(通用版)高考数学复习专题七解析几何7.3解析几何(压轴题)练习理
高考数学二轮复习课件:专题七 解析几何 7.3
全国 求直线方程,
Ⅰ 证明角相等
抛物线、直 线、斜率、垂 抛物线 直平分线
分类讨论思 想,方程思想
全国
2018 Ⅱ
求直线方程, 求圆的方程
抛物线、直 线、根与系数 抛物线 的关系、圆
方程思想
全国
Ⅲ
证明不等式 成立,证明等 式成立
椭圆、斜率、 向量的模、向 椭圆 量相等
点差法,方程 思想
-6-
1.椭圆、双曲线中a,b,c,e之间的关系
优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举 一反三,事半功倍。
2019/7/12
最新中小学教学课件
12
谢谢欣赏!
2019/7/12
最新中小学教学课件
13
方程思想
否有公共点 判别
2016 全国
Ⅱ
求三角形面 积,证明斜率 的取值范围
椭圆、直线、
三角形面积、 函数零点及
椭圆
存在性定理
方程思想,函 数思想
全国 证明平行,求
Ⅲ 轨迹方程
抛物线、直 线、斜率、三 抛物线 角形面积
方程思想,解 析法
-4-
年份 卷别 设问特点 涉及知识点 曲线模型 解题思想方法
A(x1,y1),B(x2,y2),x1≠x2,弦的中点 M(x0,y0),则
������12 ������22
= =
2������������1,两式相减得 2������������2,
������12 − ������22=2p(x1-x2),
∴(y1+y2)(y1-y2)=2p(x1-x2),
四、听方法。
高中数学解析几何复习 题集附答案
高中数学解析几何复习题集附答案高中数学解析几何复习题集附答案一、直线的方程在解析几何中,我们经常需要求解直线的方程。
直线的一般方程可以表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
下面我们通过一些例题来复习直线的方程的求解方法。
例题1:已知直线L1经过点(2,3)和(4,1),求直线L1的方程。
解析:首先我们可以求出直线L1的斜率k。
直线L1的斜率可以通过两个已知点的坐标计算出来:k = (y2 - y1) / (x2 - x1) = (1 - 3) / (4 - 2) = -1接下来,我们可以使用点斜式的形式来表示直线L1的方程:y - y1 = k(x - x1)将已知点(2,3)代入方程中,得到:y - 3 = -1(x - 2)化简得到直线L1的方程为:y = -x + 5因此,直线L1的方程为y = -x + 5。
例题2:已知直线L2过点(3,-2)且与直线L1: 2x - 3y + 4 = 0 平行,求直线L2的方程。
解析:由于直线L2与直线L1平行,所以它们具有相同的斜率。
直线L1的斜率为:k = 2 / (-3) = -2/3因此,直线L2的斜率也为-2/3。
再结合已知直线L2过点(3,-2),我们可以使用点斜式来表示直线L2的方程:y - y1 = k(x - x1)将已知点(3,-2)代入方程中,得到:y - (-2) = (-2/3)(x - 3)化简得到直线L2的方程为:3y + 2x + 10 = 0因此,直线L2的方程为3y + 2x + 10 = 0。
二、直线和平面的交点在解析几何中,我们经常需要求解直线和平面的交点。
我们可以通过直线的方程和平面的方程来求解交点的坐标。
下面我们通过一些例题来复习直线和平面交点的求解方法。
例题3:已知直线L3的方程为2x - y + 3z - 7 = 0,平面Q的方程为x + y - z + 4 = 0,求直线L3与平面Q的交点坐标。
高考数学压轴专题新备战高考《平面解析几何》知识点总复习有答案
【高中数学】《平面解析几何》知识点一、选择题1.倾斜角为45︒的直线与双曲线22214x y b-=交于不同的两点P 、Q ,且点P 、Q 在x 轴上的投影恰好为双曲线的两个焦点,则该双曲线的焦距为( )A .2B .2C 1D 1【答案】B 【解析】 【分析】方法一;由双曲线的对称性可知直线过原点,可得2Rt QOF △为等腰三角形且245QOF ∠=︒,根据勾股定理及双曲线的定义可得:1c =.方法二:等腰2Rt QOF △中,可得22b QF a=,且2b c a =.又根据222b a c =-,联立可解得1c =. 【详解】方法一;由双曲线的对称性可知直线过原点,在等腰2Rt QOF △中,245QOF ∠=︒,则122F F c =,2QF c =,1QF =.由双曲线的定义可得:122QF QF a-=,41c c -==,,故22c =.方法二:等腰2Rt QOF △中,22bQF a=,∴2b c a=. 又222b a c =-, ∴2240c c --=,得1c =.∴22c =. 故选:B . 【点睛】本题考查双曲线的性质,解题关键是将题目条件进行转化,建立等量关系求解,属于中等题.2.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的最小值为( )A .23B .3C .2D .22【答案】A 【解析】 【分析】联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.【详解】由22224(42)02y x bx b p x b y px=+⎧⇒+-+=⎨=⎩, 121222,24b p b x x x x +=-=-,因为直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,212512x x =-+,所以()22222512424b p b ⎡⎤-⎛⎫=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (1) 又直线l 经过C 的焦点,则,22b pb p -=∴=- (2)由(1)(2)解得2p =,故抛物线方程为24y x =.设()20000,,4M x y y x ∴=.则()()()2222200000||444212MN x y x x x =-+=-+=-+,故当02x =时,min ||23MN =. 故选:A. 【点睛】本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.3.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当222x y ==时取等号),则②正确; 将224x y +=和()3222216x y x y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点()2,2,()2,2-,()2,2--,()2,2-,则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.4.如图,O 是坐标原点,过(,0)E p 的直线分别交抛物线22(0)y px p =>于A 、B 两点,直线BO 与过点A 平行于x 轴的直线相交于点M ,过点M 与此抛物线相切的直线与直线x p =相交于点N .则22||ME NE -=( )A .2pB .2pC .22pD .24p【答案】C 【解析】 【分析】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B 两点,不妨设直线AB 为x =p ,分别求出M ,N 的坐标,即可求出答案. 【详解】过E (p ,0)的直线分别交抛物线y 2=2px (p >0)于A 、B ,两点为任意的,不妨设直线AB 为x =p ,由2y 2pxx p ⎧=⎨=⎩,解得y =,则A (p),B (p),∵直线BM 的方程为yx ,直线AM 的方程为y =x , 解得M (﹣p),∴|ME |2=(2p )2+2p 2=6p 2, 设过点M 与此抛物线相切的直线为y=k (x +p ),由()2y 2=k px x p ⎧=⎪⎨+⎪⎩,消x 整理可得ky 2﹣2py ﹣+2p 2k =0, ∴△=4p 2﹣4k (﹣+2p 2k )=0, 解得k=2, ∴过点M 与此抛物线相切的直线为yp=2(x +p ),由()=2x p x p =⎧⎪⎨+⎪⎩,解得N (p ,2p ), ∴|NE |2=4p 2,∴|ME |2﹣|NE |2=6p 2﹣4p 2=2p 2, 故选C . 【点睛】本题考查了直线和抛物线位置关系,以及直线和直线的交点坐标问题,属于难题.5.已知双曲线22:1124x y C -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,P Q .若POQ ∆为直角三角形,则PQ =( ) A .2 B .4C .6D .8【答案】C 【解析】 【分析】由题意不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒,解三角形即可. 【详解】不妨假设P 点在第一象限、Q 点在第四象限,90OPQ ∠=︒.则易知30POF ∠=︒,4OF =,∴OP =POQ n 中,60POQ ∠=︒,90OPQ ∠=︒,OP =∴6PQ ==. 故选C 【点睛】本题主要考查双曲线的性质,根据双曲线的特征设出P ,Q 位置,以及POQ V 的直角,即可结合条件求解,属于常考题型.6.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A .125 B .65C .2D 【答案】A 【解析】试题分析:根据抛物线的定义可知抛物线24y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()122min min125d d MF d +=+==,故选A. 考点:抛物线定义的应用.7.已知,A B 两点均在焦点为F 的抛物线()220y px p =>上,若4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为 ( ) A .1 B .1或3C .2D .2或6【答案】B 【解析】4AF BF +=1212442422p px x x x p x p ⇒+++=⇒+=-⇒=-中 因为线段AB 的中点到直线2px =的距离为1,所以121132px p p -=∴-=⇒=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02pPF x =+;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.8.已知平面向量,,a b c r r r满足()()2,21a b a b a c b c ==⋅=-⋅-=r r r r r r r r ,则b c -r r 的最小值为( )A B C .2-D 【答案】A 【解析】 【分析】根据题意,易知a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r ,由()()21a c b c -⋅-=r r r r,可得221202x y x +-+=,所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值, 利用圆心和点()20,的距离与半径的差,即可求出结果. 【详解】因为2a b a b ==⋅=r r r r ,所以a r 与b r的夹角为60︒,设(=1a r ,()20b =,r ,(),c x y =r,因为()()21a c b c -⋅-=r r r r ,所以221202x y x +-+=,又b c -=r r所以原问题等价于,圆221202x y x +-+=上一动点与点()20,之间距离的最小值,又圆221202x y x +-+=的圆心坐标为1⎛ ⎝⎭,所以点()20,与圆221202x y x +-+=上一动点距离的最小值为=.【点睛】本题考查向量的模的最值的求法,考查向量的数量积的坐标表示,考查学生的转换思想和运算能力,属于中档题.9.如图,12,F F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,,A B 分别是12,C C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A 2B 3C .32D .62【答案】D 【解析】 【分析】 【详解】试题分析:由椭圆与双曲线的定义可知,|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a(其中2a 为双曲线的长轴长),∴|AF 2|=a +2,|AF 1|=2-a ,又四边形AF 1BF 2是矩形,∴|AF 1|2+|AF 2|2=|F 1F 2|2=32,∴a 2,∴e 326考点:椭圆的几何性质.10.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C .6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值.把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.11.已知抛物线2:4C y x =,过其焦点F 的直线l 交抛物线C 于,A B 两点,若3AF FB =uu u r uu r,则AOF V 的面积(O 为坐标原点)为( )ABCD.【答案】B 【解析】 【分析】首先过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥,易得30ABM ∠=o ,60AFH ∠=o .根据直线AF:1)y x =-与抛物线联立得到12103x x +=,根据焦点弦性质得到163AB =,结合已知即可得到sin 60AH AF ==o AOF S V 即可.【详解】 如图所示:过A 作111AA A B ⊥,过B 作111BB A B ⊥(11A B 为准线),1BM AA ⊥. 因为3AF BF =uuu r uu u r,设BF k =,则3AF k =,11BB A M k ==. 所以2AM k =. 在RT ABM V 中,12AM AB =,所以30ABM ∠=o . 则60AFH ∠=o .(1,0)F ,直线AF 为3(1)y x =-.223(1)310304y x x x y x⎧=-⎪⇒-+=⎨=⎪⎩,12103x x +=. 所以121016233AB x x p =++=+=,344AF AB ==. 在RT AFH V 中,sin 6023AH AF ==o所以112332AOF S =⨯⨯=V 故选:B 【点睛】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.12.过坐标轴上的点M 且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为3M 的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】设出直线方程,根据弦长公式,转化为圆心到直线的距离建立等量关系求解. 【详解】由直线的斜率为tan 60k ︒==y b =+. 圆2240x y y +-=可化为22(2)4x y +-=,圆心为(0,2),半径为2r =, 则由弦长公式得:圆心(0,2)到直线y b =+的距离为1d ===,即|2|12b -+=,解得0b =,4b =,故直线的方程为y =或4y =+.直线y =过坐标轴上的点(0,0),直线4y =+过坐标轴上的点()0,4与⎛⎫ ⎪ ⎪⎝⎭,故点M 的个数为3.故选:C. 【点睛】此题考查直线与圆的位置关系,根据弦长公式将弦长问题转化为圆心到直线的距离求解.13.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v( )A .-16B .0C .16D .32【答案】B 【解析】 【分析】先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r.故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知抛物线22(0)y px p =>的焦点为F ,过点F 作互相垂直的两直线AB ,CD 与抛物线分别相交于A ,B 以及C ,D ,若111AF BF+=,则四边形ACBD 的面积的最小值为( )A .18B .30C .32D .36【答案】C【解析】【分析】【详解】 由抛物线性质可知:112AF BF p +=,又111AF BF+=,∴2p =, 即24y x =设直线AB 的斜率为k (k≠0),则直线CD 的斜率为1k -. 直线AB 的方程为y=k (x ﹣1),联立214y k x y x=⎧⎨=⎩(﹣),消去y 得k 2x 2﹣(2k 2+4)x+k 2=0, 从而242A B x x k+=+,A B x x =1 由弦长公式得|AB|=244k +, 以1k-换k 得|CD|=4+4k 2, 故所求面积为()22221141AB CD 4448222k k k k ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭≥32(当k 2=1时取等号),即面积的最小值为32.故选C15.已知直线1:(1)(1)20l a x a y -++-=和2:(1)210l a x y +++=互相垂直,则a 的值为( )A .-1B .0C .1D .2【答案】A【解析】分析:对a 分类讨论,利用两条直线相互垂直的充要条件即可得出. 详解:1a =-时,方程分别化为:10210x y +=+=,, 此时两条直线相互垂直,因此1a =-满足题意.1a ≠-时,由于两条直线相互垂直,可得:11()112a a a -+-⨯-=-+,解得1a =-,舍去.综上可得:1a =-.故选A .点睛:本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题16.过双曲线()222210,0x y a b a b-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左右两支都相交,则双曲线离心率e 的取值范围为( )A .()1,2B .()1,2C .()2,+∞D .()2,+∞【答案】C【解析】 【分析】 设过双曲线的右焦点F 与渐近线b y x a=垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之可得22b a >,从而可得双曲线的离心率e 的取值范围 .【详解】过双曲线的右焦点F 作渐近线b y x a=垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交, ∴直线AF 与渐近线b y x a =-必定有交点B , 因此,直线b y x a=-的斜率要小于直线AF 的斜率, Q 渐近线b y x a =的斜率为b a, ∴直线AF 的斜率a k b =-,可得b a a b -<-, 即22,b a b a a b>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >双曲线离心率e 的取值范围为()2,+∞,故选C. 【点睛】 本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.17.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:221169x y +=,点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ).A .20B .18C .16D .以上均有可能【答案】C【解析】【分析】根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.【详解】依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16故选:C .【点睛】本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.18.若函数1()ln (0,0)a a f x x a b b b+=-->>的图象在x =1处的切线与圆x 2+y 2=1相切,则a +b 的最大值是( )A .4B .2C .2D .【答案】D【解析】 ()1ln (0,0)a a f x x a b b b+=-->>, 所以()'a f x bx =-,则f ′(1)=-a b为切线的斜率,切点为(1,-1a b +), 所以切线方程为y +1a b +=-a b(x -1), 整理得ax +by +1=0. 因为切线与圆相切,所以22a b +=1,即a 2+b 2=1.由基本不等式得a 2+b 2=1≥2ab ,所以(a +b )2=a 2+b 2+2ab =1+2ab ≤2,所以a +b ≤,即a +b 的最大值为. 故选D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00(,)P x y 及斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:000'()()y y f x x x -=-.若曲线()y f x =在点00(,())P x f x 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.19.已知椭圆22198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( )A .12B .642+C .8D .6【答案】A【解析】【分析】画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案.【详解】画出图像,如图所示:直线220,220x y x y -+=--=平行,根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .【点睛】本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.20.已知抛物线24x y =的焦点为F ,准线为l ,抛物线的对称轴与准线交于点Q ,P 为抛物线上的动点,PF m PQ =,当m 最小时,点P 恰好在以,F Q 为焦点的椭圆上,则椭圆的离心率为( )A .322-B .22-C 32D 21【答案】D【解析】 由已知,(01)(01)F Q ,,,-,过点P 作PM 垂直于准线,则PM PF =.记PQM α∠=,则sin PFPMm PQ PQ α===,当α最小时,m 有最小值,此时直线PQ与抛物线相切于点P .设2004x P x ⎛⎫ ⎪⎝⎭,,可得(21)P ,±,所以222PQ PF ,==,则2PF PQ a +=,∴21a =,1c =,∴21c e a ==,故选D .。
