量关系曲线。 3. 水电站有关经济资料:机电设备价格、工程单价、年 运行费等。 4. 电力系统资料:系统负荷构成,水电站的作用及运行 方式等。

水电站课程设计计算书

水电站课程设计计算书

一、绘制蜗壳单线图1.蜗壳的型式水轮机的型号为HL220—LJ —225,则蜗壳型式应为金属蜗壳。

2.蜗壳主要参数的选择 (1)断面的型式;金属蜗壳的断面形状均做成圆形,根据水轮机的型号,查《水利机械》附表5得到蜗壳座环的内外径分别为:内径3150D mm b =,外径3850D mm a=。

座环蝶形边切线与水平中心线的夹角为=55α 。

(2)蜗壳的包角0ϕ,工厂大都采用=3450ϕ 。

(3)蜗壳进口平均流速V c ;由于电站设计水头 5.5/V m s c=。

3.蜗壳的水力计算 发电机的单机容量15NMW f=,发电机效率取96%fη=所以水轮机的出力15.625N fN MW rfη==根据附表1查得:'1150/1Q L S =,91%η=615.6251033' 1.1' 1.151max 13322229.819.812.2546.20.911N rQ m s Q m s D H r η⨯===<=⨯⨯⨯则水轮机的最大引用流量maxQ 为:23' 1.1 2.2537.85max 1max 1QQ D m s ==⨯=1)对于蜗壳进口断面断面面积 34537.8520m a x 6.595360360 5.5Q Q c F m c V V C Cϕ⨯====⨯ ;断面的半径51.45m a xm ρ====从轴中心线到蜗壳外缘的半径: 2 1.9252 1.45 4.82maxmaxRr m a ρ=+=+⨯=2)对于中间任意断面设i ϕ为从蜗壳鼻端起算至计算断面i 处的包角,则该计算断面处的:max 360iQ Q iϕ=iρ=2R r iaiρ=+选取特殊角进行计算,计算成果见下表:二、尾水管单线图的绘制根据所给资料确定采用弯肘形尾水管,由单位参数可得到蜗壳尾水管尺寸:见图所示。

其中直锥管的长度 5.625 3.43 2.19523h H H m =-=-=;肘管外壁半径 3.11412R m φ==;肘管内壁半径0.60.6 3.114 1.86822R m φ=⨯=⨯=。

蜗壳计算

蜗壳计算

第二节 蜗壳计算一、 蜗壳形式、进口断面参数选择1、蜗壳形式选择由于应力强度的限制,钢筋混凝土的蜗壳只能在40m 水头以下的电站中采用,而对于40m 以上水头的电站来说,只能采用金属蜗壳。

根据原始资料,本次设计电站的最大水头为110m ,故应选择金属蜗壳。

2、蜗壳进口断面参数选择 (1) 包角ϕ的选择混凝土蜗壳包角ϕ通常选择在270~180之间,而金属蜗壳的包角通常在350~340之间,故选取包角345ϕ︒=。

(2) 选择进口断面平均流速0v增大平均流速v-可以在保证流量的前提下减小蜗壳尺寸,但过大的0v 又会增加损失从而降低效率,故应尽量合理选择。

v-=K H =0.79﹡.6103=8.05(m/s ) 参【1】P119K 为蜗壳的流速系数,与水头有关,查得0.79 参【2】P120 图(5-14) H 为水轮机设计水头。

(3) 确定进口断面的流量0Q 计算公式如下: 2000111360360T QQ Q D H ϕϕ==限 =251.5 m 3/s 参考【2】P 124ϕ0为进口断面的包角。

(4)计算进口断面面积0F 计算公式如下: 00v Q F ==251.5/8.05=31.24 ㎡/s (5)计算进口断面半径0ρ计算公式如下:πρ00F ==π4.231=3.15 m 参考【2】P 124(6)确定座环内外径a D 、b Dmr m K m D mD b a 4.015.06.68.7==== 参考【2】P 128表2-16(7) 确定碟形边锥角α由座环工艺决定,一般取55α︒=。

(8)计算碟形边高度h 计算公式如下:202s i n 22b h ktg r αα=++ (m)=0.9 m 010b b D ⨯= =5*0.27=1.35(9)计算碟形边半径0r计算公式如下:k D r a+=20=3.9+0.15=4.05 m 固定导叶外切圆半径ra :r a=D a /2=7.8/2=3.9(10)确定进口断面的中心距0a计算公式如下: 22000h r a -+=ρ =22.905.135.04-+=7 m(11) 计算进口断面的外半径0R 计算公式如下:000ρ+=a R =7.35+3.15=10.15 m(12)计算蜗壳系数C 计算公式如下:202000ρϕ--=a a C 参考【2】P 124公式2-5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档