高考数学-解析几何-专题练习及答案解析版
高考数学解析几何专题练习解析版82页1.已知双曲线的方程为22221(0,0)x y a b a b-=>>, 过左焦点F 1的直线交双曲线的右支于点P , 且y 轴平分线段F 1P , 则双曲线的离心率是( ) A . 3B .32+C . 31+D . 322. 一个顶点的坐标()2,0, 焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A , B 两点, 且△OAB (O 为坐标原点)的面积为, 则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点, 则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0, π/2), Q (-2, π), 则有 ( )(A)P 在曲线C 上, Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上, Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数), 则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N , 若212F F MN ≤, 则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线, 交双曲线于A , B 两点, 设双曲线的左顶点M , 若MAB ∆是直角三角形, 则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x , N M ,是椭圆上关于原点对称的两点, P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k , 021≠k k , 则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点, F 1、F 2是该双曲线的两个焦点, 若2:3:21=PF PF , 则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为, 则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32, 过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r, 则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限, 则直线l 的倾斜角的取值范围是( ) A .[6π, 3π) B .(6π, 2π) C .(3π, 2π) D .[6π, 2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点, 若线段AB 的中点为(1,1)M -, 则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -, 若F 为双曲线221x y -=的右焦点, P 是该双曲线上且在第一象限的动点, 则OA FP uu r uu r⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a , 则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点, P 为双曲线上的一点, 若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列, 则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1, 1)、B(0, -1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=, 则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P , 半径10r =; B 、圆心()1,3P , 半径10r =;C 、圆心()1,3P -, 半径10r =;D 、圆心()1,3P -, 半径10r =29.F 1、F 2是双曲线C :x 2- 22y b=1的两个焦点, P 是C 上一点, 且△F 1PF 2是等腰直角三角形, 则双曲线C 的离心率为 A .12 B .22C .32 D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图, 轴截面为边长为34等边三角形的圆锥, 过底面圆周上任一点作一平面α, 且α与底面所成二面角为6π, 已知α与圆锥侧面交线的曲线为椭圆, 则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点, F 为C 的焦点,若2FA FB=, 则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C , 过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点, 若3=, 则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l , 过(1,0)M 且斜率为3的直线与l 相交于点A , 与C 的一个交点为B .若AM MB =u u u u r u u u r, 则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切, 又与直线x +1=0相切, 则动圆圆心的轨迹方程是 ( ) A.y 2=8x B.y 2=-8x C.y 2=4x D.y 2=-4x36.若R k ∈, 则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k 37.点(-1, 2)关于直线y =x -1的对称点的坐标是 (A )(3, 2) (B )(-3, -2) (C )(-3, 2) (D )(3, -2) 38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( ) A .直线与圆相交但不过圆心. B . 相切. C .直线与圆相交且过圆心. D . 相离40.椭圆的长轴为A1A2, B 为短轴的一个端点, 若∠A1BA2=120°, 则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称, 则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1 D .x 2+(y -1)2=142.已知直线l 经过坐标原点, 且与圆22430x y x +-+=相切, 切点在第四象限, 则直线l 的方程为( )A.3y x = B .3y x =- C .3y x =D .3y x =- 43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时, 实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞ 44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =, 则双曲线离心率的取值范围是( ) A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点, O 为坐标原点,1(,0)2OA =u u u r , 则OA OP ⋅u u u r u u u r 的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <, 则直线0Ax By C ++=一定不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限47.[2012·课标全国卷]等轴双曲线C 的中心在原点, 焦点在x 轴上, C 与抛物线y 2=16x 的准线交于A , B 两点, |AB|=43, 则C 的实轴长为( )A.2B.22C.4D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后, 反射光线的反向延长线都汇聚到双曲线的另一个焦点。
高考解析几何压轴题精选(含答案)
1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
2024年高考数学分类汇编七解析几何
2024年高考数学分类汇编七解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b −=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A.4B .3C .2D 3.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .4.(2024·北京)求圆22260x y x y +−+=的圆心到20x y −+=的距离( )A .B .2C .D 5.(2024·天津)双曲线22221()00a x y a bb >−=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x −=B .22184x y −=C .22128x y −=D .22148x y −=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =− B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个 三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 . 9.(2024·北京)已知双曲线2214x y −=,则过()3,0且和双曲线只有一个交点的直线的斜率为 .10.(2024·北京)已知抛物线216y x =,则焦点坐标为 .11.(2024·天津)22(1)25−+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 . 四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y . (1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11kk+−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D . (1)求椭圆方程和离心率; (2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△ (1)求椭圆方程.(2)过点30,2⎛⎫− ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.答案详解1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解. 【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y , 又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】由题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =−=−=,则28224c e a ===. 故选:C. 3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得 20ax by b a ++−=,即()()120a x b y −++=,令1020x y −=⎧⎨+=⎩得12x y =⎧⎨=−⎩,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ==24AB AP ==.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +−+=,即()()221310x y −++=,则其圆心坐标为()1,3−,则圆心到直线20x y −+==,故选:C. 5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin θ=,因为1290F PF ∠=︒,所以121PF PF k k ⋅=−,求得112PF k =−,即21tan 2θ=,2sin θ=121212::sin :sin :sin90PF PF F F θθ=︒=则由2PF m =得1122,2PF m F F c ==, 由1212112822PF F SPF PF m m =⋅=⋅=得m =,则21122PF PF F F c c =====由双曲线第一定义可得:122PF PF a −==a b === 所以双曲线的方程为22128x y −=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >−4x a −=,04a −=,解得2a =−,故A 正确.对于B24x +=,而2x >−,()24x +=.当0x y ==()2844=−=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =−−+,取32x =,则2641494y =−,而64164525624510494494494−−−=−=>⨯,故此时21y >, 故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =−−≤++,故0004422y x x −≤≤++,故D 正确. 故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理. 7.ABD【分析】A 选项,抛物线准线为=1x −,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =−是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x −,A 的圆心(0,4)到直线=1x −的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ==B 选项正确;C 选项,当2PB =时,1P x =,此时244PP y x ==,故(1,2)P 或(1,2)P −, 当(1,2)P 时,(0,4),(1,2)A B −,42201PA k −==−−,4220(1)AB k −==−−, 不满足1PA AB k k =−;当(1,2)P −时,(0,4),(1,2)A B −,4(2)601PA k −−==−−,4(2)60(1)AB k −−==−−, 不满足1PA AB k k =−;于是PA AB ⊥不成立,C 选项错误; D 选项,方法一:利用抛物线定义转化 根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题, (0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k −=, 于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y −+=, 2164301360∆=−⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确. 方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t −,又(0,4)A ,又PA PB =,214t =+,整理得216300t t −+=,2164301360∆=−⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确. 故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b−=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225bAF a ==,又122AF AF a −=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y −=,解得y =设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =−, 联立()22143x y y k x ⎧−=⎪⎨⎪=−⎩,化简并整理得:()222214243640k x k x k −+−−=,由题意得2140k −=或()()()2222Δ244364140k k k =++−=,解得12k =±或无解,即12k =±,经检验,符合题意. 故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0. 故答案为:()4,0. 11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25−+=x y 的圆心为()1,0F ,故12p=即2p =, 由()2221254x y y x⎧−+=⎪⎨=⎪⎩可得22240x x +−=,故4x =或6x =−(舍),故()4,4A ±,故直线()4:13AF y x =±−即4340x y −−=或4340x y +−=, 故原点到直线AF 的距离为4455d ==, 故答案为:4512.【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为故答案为: 13.(1)12(2)直线l 的方程为3260x y −−=或20x y −=.【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x −=−,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可. 【解析】(1)由题意得2239941b a b=⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk −==−−,则直线AP 的方程为132y x =−+,即260x y +−=,AP =,由(1)知22:1129x y C +=, 设点B 到直线AP 的距离为d,则d ==则将直线AP沿着与AP 此时该平行线与椭圆的交点即为点B , 设该平行线的方程为:20x y C ++=,=6C =或18C =−, 当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=−⎩或332x y =−⎧⎪⎨=−⎪⎩,即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,当()0,3B −时,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=,当33,2B ⎛⎫−− ⎪⎝⎭时,此时12l k =,直线l 的方程为12y x =,即20x y −=,当18C =−时,联立2211292180x y x y ⎧+=⎪⎨⎪+−=⎩得22271170y y −+=,227421172070∆=−⨯⨯=−<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y −−=或20x y −=. 法二:同法一得到直线AP 的方程为260x y +−=, 点B到直线AP 的距离d =设()00,B x y,则22001129x y =⎪+=⎪⎩,解得00332x y =−⎧⎪⎨=−⎪⎩或0003x y =⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +−=,点B 到直线AP的距离d =设(),3sin B θθ,其中[)0,2θ∈π=联立22cos sin 1θθ+=,解得cos 1sin 2θθ⎧=⎪⎪⎨⎪=−⎪⎩或cos 0sin 1θθ=⎧⎨=−⎩, 即()0,3B −或33,2⎛⎫−− ⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B −,16392PABS=⨯⨯=,符合题意,此时32l k =,直线l 的方程为332y x =−,即3260x y −−=, 当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠−,解得0x =或22443kx k −=+,0k ≠,12k ≠−,令22443k x k −=+,则2212943k y k −+=+,则22224129,4343k k B k k ⎛⎫−−+ ⎪++⎝⎭ 同法一得到直线AP 的方程为260x y +−=, 点B 到直线AP的距离d ==32k =,此时33,2B ⎛⎫−− ⎪⎝⎭,则得到此时12l k =,直线l 的方程为12y x =,即20x y −=,综上直线l 的方程为3260x y −−=或20x y −=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠不满足条件.当l 的斜率存在时,设3:(3)2PB y k x −=−,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=−+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +−−+−−=, ()()()2222Δ24124433636270k kk k k =−−+−−>,且AP k k ≠,即12k ≠−,21222122241243,36362743k k x x k PB k k x x k ⎧−+=⎪⎪+⎨−−⎪=⎪+⎩, A 到直线PB距离192PAB d S ===, 12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =−,即3260x y −−=或20x y −=. 法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=−= ⎪⎝⎭到PB 距离3d =,此时1933922ABPS=⨯⨯=≠不满足条件. 当直线l 斜率存在时,设3:(3)2l y k x =−+, 设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫−+ ⎪⎝⎭,联立223323436y kx k x y ⎧=−+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, ()2223348336362702k x k k x k k ⎛⎫+−−+−−= ⎪⎝⎭, 其中()()22223Δ8343436362702k k k k k ⎛⎫=−−+−−> ⎪⎝⎭,且12k ≠−,则2222363627121293,3434B B k k k k x x k k −−−−==++, 则211312183922234P B k S AQ x x k k +=−=+=+,解的12k =或32k =,经代入判别式验证均满足题意. 则直线l 为12y x =或332y x =−,即3260x y −−=或20x y −=.14.(1)23x =,20y = (2)证明见解析 (3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可; (2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可. 【解析】(1)由已知有22549m =−=,故C 的方程为229x y −=. 当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y −=联立得到22392x x +⎛⎫−= ⎪⎝⎭.解得3x =−或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q −,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =−+,与229x y −=联立,得到方程()()229n n x k x x y −−+=.展开即得()()()2221290n n n n k x k y kx x y kx −−−−−−=,由于(),n n n P x y 已经是直线()n n y k x x y =−+和229x y −=的公共点,故方程必有一根n x x =. 从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k −−−=−=−−,相应的()2221n n nn n y k y kx y k x x y k +−=−+=−. 所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫−−+− ⎪−−⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x−−−−,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+−+− ⎪−−⎝⎭. 这就得到21221n n nn x k x ky x k ++−=−,21221n n n n y k y kx y k ++−=−. 所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++−+−−=−−− ()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=−=−=−−−−−. 再由22119x y −=,就知道110x y −≠,所以数列{}n n x y −是公比为11k k+−的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b =,(),UW c d =,则12UVWSad bc =−.(若,,U V W 在同一条直线上,约定0UVWS =)证明:211sin ,1cos ,22UVWS UV UW UV UW UV UW UV UW =⋅=⋅−()222211122UV UW UV UW UV UW UV UW UV UW ⎛⎫⋅⎪=⋅−=⋅−⋅⎪⋅⎭==12ad bc ==−. 证毕,回到原题.由于上一小问已经得到21221n n nn x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 而又有()()()111,n n n n n n P P x x y y +++=−−−−,()122121,n n n n n n P P x x y y ++++++=−−, 故利用前面已经证明的结论即得 ()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==−−−+−− ()()()()12112112n n n n n n n n x x y y y y x x ++++++=−−−−− ()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=−+−−− 2219119119112211211211k k k k k k k k k k k k ⎛⎫−+−+−+⎛⎫⎛⎫⎛⎫⎛⎫=−+−−− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+−+−+−⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k++−=−,21221n n n n y k y kx y k ++−=−, 故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++−+−+−−+=+=+=+−−−+. 再由22119x y −=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk−+的等比数列. 所以对任意的正整数m ,都有n n m n n m x y y x ++−()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=−+−−−−− ()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=−+−+− ()()()()11112121mmn n n n n n n n k k x y x y x y x y k k −+⎛⎫⎛⎫=−+−+− ⎪ ⎪+−⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫−+⎛⎫⎛⎫=−− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫−+⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++−+⎛⎫−=−=− ⎪+−⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫−+⎛⎫⎛⎫−=−=− ⎪ ⎪ ⎪ ⎪+−⎝⎭⎝⎭⎝⎭. 两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++−−−=−−−. 移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++−−+=−−+. 故()()()()321213n n n n n n n n y y x x y y x x ++++++−−=−−.而()333,n n n n n n P P x x y y +++=−−,()122121,n n n n n n P P x x y y ++++++=−−. 所以3n n P P +和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.15.(1)22143x y +=(2)证明见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b ,故椭圆方程为22143x y +=.(2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−−()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k kx x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.16.(1)221,42x y e +==(2)2t =【分析】(1)由题意得b c ==a ,由此即可得解;(2)说明直线AB 斜率存在,设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立椭圆方程,由韦达定理有2121222424,1221kt t x x x x k k −−+==++,而()121112:y y AD y x x y x x −=−++,令0x =,即可得解.【解析】(1)由题意b c ===2a ==, 所以椭圆方程为22142x y +=,离心率为e =(2)显然直线AB 斜率存在,否则,B D 重合,直线BD 斜率不存在与题意不符, 同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设(:,AB y kx t t =+>,()()1122,,,A x y B x y ,联立22142x y y kx t ⎧+=⎪⎨⎪=+⎩,化简并整理得()222124240k x ktx t +++−=, 由题意()()()222222Δ1682128420k t k t k t =−+−=+−>,即,k t 应满足22420k t +−>,所以2121222424,1221kt t x x x x k k −−+==++, 若直线BD 斜率为0,由椭圆的对称性可设()22,D x y −, 所以()121112:y y AD y x x y x x −=−++,在直线AD 方程中令0x =, 得()()()()2122112121221121212422214C k t x kx t x kx t kx x t x x x y x y y t x x x x x x kt t−++++++====+==+++−,所以2t =,此时k 应满足222424200k t k k ⎧+−=−>⎨≠⎩,即k应满足k <或k >,综上所述,2t =满足题意,此时k <k >17.(1)221129x y +=(2)存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =−,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ⋅,再根据0TP TQ ⋅≤可求t 的范围.【解析】(1)因为椭圆的离心率为12e =,故2a c =,b ,其中c 为半焦距, 所以()()2,0,0,,0,A c B C ⎛− ⎝⎭,故122ABC S c =⨯=△故ca =,3b =,故椭圆方程为:221129x y +=.(2)若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率存在,则可设该直线方程为:32y kx =−,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ⎧+=⎪⎨=−⎪⎩可得()223412270k x kx +−−=, 故()222Δ144108343245760k k k =++=+>且1212221227,,3434k x x x x k k +==−++ 而()()1122,,,TP x y t TQ x y t =−=−,故()()121212123322TP TQ x x y t y t x x kx t kx t ⎛⎫⎛⎫⋅=+−−=+−−−− ⎪⎪⎝⎭⎝⎭()()22121233122kx x k t x x t ⎛⎫⎛⎫=+−++++ ⎪ ⎪⎝⎭⎝⎭()22222731231342342k k k t t k k ⎛⎫⎛⎫⎛⎫=+⨯−−+⨯++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭()2222222327271812332234k k k t t t k k ⎛⎫−−−−++++ ⎪⎝⎭=+ ()22223321245327234t t k t k ⎛⎫⎡⎤+−−++− ⎪⎣⎦⎝⎭=+, 因为0TP TQ ⋅≤恒成立,故()223212450332702t t t ⎧+−−≤⎪⎨⎛⎫+−≤⎪ ⎪⎝⎭⎩,解得332t −≤≤.若过点30,2⎛⎫− ⎪⎝⎭的动直线的斜率不存在,则()()0,3,0,3P Q −或()()0,3,0,3P Q −,此时需33t −≤≤,两者结合可得332t −≤≤.综上,存在()30,32T t t ⎛⎫−≤≤⎪⎝⎭,使得0TP TQ ⋅≤恒成立. 【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设. 18.(1)b(2)(2,P(3)(303,3⎛ ⎝⎦【分析】(1)根据离心率公式计算即可; (2)分三角形三边分别为底讨论即可;(3)设直线:2l x my =−,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【解析】(1)由题意得21c cea ===,则2c =,b == (2)当b =时,双曲线22Γ:183y x −=,其中()2,0M −,()21,0A , 因为2MA P △为等腰三角形,则①当以2MA 为底时,显然点P 在直线12x =−上,这与点P 在第一象限矛盾,故舍去;②当以2A P 为底时,23MP MA ==,设(),P x y ,则 2222318(2)9y x x y ⎧−=⎪⎨⎪++=⎩,联立解得2311x y ⎧=−⎪⎪⎨⎪=⎪⎩或2311x y ⎧=−⎪⎪⎨⎪=⎪⎩10x y =⎧⎨=⎩, 因为点P 在第一象限,显然以上均不合题意,舍去; (或者由双曲线性质知2MP MA >,矛盾,舍去);③当以MP 为底时,223A P MA ==,设()00,P x y ,其中000,0x y >>,则有()2200220019183x y y x ⎧−+=⎪⎪⎨−=⎪⎪⎩,解得002x y =⎧⎪⎨=⎪⎩(2,P .综上所述:(2,P .(3)由题知()()121,0,1,0A A −,当直线l 的斜率为0时,此时120A R A P ⋅=,不合题意,则0l k ≠, 则设直线:2l x my =−,设点()()1122,,,P x y Q x y ,根据OQ 延长线交双曲线Γ于点R , 根据双曲线对称性知()22,R x y −−,联立有22221x my y x b =−⎧⎪⇒⎨−=⎪⎩()222221430b m y b my b −−+=, 显然二次项系数2210b m −≠, 其中()()22222422Δ44134120mb b m b b m b =−−−=+>,2122241b my y b m +=−①,2122231b y y b m =−②, ()()1222111,,1,A R x y A P x y =−+−=−,则()()122112111A R A P x x y y ⋅=−+−−=,因为()()1122,,,P x y Q x y 在直线l 上, 则112x my =−,222x my =−,即()()2112331my my y y −−−−=,即()()2121213100y y m y y m +−++=,将①②代入有()2222222341310011b b mm m b m b m +⋅−⋅+=−−,即()()2222231341010b m m b m b m +−⋅+−=化简得2223100b m b +−=,所以 22103m b=−, 代入到 2210b m −≠, 得 221031b b =−≠, 所以 23b ≠, 且221030m b =−≥,解得2103b ≤,又因为0b >,则21003b <≤,综上知,()2100,33,3b ⎛⎤∈ ⎥⎝⎦,(303,3b ⎛∴∈ ⎝⎦.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设:2l x my =−,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.。
2018年高考数学二轮复习第二部分高考22题各个击破专题七解析几何7.3.2圆锥曲线中的最值范围证明问题课件文
-8-
难点突破 (1)△ABP是等腰直角三角形⇒a=2;由 ������������ = ������������,得Q 2 点坐标,代入椭圆方程求得b;
3
(2)设直线y=kx-2,代入椭圆方程,由根与系数的关系及Δ>0得k的 一个范围,由原点O在以MN为直径的圆外⇒ ������������ ·������������ >0⇒x1x2+y1y2>0⇒关于k的不等式⇒k的另一范围,取两个k的范围的 交集得结论. 由向量数量积的坐标公式,即可求得直线l斜率的取值范围.
解 (1)由题意知△ABP是等腰直角三角形,a=2,B(2,0),
设 Q(x0,y0),由 ������������ = ������������,则 x0= ,y0=- ,代入椭圆方程, 解得 b2=1,
������ 2 2 5 5
3
6
4
∴椭圆方程为 4 +y2=1.
-9-
(2)由题意可知,直线l的斜率存在,设方程为y=kx-2,设 M(x1,y1),N(x2,y2),
4 2 2 9 3
-������ 2 +4������ +3 2( ������ 2 +1)
.
-4-
因为|PA|= 1 + ������ 2 ������ + |PQ|= 1 + ������ 2 (xQ-x)=-
1
2 (������ -1)(������ +1)2 ������ 2 +1
= 1 + ������ 2(k+1), ,
≥4 2,
当且仅当 y1=± 2 2,即 A(1,± 2 2)时取等号, △AMN 面积的最小值为 4 2.
高三数学解析几何专题(含解析)
高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。
2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。
I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。
3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。
Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。
4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。
5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。
6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。
高中数学解析几何压轴题
专业资料整理分享高中数学解析几何压轴题一.选择题1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B ∠PFR=∠QFR C.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1C.D.e2+15.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5 B.7 C.13 D.156.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4xB.y2=4x(x≠0)C.y2=﹣4xD.y2=﹣4x(x≠0)9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22B.20C.18D.1611.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()A.B.(,+∞)C.D.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.8D.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4C.0或4D.0或﹣41.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则PN∥MQ,,又由双曲线第二定义可知=,3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,B C D,,,4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一2B D,∴M((的坐标代入,可得5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最由题意可得:椭圆的焦点分别是两圆(的焦点分别是两圆(6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()B C D=(+解:∵若(+)e==7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()B C D==8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足、的坐∥∥22+=1(y≠0)B+=1(y≠0)C﹣=1(y≠0)D﹣=1(y≠0)=2,根据抛物线定义可得(10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()B C D,,再利用余弦定理,即可求得|=2|=,12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()BD,+∞)解:曲线=,k′=,<k≤13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=B C=,14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()B C D,=的中点坐标是()﹣,,m=15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值根据双曲线上存在两点(﹣,,∴b=,m二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.)根据椭圆的离心率为kk'==,利用,即可求直,且经过点(的标准方程为…(,及=则有,的最小值为17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.S S S S,故.=•≤15,所以(﹣在双曲线上,所以,所以=,﹣==,则S=5.﹣=,﹣﹣的取值范围为18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.,可得:中,,所以,(﹣,(﹣:.,圆的方程为(<=ty=y=3×[+4×[=<19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.•=并与椭圆联立,利用韦达定理求﹣•=x'2+2b2﹣a2(﹣a≤x≤a),••.,=0,=+=++20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.b=,知==,,==,=+4当且仅当21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k 的取值范围..所以,得(的中垂线为,由,的中点为,即,得,,∴,④…(根据导数知识易得.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.的大小,求出)由时,轨迹是双曲线,焦点为,离心率时,轨迹是椭圆,焦点为,离心率时,轨迹是椭圆,焦点为,离心率>;b≤23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.⇒代入①即得的方程为的坐标为.的方程为,得,得,当且仅当,即,的面积的最小值为24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.则.=.又由sin60°=a,平方整理得<φ<分)=..所以•φ=θ<φ<时,θ=φ<时,点4,则..<φ<)分)= sinφ=aφ=时,点θ=φ<25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.的方程为,解得的方程为.故点,的直线方程为得,.,则,同理可得,的斜率的直线方程为,由.,得.此时,的距离为,===.面积的最大值为.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?)依题意,可知椭圆的方程为:x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有x+1∴椭圆的方程为:),=﹣=(x++,cosθ(cosθ≠0)≤x=cosθ≤,,﹣得:|AB|=|BC|=|=||==+1≥3(当且仅当,即当时,以<a≤27.如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).(1)若l经过点F,求弦长|PQ|的最小值;(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T①求证:②求的取值范围.,消去,|PQ|=,消去可取一切不相等的正数∴)==28.过点F(0,1)作直线l与抛物线x2=4y相交于两点A、B,圆C:x2+(y+1)2=1 (1)若抛物线在点B处的切线恰好与圆C相切,求直线l的方程;(2)过点A、B分别作圆C的切线BD、AE,试求|AB|2﹣|AE|2﹣|BD|2的取值范围.,则过点的切线方程为:相切,坐标为的方程为:29.已知圆C的圆心在抛物线x2=2py(p>0)上运动,且圆C过A(0,p)点,若MN为圆C在x轴上截得的弦.(1)求弦长MN;(2)设AM=l1,AN=l2,求的取值范围.所以.所以θ=45°时,原式有最大值从而30.已知以动点P为圆心的圆与直线y=﹣相切,且与圆x2+(y﹣)2=外切.(Ⅰ)求动P的轨迹C的方程;(Ⅱ)若M(m,m1),N(n,n1)是C上不同两点,且 m2+n2=1,m+n≠0,直线L是线段MN的垂直平分线.(1)求直线L斜率k的取值范围;(2)设椭圆E的方程为+=1(0<a<2).已知直线L与抛物线C交于A、B两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,PQ中点为S,若=0,求E离心率的范围.相切,且与圆﹣外切,建立方程,即可求动)求出直线方程代入抛物线和椭圆方程,由,则有的斜率为﹣∴|k|>∴k<﹣>﹣﹣,>恒成立,方程②的判别式,∴>)+1=><<。
2019年高考数学(文)二轮复习课件:专题七 解析几何 7.3.3
考向二
-15-
解 (1)不能出现AC⊥BC的情况,理由如下:设A(x1,0),B(x2,0),
则x1,x2满足x2+mx-2=0,
所以x1x2=-2. 又C的坐标为(0,1),故AC的斜率与BC的斜率之积为
= =
0, 0,
解方程组得定点.
-7-
解题策略一 解题策略二
所在的 对直点线训的练倾1 斜已角 知为椭π圆3,O������������22为+坐������������22标=1原(a点>b,△>O0)B,其F 上的顶周点长为B 与3+左焦3. 点 F
(1)求椭圆E的方程;
(2)设椭圆E的右顶点为A,不过点A的直线l与椭圆E相交于P,Q两
7.3.3 圆锥曲线中的定点、定值
与存在性问题
-2-
解题策略一 解题策略二
圆锥曲线中的定点问题(多维探究)
解题策略一 直接法
例 1 已知椭圆 C:������������22 + ������������22=1(a>b>0),四点 P1(1,1),P2(0,1),
P3
-1,
3 2
,P4
1,
3 2
=(x1-m)(x2-m)+k2(x1-2)(x2-2) =(k2+1)x1x2-(2k2+m)(x1+x2)+(4k2+m2) =(k2+1)·112+���3���2���-���62 -(2k2+m)·11+23���������2���2+(4k2+m2)=(3������2 -12������1++130���)���2������2 +(������2-6), 要使上式为定值,即与 k 无关,则应 3m2-12m+10=3(m2-6),
高考数学压轴大题解析几何
高考数学压轴大题-解析几何1. 设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.I 求双曲线C 的离心率e 的取值范围:II 设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值.解:I 由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得1-a 2x 2+2a 2x -2a 2=0. ① 双曲线的离心率II 设)1,0(),,(),,(2211P y x B y x A由于x 1+x 2都是方程①的根,且1-a 2≠0,2. 已知)0,1(,)0,1(21F F -为椭圆C 的两焦点,P 为C 上任意一点,且向量21PF PF 与向量的夹角余弦的最小值为31.Ⅰ求椭圆C 的方程;Ⅱ过1F 的直线l 与椭圆C 交于M 、N 两点,求OMN ∆O 为原点的面积的最大值及相应的直线l 的方程.解:Ⅰ设椭圆的长轴为2a ,a 2=+22==c =2121221242)(PF PF PF PF PF PF ⋅-⋅-+=1244212-⋅-PF PF a又212PF PF ⋅≥∴221a PF PF ≤⋅即31211244cos 222=-=--≥aa a θ ∴32=a ∴椭圆方程为12322=+y x Ⅱ 由题意可知NM 不可能过原点,则可设直线NM 的方程为:my x =+1 设),(11y x M ),(22y x N()1111212OMN F OM F ON S S S OF y y ∆∆∆=+=+=2121y y -即 044)32(22=--+my y m . 由韦达定理得:∴212212214)(y y y y y y -+=-= 3216)32(162222+++m m m =222)32()1(48++m m 令12+=m t , 则1≥t ∴221y y -=41448)12(482++=+tt t t .又令tt t f 14)(+=, 易知)(t f 在1,+∞上是增函数,所以当1=t ,即0=m 时)(t f 有最小值5.∴221y y -有最大值316∴OMN S ∆ 的面积有最大值332.直线l 的方程为1-=x .3. 椭圆E 的中心在原点O,焦点在x 轴上,离心率e过点C 1,0的直线l 交椭圆于A 、B 两点,且满足:CA =BC λ 2λ≥.Ⅰ若λ为常数,试用直线l 的斜率kk ≠0表示三角形OAB 的面积. Ⅱ若λ为常数,当三角形OAB 的面积取得最大值时,求椭圆E 的方程.Ⅲ若λ变化,且λ= k 2+1,试问:实数λ和直线l 的斜率()k k ∈R 分别为何值时,椭圆E 的短半轴长取得最大值并求出此时的椭圆方程.解:设椭圆方程为22221+=x y a ba >b >0,由e =caa 2=b 2c 2得a 2=3 b 2,故椭圆方程为x 2+3y 2= 3b 2. ① Ⅰ∵直线l :y = kx +1交椭圆于Ax 1,y 1,Bx 2,y 2两点,并且CA =BC λ λ≥2, ∴x 11,y 1 =λ1x 2,y 2, 即12121(1)x x y y λλ+=-+⎧⎨=-⎩ ②把y = kx 1代入椭圆方程,得3k 21x 26k 2x 3k 23b 2= 0, 且 k 2 3b 21b 2>0 ,∴x 1x 2= 22631k k +, ③x 1x 2=2223331k b k -+, ④∴O A B S ∆=12|y 1y 2| =12|λ1|·| y 2| =|1|2λ+·| k |·| x 21|.联立②、③得x 21=22(1)(31)k λ-+,∴O A B S ∆=11λλ+-·2||31k k + k ≠0.ⅡO AB S ∆=11λλ+-·2||31k k + =11λλ+-·113||||k k + ≤11λλ+-λ≥2. 当且仅当3| k | =1||k ,即k=,O AB S ∆取得最大值,此时x 1x 2= 1. 又∵x 11= λ x 21,∴x 1=11λ-,x 2= 1λλ-,代入④得3b 2=221(1)λλ+-.此时3b 2≥5,,k b 的值符合故此时椭圆的方程为x 2+3y 2=221(1)λλ+-λ≥2.Ⅲ由②、③联立得:x 1=22(1)(31)k λλ--+1, x 2=22(1)(31)k λ-+1,将x 1,x 2代入④,得23b =224(1)(31)k λλ-+1.由k 2=λ1得23b =24(1)(32)λλλ-- 1=432212(1)(1)(32)λλλ⎡⎤+⎢⎥---⎣⎦+1.易知,当2λ≥时,3b 2是λ的减函数,故当2λ=时,23b 取得最大值3. 所以,当2λ=,k =±1符合时,椭圆短半轴长取得最大值, 此时椭圆方程为x 2 3y 2 = 3.4. 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. I 求椭圆的离心率;II 设M 为椭圆上任意一点,且(,)OM OA OB λμλμ=+∈R ,证明22μλ+为定值.解:I 设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入.化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221b a b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得II 证明:由I 知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),(y x M 在椭圆上,即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由I 知.21,23,23222221c b c a c x x ===+又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.5. 已知椭圆2212x y +=的左焦点为F,O 为坐标原点.I 求过点O 、F,并且与椭圆的左准线l 相切的圆的方程;II 设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G,求点G 横坐标的取值范围.解:I 222,1,1,(1,0),: 2.a b c F l x ==∴=-=-圆过点O 、F,∴圆心M 在直线12x =-上;设1(,),2M t -则圆半径由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=II 设直线AB 的方程为(1)(0),y k x k =+≠代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F,∴方程有两个不等实根; 记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得∴点G 横坐标的取值范围为1(,0).2-6. 已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为 I 证明线段AB 是圆C 的直径;II 当圆C 的圆心到直线X-2Y=0的距离的最小值为5时,求p 的值; I 证明1:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=设Mx,y 是以线段AB 为直径的圆上的任意一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--= 整理得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 证明2:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅=12120x x y y ∴⋅+⋅= (1)设x,y 是以线段AB 为直径的圆上则 即2112211(,)y y y y x x x x x x x x --⋅=-≠≠-- 去分母得: 1212()()()()0x x x x y y y y --+--=点11122122(,),(,),(,)(,)x y x y x y x y 满足上方程,展开并将1代入得: 故线段AB 是圆C 的直径 证明3:22,()()OA OB OA OB OA OB OA OB +=-∴+=-整理得: 0OA OB ⋅= 12120x x y y ∴⋅+⋅= (1)以线段AB 为直径的圆的方程为展开并将1代入得: 221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径 II 解法1:设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x-2y=0的距离为d,则当y=p 时,d=2p ∴=. 解法2: 设圆C 的圆心为Cx,y,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅=所以圆心的轨迹方程为222y px p =-设直线x-2y+m=0到直线x-2y=0则2m =± 因为x-2y+2=0与222y px p =-无公共点,所以当x-2y-2=0与222y px p =-仅有一个公共点时,该点到直线x-2y=0将2代入3得222220y py p p -+-= 2244(22)0p p p ∴∆=--= 解法3: 设圆C 的圆心为Cx,y,则 圆心C 到直线x-2y=0的距离为d,则又因12120x x y y ⋅+⋅= 1212x x y y ∴⋅=-⋅ 22121224y y y y p ∴-⋅= 当122y y p +=时,d=2p ∴=.11、如图设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.1若6ED DF =,求k 的值; 2求四边形AEBF 面积的最大值. 11.Ⅰ解:依题设得椭圆的方程为2214xy +=, 直线AB EF ,的方程分别为22x y +=,(y kx k => 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中1x < 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=, 解得23k =或38k =. 6分 Ⅱ解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==,2h ==9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为. 12分解法二:由题设,1BO =,2AO =. 设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△222x y =+9分===当222x y =时,上式取等号.所以S的最大值为 12分12、已知椭圆(222:13x y E a a +=>的离心率12e =. 直线x t =0t >与曲线E 交于不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C .1 求椭圆E 的方程;2 若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.12、1解:∵椭圆()222:133x y E a a+=>的离心率12e =, 12=. …… 2分 解得2a =. ∴ 椭圆E 的方程为22143x y +=. …… 4分 2解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分 ∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即0t <<.∴弦长||AB ===. …… 8分∴ABC ∆的面积12S =⋅ …… 9分7=. …… 12分=,即7t =时,等号成立. ∴ ABC ∆. …… 14分 解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y =⎧⎪⎨+=⎪⎩ 得221234t y -=.∴ 圆C的半径为2r =. …… 6分 ∴ 圆C 的方程为222123()4t x t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴0t <<,即07t <<.在圆C 的方程222123()4t x t y --+=中,令0x =,得2y =±,∴弦长||AB =. …… 8分 ∴ABC ∆的面积12S =⋅ …… 9分7=. ……12分=,即7t=时,等号成立. ∴ABC∆.15、已知椭圆∑:12222=+byax>>ba的上顶点为)1,0(P,过∑的焦点且垂直长轴的弦长为1.若有一菱形ABCD的顶点A、C在椭圆∑上,该菱形对角线BD所在直线的斜率为1-.⑴求椭圆∑的方程;⑵当直线BD过点)0,1(时,求直线AC的方程;⑶本问只作参考......,.不计入总分.....当3π=∠ABC时,求菱形ABCD面积的最大值.15、解:⑴依题意,1=b……1分,解12222=+byac……2分,得aby2||=……3分,所以122=ab,2=a……4分,椭圆∑的方程为1422=+yx……5分;⑵直线BD:1)1(1+-=-⨯-=xxy……7分,设AC:bxy+=……8分,由方程组⎪⎩⎪⎨⎧=++=1422yxbxy得0)1(24522=-++bbxx……9分,当05)1(454)2(222>-=-⨯⨯-=∆bbb时……10分,),(11yxA、),(22yxC的中点坐标为54221bxx-=+,5222121bbxxyy=++=+……12分,ABCD是菱形,所以AC的中点在BD上,所以1545+=bb……13分,解得35-=b,满足052>-=∆b,所以AC的方程为35-=xy……14分;⑶本小问不计入总分,仅供部分有余力的学生发挥和教学拓广之用因为四边形ABCD为菱形,且3π=∠ABC,所以BCACAB==,所以菱形ABCD的面积223ACS⨯=,由⑵可得2122122122122)(2)(2)()(xxxxyyxxAC+=-=-+-=222212532532)1(548)58(28bbbxx⨯-=-⨯⨯--⨯=-,因为5||<b,所以当且仅当0=b时,菱形ABCD的面积取得最大值,最大值为531653223=⨯;。
近年高考数学二轮复习专题七解析几何专题对点练257.1~7.3组合练文(2021年整理)
2019版高考数学二轮复习专题七解析几何专题对点练25 7.1~7.3组合练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学二轮复习专题七解析几何专题对点练25 7.1~7.3组合练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学二轮复习专题七解析几何专题对点练25 7.1~7.3组合练文的全部内容。
专题对点练25 7.1~7.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1。
直线x-3y+3=0与圆(x—1)2+(y—3)2=10相交所得弦长为()A.B.C.4D。
32.圆x2+y2—2x—8y+13=0的圆心到直线ax+y—1=0的距离为1,则a=()A.-B.-C.D.23。
圆x2+y2—4x-4y—10=0上的点到直线x+y—8=0的最大距离与最小距离的差是()A。
18 B.6C。
5D.44。
已知直线l:mx+y—1=0(m∈R)是圆C:x2+y2-4x+2y+1=0的对称轴,过点A(-2,m)作圆C的一条切线,切点为B,则|AB|为()A.4B.2C。
4D.35。
若直线2x+y—4=0,x+ky—3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为()A.B。
C。
D.56.已知点P(x,y)是直线kx=y+4(k〉0)上一动点,PA,PB是圆C:x2+y2—2y=0的两条切线,A,B为切点,若四边形PACB面积的最小值是2,则k的值是()A.B.C.2 D.27.(2018全国Ⅲ,文10)已知双曲线C:=1(a〉0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2C.D.28.已知双曲线=1(a〉0,b〉0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.=1 B。
高考数学 专题十第7讲 解析几何复习课件 理
=±4.
当 m=-4 时,点 C 在已知双曲线的左支上,不符合题意,舍去.
∴m=4,点 C 的坐标为(4 3,3).
③
由①②③解得 a2=9,b2=27. 曲线的方程为x92-2y72 =1,故选 B.
3.在平面直角坐标系 xOy 中,已知△ABC 的顶点 A(-5,0)和
C(5,0),顶点
B
在椭圆3x62 +1y12 =1
上,则sin
A+sin sin B
C等于(
B)A.3Fra bibliotekB.65
5
4
C.4
D.5
解析
由正弦定理知sin
m 的值及点 C 的坐标.
解 (1)由双曲线的实轴长为 4 3,得 a=2 3.
设双曲线右焦点的坐标为(c,0),一条渐近线为 y=bax,由点到直 线的距离公式,得 b= 3.∴双曲线的方程为1x22 -y32=1.
(2)设 A(x1,y1),B(x2,y2),C(x0,y0). 将直线 y= 33x-2 代入双曲线方程, 化简得 x2-16 3x+84=0,
易错点 3 忽视零截距致误 解决有关直线的截距问题时应注意两点:一是搞清楚截距的概 念,在解决这类问题时一定不要忽略截距为 0 这种特殊情况, 否则就会出现错误;二要明确截距式表示直线的限制条件,即 截距式不能表示截距为 0 的直线方程.因此解决这类问题时要 进行分类讨论,不要漏掉截距为 0 时的情况. 易错点 4 忽视圆锥曲线定义中的条件致误 利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式 及其限制条件.如在双曲线的定义中,有两点是缺一不可的: 其一,||PF1|-|PF2||=2a;其二,2a<2c.如果满足第二个条件, 动点到两定点的距离之差为常数,而不是差的绝对值为常数, 那么其轨迹只能是双曲线的一支.
高考数学压轴题:平面解析几何
高考数学压轴题:平面解析几何一、解答题(共35小题)1.已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C . (Ⅰ)若1k =,且10||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程.2.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且1273||,(4OP PF PF O ==为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由.3.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.4.已知椭圆2222:1(0)x y C a b a b+=>>2,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N (Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线60x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<时,求实数t 取值范围. 7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M 处的切线与椭圆相交所得弦长为57,求椭圆方程.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由. .12.(2019•秦淮区三模)如图,在平面直角坐标系xOy中,已知椭圆2222:1(0)x yC a ba b+=>>的离心率为3,以椭圆C左顶点T为圆心作圆222:(2)(0)T x y r r++=>,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求TM TN的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:OR OS为定值.13.(2016•益阳模拟)已知以点(1,2)A-为圆心的圆与直线1:270l x y++=相切.过点(2,0)B-的动直线l与圆A相交于M、N两点,Q是MN的中点,直线l与1l相交于点P.()I求圆A的方程;(Ⅱ)当219MN=l的方程;(Ⅲ)BQ BP是否为定值,如果是,求出定值;如果不是,请说明理由.14.(2019•上海)已知椭圆22184x y +=,1F ,2F 为左、右焦点,直线l 过2F 交椭圆于A ,B两点.(1)若直线l 垂直于x 轴,求||AB ;(2)当190F AB ∠=︒时,A 在x 轴上方时,求A 、B 的坐标;(3)若直线1AF 交y 轴于M ,直线1BF 交y 轴于N ,是否存在直线l ,使得11F ABF MNS S=,若存在,求出直线l 的方程;若不存在,请说明理由.15.(2019•新课标Ⅲ)已知曲线2:2x C y =,D 为直线12y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.16.(2019•新课标Ⅱ)已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G . ()i 证明:PQG ∆是直角三角形; ()ii 求PQG ∆面积的最大值.17.(2019•浙江)如图,已知点(1,0)F 为抛物线22(0)y px p =>的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得ABC ∆的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记AFG ∆,CQG ∆的面积分别为1S ,2S .(Ⅰ)求p 的值及抛物线的准线方程;(Ⅱ)求12SS的最小值及此时点G的坐标.18.(2019•新课标Ⅲ)已知曲线2:2xC y=,D为直线12y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以5(0,)2E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.19.(2018•天津)设椭圆22221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的离5A的坐标为(,0)b,且||||62FB AB=(Ⅰ)求椭圆的方程;(Ⅱ)设直线:(0)l y kx k=>与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若||52(||4AQAOQ OPQ=∠为原点),求k的值.20.(2018•江苏)如图,在平面直角坐标系xOy中,椭圆C过点1(3,)2,焦点1(3F0),2(3F0),圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若OAB∆26,求直线l的方程.21.(2018•浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.22.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆22:143x y C +=交于A ,B 两点,线段AB 的中点为(1M ,)(0)m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:||FA ,||FP ,||FB 成等差数列,并求该数列的公差.23.(2018•上海)设常数2t >.在平面直角坐标系xOy 中,已知点(2,0)F ,直线:l x t =,曲线2:8(0,0)y x x t y Γ=.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,||2FQ =,线段OQ 的中点在直线FP 上,求AQP ∆的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.24.(2018•新课标Ⅱ)设抛物线2:4C y x =的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.25.(2017•上海)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.26.(2017•天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12.()I 求椭圆的方程和抛物线的方程;()II 设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点(B B 异于)A ,直线BQ 与x 轴相交于点D .若APD ∆,求直线AP 的方程.27.(2017•山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程.(Ⅱ)如图,动直线1:l y k x =-交椭圆E 于A ,B 两点,C 是椭圆E 上的一点,直线OC的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且||:||2:3MC AB =,M 的半径为||MC ,OS ,OT 是M 的两条切线,切点分别为S ,T ,求SOT ∠的最大值,并求取得最大值时直线l 的斜率.28.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .29.(2017•新课标Ⅰ)已知椭圆2222:1(0)x y C a b a b+=>>,四点1(1,1)P ,2(0,1)P ,33(1,)P -,43(1,)P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.30.(2016•浙江)如图,设椭圆222:1(1)x C y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a ,k 表示)(Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.31.(2016•天津)设椭圆2221(3)3x y a a +=>的右焦点为F ,右顶点为A .已知113||||||eOF OA FA +=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点(B B不在x轴上),垂直于l的直线与l交于点M,与y 轴于点H,若BF HF⊥,且MOA MAO∠∠,求直线l的斜率的取值范围.32.(2016•四川)已知椭圆2222:1(0)x yE a ba b+=>>的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线:3l y x=-+与椭圆E有且只有一个公共点T.(Ⅰ)求椭圆E的方程及点T的坐标;(Ⅱ)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得2||||||PT PA PBλ=,并求λ的值.33.(2016•山东)平面直角坐标系xOy中,椭圆2222:1(0)x yC a ba b+=>>的离心率是3,抛物线2:2E x y=的焦点F是C的一个顶点.(Ⅰ)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.()i求证:点M在定直线上;()ii直线l与y轴交于点G,记PFG∆的面积为1S,PDM∆的面积为2S,求12SS的最大值及取得最大值时点P的坐标.34.(2016•新课标Ⅱ)已知椭圆22:13x yEt+=的焦点在x轴上,A是E的左顶点,斜率为(0)k k>的直线交E于A,M两点,点N在E上,MA NA⊥.(Ⅰ)当4t=,||||AM AN=时,求AMN∆的面积;(Ⅱ)当2||||AM AN=时,求k的取值范围.35.(2016•新课标Ⅰ)设圆222150x y x++-=的圆心为A,直线l过点(1,0)B且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明||||EA EB+为定值,并写出点E的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2020年高考数学复习之挑战压轴题(解答题):平面解析几何综合题(35题)参考答案与试题解析一、解答题(共35小题)1.(2016•南昌校级二模)已知直线:1(0)l y kx k =+≠与椭圆223x y a +=相交于A 、B 两个不同的点,记l 与y 轴的交点为C .(Ⅰ)若1k =,且||AB =,求实数a 的值; (Ⅱ)若2AC CB =,求AOB ∆面积的最大值,及此时椭圆的方程. 【考点】4K :椭圆的性质【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)若1k =,联立直线和椭圆方程,结合相交弦的弦长公式以及||AB =可求实数a 的值;(Ⅱ)根据2AC CB =关系,结合一元二次方程根与系数之间的关系,以及基本不等式进行求解即可.【解答】解:设1(A x ,1)y ,2(B x ,2)y , (Ⅰ)由2213y x x y a=+⎧⎨+=⎩得24210x x a ++-=, 则1212x x +=-,1214ax x -=,则123|||24AB x x a -=-=2a =. (Ⅱ)由2213y kx x y a=+⎧⎨+=⎩,得22(3)210k x kx a +++-=, 则12223k x x k +=-+,12213ax x k -=+, 由2AC CB =得1(x -,121)2(y x -=,21)y -, 解得122x x =-,代入上式得: 122223k x x x k +=-=-+,则2223kx k =+,1222133||3||||||322323||||AOB k S OC x x x k k k ∆=-====++ 当且仅当23k =时取等号,此时2223k x k =+,22122224222(3)3k x x x k =-=-⨯=-+, 又1221136a ax x k --==+, 则1263a -=-,解得5a =.所以,AOB ∆,此时椭圆的方程为2235x y +=. 【点评】本题主要考查椭圆方程的求解,利用直线方程和椭圆方程构造方程组,转化为根与系数之间的关系是解决本题的关键.2.(2017•河南模拟)已知椭圆2222:1(0)x y C a b a b+=>>,其左、右焦点分别为1F ,2F ,点0(P x ,0)y 是坐标平面内一点,且123||(4OP PF PF O =为坐标原点). (1)求椭圆C 的方程;(2)过点1(0,)3S -且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标,若不存在,说明理由. 【考点】3K :椭圆的标准方程;4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】11:计算题;15:综合题;16:压轴题【分析】(1)设出P 的坐标,利用||OP 的值求得0x 和0y 的关系式,同时利用1234PF PF =求得0x 和0y 的另一关系式,进而求得c ,通过椭圆的离心率求得a ,最后利用a ,b 和c 的关系求得b ,则椭圆的方程可得.(2)设出直线l 的方程,与椭圆方程联立消去y ,设1(A x ,1)y ,2(B x ,2)y ,则可利用韦达定理表示出12x x +和12x x ,假设在y 轴上存在定点(0,)M m ,满足题设,则可表示出MA MB ,利用0MA MB =求得m 的值.【解答】解:(1)设0(P x ,0)y ,1(,0)F c -,2(,0)F c ,则由220074OP x y =+=; 由1234PF PF =得00003(,)(,)4c x y c x y -----=,即2220034x y c +-=. 所以1c =又因为222,1c a b a ===所以. 因此所求椭圆的方程为:2212x y +=.(2)动直线l 的方程为:13y kx =-,由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22416(21)039k x kx +--=.设1(A x ,1)y ,2(B x ,2)y . 则121222416,3(21)9(21)k x x x x k k +==-++. 假设在y 轴上存在定点(0,)M m ,满足题设,则1122(,),(,)MA x y m MB x y m =-=-. 21212121212()()()MA MB x x y m y m x x y y m y y m =+--=+-++21212121111()()()3333x x kx kx m kx kx m =+----+-+221212121(1)()()339k x x k m x x m m =+-+++++222216(1)1421()9(21)33(21)39k k k m m m k k +=--++++++ 222218(1)(9615)9(21)m k m m k -++-=+ 由假设得对于任意的,0k R MA MB ∈=恒成立, 即221096150m m m ⎧-=⎨+-=⎩解得1m =.因此,在y 轴上存在定点M ,使得以AB 为直径的圆恒过这个点, 点M 的坐标为(0,1)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和推理的能力.3.(2016•衡阳三模)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,短轴两个端点为A 、B ,且四边形12F AF B 是边长为2的正方形. (1)求椭圆的方程;(2)若C 、D 分别是椭圆长的左、右端点,动点M 满足MD CD ⊥,连接CM ,交椭圆于点P .证明:OM OP 为定值.(3)在(2)的条件下,试问x 轴上是否存异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】3K :椭圆的标准方程;KH :直线与圆锥曲线的综合 【专题】11:计算题;16:压轴题【分析】(1)由题意知2a =,b c =,22b =,由此可知椭圆方程为22142x y +=.(2)设0(2,)M y ,1(P x ,1)y ,()()110,,2,OP x y OM y ==则,直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=,然后利用根与系数的关系能够推导出OM OP 为定值.(3)设存在(,0)Q m 满足条件,则MQ DP ⊥.2000220048(2,),(,)88y yMQ m y DP y y =--=-++,再由()220022004802088y y MQ DP m y y ⋅=---=++得,由此可知存在(0,0)Q 满足条件.【解答】解:(1)2a =,b c =,222a b c =+,22b ∴=;∴椭圆方程为22142x y +=(4分)(2)(2,0)C -,(2,0)D ,设0(2,)M y ,1(P x ,1)y , ()()110,,2,OP x y OM y ==则直线()0001:2,442y y CM y x y x y =+=+即,代入椭圆方程2224x y +=,得222200011(1)40822y x y x y +++-=(6分)21204(8)128y x y -=-+,∴201202(8)8y x y -=-+,∴012088y y y =+,∴20022002(8)8(,)88y y OP y y -=-++(8分) ∴2220002220004(8)84324888y y y OP OM y y y -+=-+==+++(定值)(10分)(3)设存在(,0)Q m 满足条件,则MQ DP ⊥(11分)2000220048(2,),(,)88y yMQ m y DP y y =--=-++(12分)则由()220022004802088y y MQ DP m y y ⋅=---=++得,从而得0m =∴存在(0,0)Q 满足条件(14分)【点评】本题考查直线和椭圆的位置关系,解题时要认真审题,仔细解答.4.(2016•天津一模)已知椭圆2222:1(0)x y C a b a b+=>>,长轴长为等于圆22:(2)4R x y +-=的直径,过点(0,1)P 的直线l 与椭圆C 交于两点A ,B ,与圆R 交于两点M ,N(Ⅰ)求椭圆C 的方程;(Ⅱ)求证:直线RA ,RB 的斜率之和等于零; (Ⅲ)求||||AB MN 的取值范围.【考点】1K :圆锥曲线的实际背景及作用;3K :椭圆的标准方程【专题】15:综合题;31:数形结合;34:方程思想;4R :转化法;5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)根据椭圆的简单几何性质,求出a 、b 的值即可;(Ⅱ)当直线l 的斜率存在时,求出直线RA 、RB 的斜率之和即可证明结论成立; (Ⅲ)讨论直线l 的斜率是否存在,利用弦长公式以及转化法、基本不等式等求出||||AB MN 的取值范围.【解答】解:(Ⅰ)因为椭圆C 长轴长等于圆22:(2)4R xy +-=的直径, 所以24a =,2a =; ⋯(1分)2,得22222212c a b e a a -===,所以222142b b a ==,得22b =;⋯(2分)所以椭圆C 的方程为22142x y +=;⋯(3分)(Ⅱ)当直线l 的斜率存在时,设l 的方程为1y kx =+,与22142x y +=联立,消去y ,得22(12)420k x kx ++-=; 设1(A x ,1)y ,2(B x ,2)y , 则122412k x x k +=-+,122212x x k =-+,⋯(5分) 由(0,2)R ,得 121222RA RB y y k k x x --+=+121211kx kx x x --=+12112()k x x =-+ 12122x x k x x +=-2241220212k k k k -+=-=-+.⋯(7分)所以直线RA ,RB 的斜率之和等于零;⋯(8分)(Ⅲ)当直线l的斜率不存在时,||AB =||4MN =,||||8AB MN =;⋯(9分) 当直线l的斜率存在时,||AB =12||x x =-12()x x +4(12k k =-+ 22328k += ||MN ==⋯(11分)所以22328||||12k AB MN k+=+⨯241k +=;因为直线l 过点(0,1)P ,所以直线l 与椭圆C 和圆R 均交于两点, 令212k t +=,则1t , 所以22(21)(21)1||||4242482t t AB MN t t -+==-<, 又2124y t =-在1t 时单调递增, 所以1||||446AB MN =, 当且仅当1t =,0k =等号成立;⋯(13分)综上,||||AB MN 的取值范围是.⋯(14分)【点评】本题考查了圆锥曲线的综合应用问题,也考查了数形结合思想、方程思想的应用问题,考查了计算能力与分析问题、解决问题的能力,是综合性题目.5.(2015•大庆一模)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连接PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ;(Ⅲ)在(Ⅱ)的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON 的取值范围.【考点】3K :椭圆的标准方程;4K :椭圆的性质 【专题】11:计算题;15:综合题;16:压轴题【分析】(Ⅰ)由题意知12c e a ==,能够导出2243a b =.再由b C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=,再由根与系数的关系证明直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)分MN 的斜率存在与不存在两种情况讨论,当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.再由根据判别式和根与系数的关系求解OM ON 的取值范围;当过点Q 直线MN 的斜率不存在时,其方程为1x =,易得M 、N 的坐标,进而可得OM ON 的取值范围,综合可得答案. 【解答】解:(Ⅰ)由题意知12c e a ==, 所以22222214c a b e a a -===.即2243a b =.又因为b =所以24a =,23b =.故椭圆C 的方程为22143x y +=.(Ⅱ)由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-. 由22(4)1.43y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)3264120k x k x k +-+-=.①设点1(B x ,1)y ,2(E x ,2)y ,则1(A x ,1)y -. 直线AE 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入, 整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.所以直线AE 与x 轴相交于定点(1,0)Q .(Ⅲ)当过点Q 直线MN 的斜率存在时,设直线MN 的方程为(1)y m x =-,且(M M x ,)M y ,(N N x ,)N y 在椭圆C 上.由22(1)1.43y m x x y =-⎧⎪⎨+=⎪⎩得2222(43)84120m x m x m +-+-=.易知△0>.所以22843M N m x x m +=+,2241243M N m x x m -=+,22943M N m y y m =-+.则2225125334344(43)M N M N m OM ON x x y y m m +=+=-=--++. 因为20m ,所以21133044(43)m --<+.所以5[4,)4OM ON ∈--.当过点Q 直线MN 的斜率不存在时,其方程为1x =. 解得3(1,)2M -,3(1,)2N 或3(1,)2M 、3(1,)2N -.此时54OM ON =-.所以OM ON 的取值范围是5[4,]4--.【点评】本题综合考查椭圆的性质及其应用和直线 与椭圆的位置关系,解题时要认真审题,注意公式的灵活运用.6.(2016•太原校级二模)已知椭圆2222:1(0)x y C a ba b+=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -+=相切. (Ⅰ)求椭圆C 的方程;(Ⅱ)若过点(2,0)M 的直线与椭圆C 相交于A ,B 两点,设P 为椭圆上一点,且满足(OA OB tOP O +=为坐标原点),当25||PA PB -<t 取值范围. 【考点】9S :数量积表示两个向量的夹角;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题【分析】(Ⅰ)由题意知c e a ==所以22222212c a b e a a -===.由此能求出椭圆C 的方程.(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y ,由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=再由根的判别式和嘏达定理进行求解. 【解答】解:(Ⅰ)由题意知2c e a ==,所以22222212c a b e a a -===.即222a b =.(2分)又因为1b ==,所以22a =,故椭圆C 的方程为2212x y +=.(4分)(Ⅱ)由题意知直线AB 的斜率存在.设:(2)AB y k x =-,1(A x ,1)y ,2(B x ,2)y ,(,)P x y , 由22(2)1.2y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)8820k x k x k +-+-=.△422644(21)(82)0k k k =-+->,212k <.(6分) 2122812k x x k +=+,21228212k x x k-=+12(OA OB tOP x x +=∴+,12)(y y t x +=,)y , ∴21228(12)x x k x t t k +==+,1212214[()4](12)y y k y k x x k t t t k +-==+-=+ 点P 在椭圆上,∴222222222(8)(4)22(12)(12)k k t k t k -+=++,22216(12)k t k ∴=+.(8分) 25||PA PB -<,∴12|x x -,∴22121220(1)[()4]9k x x x x ++-< ∴422222648220(1)[4](12)129k k k k k -+-<++,22(41)(1413)0k k ∴-+>,∴214k >.(10分) ∴21142k <<,22216(12)k t k =+,∴222216881212k t k k ==-++, ∴2t -<<2t <<,∴实数t 取值范围为26(2,(,2)-.(12分) 【点评】本题考查椭圆方程的求法和求实数t 取值范围.解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用根的判别式和韦达定理进行解题.7.(2016•抚顺一模)已知椭圆22221(0)x y a b a b+=>>的左顶点为1A ,右焦点为2F ,过点2F 作垂直于x 轴的直线交该椭圆于M 、N 两点,直线1A M 的斜率为12.(Ⅰ)求椭圆的离心率;(Ⅱ)若△1A MN 的外接圆在M处的切线与椭圆相交所得弦长为57,求椭圆方程.【考点】4K :椭圆的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】(Ⅰ)首先,得到点M 的坐标,然后,代入,得到212b a ac =+,从而确定其斜率关系;(Ⅱ)首先,得到1(2A c -,30)(,)2cM c ,然后,可以设外接圆圆心设为0(P x ,0),结合圆的性质建立等式,然后,利用弦长公式求解即可.【解答】解:(Ⅰ)由题意2(,)b M c a-------------(1分)因为1(,0)A a -,所以212b a ac =-------------+(2分)将222b a c =-代入上式并整理得112a c e a -=-=(或2)a c =----------(3分) 所以12e =------------(4分) (Ⅱ)由(Ⅰ)得2a c =,3b c =(或22221)43x y c c+=------------(5分)所以1(2A c -,30)(,)2cM c ,外接圆圆心设为0(P x ,0)由1||||PA PM =222003(2)()()2c x c x c +-+-----------(6分) 解得:08cx =-------------(7分)所以34238PMck c c ==------------+(8分)所以△1A MN 外接圆在M 处切线斜率为34-,设该切线与椭圆另一交点为C则切线MC 方程为33()24c y x c -=--,即3944cy x =-+------------(9分)与椭圆方程2223412x y c +=联立得22718110x cx c -+=------------(10分) 解得1211,7cx c x ==------------(11分)由弦长公式12|||MC x x =-115|77c c -=------------(12分)解得1c =------------(13分)所以椭圆方程为22143x y +=------------(14分)【点评】本题重点考查了椭圆的标准方程、简单几何性质、直线与椭圆的位置关系、弦长公式等知识,属于中档题.8.(2016•江西模拟)椭圆2222:1(0)x y C a b a b +=>>的离心率为12,其左焦点到点(2,1)P 的距(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 【考点】KH :直线与圆锥曲线的综合 【专题】5E :圆锥曲线中的最值与范围问题【分析】(Ⅰ)利用两点间的距离公式可得c ,再利用椭圆的标准方程及其性质即可得出a ,b ;(Ⅱ)把直线l 的方程与椭圆的方程联立可得根与系数的关系,再利用以AB 为直径的圆过椭圆的右顶点D ,可得1AD BD k k =-,即可得出m 与k 的关系,从而得出答案.【解答】解:(Ⅰ)左焦点(,0)c -到点(2,1)P∴=,解得1c =.又12c e a ==,解得2a =,2223b a c ∴=-=. ∴所求椭圆C 的方程为:22143x y +=.(Ⅱ)设1(A x ,1)y ,2(B x ,2)y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,△22226416(34)(3)0m k k m =-+->,化为2234k m +>.∴122834mkx x k-+=+,21224(3)34m x x k -=+.22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -=++=+++=+. 以AB 为直径的圆过椭圆的右顶点(2,0)D ,1AD BD k k =-,∴1212122y y x x =---,1212122()40y y x x x x ∴+-++=,∴2222223(4)4(3)1640343434m k m mkk k k --+++=+++. 化为2271640m mk k ++=,解得12m k =-,227km =-.,且满足22340k m +->.当2m k =-时,:(2)l y k x =-,直线过定点(2,0)与已知矛盾; 当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7. 综上可知,直线l 过定点,定点坐标为2(,0)7.【点评】本题综合考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、圆的性质、两点间的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.9.(2016•石家庄二模)已知椭圆2222:1(0)x y C a b a b+=>>,过点(1,0)M 的直线l 交椭圆C 于A ,B 两点,||||MA MB λ=,且当直线l 垂直于x 轴时,||AB = (1)求椭圆C 的方程;(2)若1[2λ∈,2],求弦长||AB 的取值范围.【考点】4K :椭圆的性质【专题】15:综合题;34:方程思想;49:综合法;5D :圆锥曲线的定义、性质与方程【分析】(1)先由离心率得到a ,b 的关系,再由求出b ,再由直线l 垂直于x 轴时,||AB =求得关于a ,b 的另一方程,联立求得a ,b 的值,则椭圆的标准方程可求;(2)设AB 的方程(1)y k x =-,将直线的方程代入椭圆的方程,消去x 得到关于y 的一元二次方程,再结合根系数的关系,利用向量坐标公式及函数的单调性即可求得直线AB 的斜率的取值范围,从而求得弦长||AB 的取值范围.【解答】解:(1)由题意可得,c e a ==,即2212c a =,∴22212a b a -=,则222a b =,①把1x =代入22221x y a b +=,得y =则2212b a a-=,② 联立①②得:22a =,21b =.∴椭圆C 的方程为2212x y +=;(2)如图,当直线l 的斜率存在时,设直线l 方程为(1)y k x =-, 联立22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,得222(12)20k y ky k ++-=. 设1(A x ,1)y ,2(B x ,2)y ,则21212222,1212k k y y y y k k --+==++,③ 由||||MA MB λ=,得AM MB λ=,1(1x ∴-,12)(1y x λ-=-,2)y ,则12y y λ-=,④把④代入③消去2y 得:241212k λλ=+-+,当1[2λ∈,2]时,2412[012k λλ=+-∈+,1]2. 解得:272k . 22221212222221144||1()4(12)12k k k AB y y y y k k k k +=++-=+++2222211922222(1)22(1)(2,]112122k k k k k+==-=-∈+++.∴弦长||AB 的取值范围为92[2,]8.【点评】本题主要考查了椭圆的定义和标准方程、直线与圆锥曲线的综合问题、平面向量的运算等.直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,突出考查了数形结合、函数与方程、等价转化等数学思想方法.10.(2016•河南模拟)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,求所有满足条件的点P 的坐标. 【考点】JE :直线和圆的方程的应用 【专题】15:综合题【分析】(1)因为直线l 过点(4,0)A ,故可以设出直线l 的点斜式方程,又由直线被圆1C 截得的弦长为圆心到直线的距离,得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线l 的方程.(2)与(1)相同,我们可以设出过P 点的直线1l 与2l 的点斜式方程,由于两直线斜率为1,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,故我们可以得到一个关于直线斜率k 的方程,解方程求出k 值,代入即得直线1l 与2l 的方程. 【解答】解:(1)由于直线4x =与圆1C 不相交;∴直线l 的斜率存在,设l 方程为:(4)y k x =-(1分)圆1C 的圆心到直线l 的距离为d ,l 被1C 截得的弦长为1d ∴==(2分)d =(247)0k k +=即0k =或724k =-∴直线l 的方程为:0y =或724280x y +-=(5分)(2)设点(,)P a b 满足条件,由题意分析可得直线1l 、2l 的斜率均存在且不为0,不妨设直线1l 的方程为()y b k x a -=-,0k ≠ 则直线2l 方程为:1()y b x a k-=--(6分)1C 和2C 的半径相等,及直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等, 1C ∴的圆心到直线1l 的距离和圆2C 的圆心到直线2l 的距离相等1|5(4)|a b +--=(8分)整理得|13||54|k ak b k a bk ++-=+--13(54)k ak b k a bk ∴++-=±+--即(2)3a b k b a +-=-+或(8)5a b k a b -+=+- 因k 的取值有无穷多个,所以2030a b b a +-=⎧⎨-+=⎩或8050a b a b -+=⎧⎨+-=⎩(10分)解得5212a b ⎧=⎪⎪⎨⎪=-⎪⎩或32132a b ⎧=-⎪⎪⎨⎪=⎪⎩这样的点只可能是点15(2P ,1)2-或点23(2P -,13)2(12分) 【点评】在解决与圆相关的弦长问题时,我们有三种方法:一是直接求出直线与圆的交点坐标,再利用两点间的距离公式得出;二是不求交点坐标,用一元二次方程根与系数的关系得出,即设直线的斜率为k ,直线与圆联立消去y 后得到一个关于x 的一元二次方程再利用弦长公式求解,三是利用圆中半弦长、弦心距及半径构成的直角三角形来求.对于圆中的弦长问题,一般利用第三种方法比较简捷.本题所用方法就是第三种方法.11.(2015•潍坊模拟)设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F三点的圆恰好与直线:30l x --=相切,求椭圆C 的方程; (3)在(2)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(,0)P m 使得以PM ,PN 为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由..【考点】4K :椭圆的性质;KH :直线与圆锥曲线的综合 【专题】15:综合题;16:压轴题;35:转化思想【分析】(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 结合向量条件及向量运算得出关于a ,c 的等式,从而求得椭圆的离心率即可;(2)由(1)知a ,c 的一个方程,再利用AQF ∆的外接圆得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;(3)由(Ⅱ)知直线:(1)l y k x =-,将直线的方程代入椭圆的方程,消去y 得到关于x 的一元二次方程,再结合根系数的关系利用弦长公式即可求得满足题意的点P 且m 的取值范围.【解答】解:(1)设0(Q x ,0),由2(,0)F c ,(0,)A b 知20(,),(,)F A c b AQ x b =-=-2F A AQ ⊥,∴22000,b cx b x c--==-,由于12220F F F Q +=即1F 为2F Q 中点.故2222223b c c b c a c c-+=-∴==-,故椭圆的离心率12e =,(3分)(2)由(1)知12c a =,得12c a =于是21(2F a ,30)(,0)2Q a -, AQF ∆的外接圆圆心为1(2a -,0),半径1||2r FQ a ==所以1|3|22a a --=,解得2a =,1c ∴=,3b 所求椭圆方程为22143x y +=,(6分)。
2023高考数学解析几何复习 题集附答案
2023高考数学解析几何复习题集附答案2023高考数学解析几何复习题集附答案*本文为2023年高考数学解析几何复习题集,共附带答案。
以下按照题目类型分类,分别给出题目和答案。
一、点、线、面的位置关系1. 已知点A(2,3)和B(-1,4),求向量AB的坐标。
解析:向量AB的坐标表示为<XB - XA, YB - YA>,其中XA和YA分别是点A的横纵坐标,XB和YB分别是点B的横纵坐标。
代入数据,得到向量AB的坐标为<-3, 1>。
2. 已知直线L的方程为2x - 3y + 6 = 0,求过点(1,2)且垂直于直线L 的直线方程。
解析:由于垂直于直线L的直线斜率的乘积为-1,所以我们需要知道直线L的斜率,即L的系数比例。
将L的方程转化为斜截式方程y = mx + b的形式,其中m为斜率,b为截距。
将2x - 3y + 6 = 0转化为y = mx + b形式得到 y = (2/3)x - 2。
斜率m 为2/3,垂直于L的直线的斜率为-3/2(斜率的乘积为-1)。
过点(1,2)且斜率为-3/2的直线方程为y - 2 = -3/2(x - 1)。
二、直线与圆的位置关系1. 已知直线L的方程为2x - 3y + 6 = 0,圆C的方程为x^2 + y^2 - 4x + 6y - 12 = 0,判断直线L和圆C的位置关系。
解析:我们可以通过求直线L的斜率与圆C的判别式(D)的符号来判断直线和圆的位置关系。
首先,将L的方程转化为斜截式方程y = mx + b的形式,其中m为斜率,b为截距。
将2x - 3y + 6 = 0转化为y = mx + b形式得到 y = (2/3)x - 2。
斜率m 为2/3。
将圆C的方程中的项进行配方,并移项得到(x - 2)^2 + (y + 3)^2 = 25。
判别式D为 D = (m^2 + 1)r^2 - (2mb + 2a)r + (b^2 + a^2 - r^2)其中,a、b分别为直线L和圆心的横纵坐标,r为圆的半径。
7.3 解析几何(压轴题)
7.3解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验·对方向1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1.因此点P的轨迹方程为x2+y2=2.F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P-,Q-,R-.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=----=-b=k2.所以AR∥FQ.l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.由题设可得|b-a|--,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).(x≠1).当AB与x轴不垂直时,由k AB=k DE可得-而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.新题演练提能·刷高分1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.B(x,y),则AB的中点D,y>0.∵C(0,1),则-,在☉C中,∵DC⊥DB,∴=0,∴-+y=0,即x2=4y(y>0).∴点B的轨迹E的方程为x2=4y(y>0).E的方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2).∵y=,∴y'=,∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2).由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.∵点P在这两条切线上,∴2(y1-1)=tx1,2(y2-1)=tx2,即直线MN的方程为2(y-1)=tx,故直线2(y-1)=tx过定点C(0,1).2.(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.设P(x,y),∵A(-2,0),B(2,0),∴k1=,k2=,-又k1k2=-,∴-=-,∴=1(x≠±2),∴轨迹C的方程为=1(x≠±2).(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故△△ ,S=△△=S△PQO,当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×--; 当直线PQ的斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,Δ=144(k2+1)>0,--故|PQ|=|x1-x2|=-, 点O到直线PQ的距离d=,S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6---,故S的最大值为.3.(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).①设W(x0,y0),证明:<1;②求四边形QRST的面积的最小值.r,由于D在圆内,圆P与圆C内切,则|PC|=2-r,|PD|=r,|PC|+|PD|=2>|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b=-=1,E的方程为+y2=1.(2),垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,同理得|RT|=2,∴S QSRT=|QS|·|RT|=,当且仅当2k2+1=k2+2,即k=±1时等号成立.综上所述,当k=±1时,四边形QRST的面积取得最小值.4.(2018福建福州3月质检)设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.(1)求E的方程;(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.设点M(x,y),A(x1,y1),则Q(x1,0),因为2,所以2(x1-x,-y)=(0,-y1),所以---解得由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为+y2=1.(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).由得(1+4k2)x2+8kx=0.设B(x1,y1),P(x2,y2),因此x1=0,x2=-,|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=, 由-得3y2+2y-5+=0(-1≤y≤1),(*)依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,设f(x)=3x2+2x-5+(-1<x<1),因为函数f(x)的对称轴为x=-,要使函数f(x)的图象在(-1,1)与x轴有两个不同的交点, 则---整理得--即--所以解得k∈----,所以k的取值范围为----.命题角度2直线与圆锥曲线的位置关系高考真题体验·对方向1.(2018全国Ⅰ·19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;为坐标原点,证明:∠OMA=∠OMB.F(1,0),l的方程为x=1.由已知可得,点A的坐标为或-.所以AM的方程为y=-x+或y=x-.l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=--,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0.从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.2.(2018全国Ⅱ·19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.A,B且与C的准线相切的圆的方程.由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.(2018全国Ⅲ·20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差.A(x1,y1),B(x2,y2),则=1,=1.两式相减,并由--=k得·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P-,||=.于是||=-=--=2-.同理||=2-.所以||+||=4-(x1+x2)=3.故2||=||+||,则||,||,||成等差数列,设该数列的公差为d,则2|d|=|||-|||=|x1-x2|=-.②将m=代入①得k=-1.所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.4.(2017全国Ⅲ·20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB 为直径的圆.(1)证明:坐标原点O在圆M上;过点P(4,-2),求直线l与圆M的方程.A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为-=-1,所以OA⊥OB.故坐标原点O在圆M 上.(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-.5.(2017北京·18)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=-,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1),直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=-=-=-=--=0,所以y1+=2x1.故A为线段BM的中点.6.(2017天津·19)设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.设F的坐标为(-c,0).依题意,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=-,故D-.所以|AD|=1--.又因为△APD的面积为,故,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-3=0.新题演练提能·刷高分1.(2018河北唐山一模)已知椭圆Γ:=1(a>b>0)的左焦点为F,上顶点为A,长轴长为2,B为直线l:x=-3上的动点,M(m,0),AM⊥BM.当AB⊥l时,M与F重合.(1)求椭圆Γ的方程;BM交椭圆Γ于P,Q两点,若AP⊥AQ,求m的值.依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),=-1,由AF⊥BF,得k AF·k BF=-又b2+c2=6,解得c=2,b=.所以,椭圆Γ的方程为=1.(2)由(1)得A(0,),依题意,显然m≠0,所以=-,又AM⊥BM,所以k BM=,所以直线BM的方程为y=(x-m),设P(x1,y1),Q(x2,y2).-联立有(2+3m2)x2-6m3x+3m4-12=0,x1+x2=,x1x2=-.|PM|·|QM|=|(x1-m)(x2-m)|=|x1x2-m(x1+x2)+m2|=-=-,|AM|2=2+m2,由AP⊥AQ得,|AM|2=|PM|·|QM|,所以-=1,解得m=±1.2.(2018河南郑州一模)已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l的方程.解(1)C:x2+y2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心C为(-1,1).∵F,0,∴|CF|=-,解得p=6.∴抛物线的方程为y2=12x.(2)设直线l为x=my+t(t≠0),A(x1,y1),B(x2,y2).联立可得y2-12my-12t=0.∴y1+y2=12m,y1y2=-12t.∵OA⊥OB,∴x1x2+y1y2=0,即(m2+1)y1y2+mt(y1+y2)+t2=0.整理可得t2-12t=0,∵t≠0,∴t=12.∴直线l的方程为x=my+12,故直线l过定点P(12,0).∴当CN⊥l时,即动点M经过圆心C(-1,1)时到动直线l的距离取得最大值.=-,∴m=,k MP=k CP=---此时直线l的方程为x=y+12,即为13x-y-156=0.3.(2018甘肃第一次诊断性考试)椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且∠APF2=∠BPF2,求直线AB 的方程.由题意可得|PF2|==3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,所以椭圆E的方程为=1.(2)易知点P的坐标为(2,3).因为∠APF2=∠BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由--可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,∴x1+2=-.同理,直线PB的方程为y-3=-k(x-2),可得x2+2=---,∴x1+x2=-,x1-x2=-,k AB=--------,∴满足条件的直线AB的方程为y+1=(x-1),即为x-2y-3=0.命题角度3圆锥曲线的最值、范围问题高考真题体验·对方向1.(2017山东·21)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程.(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T,求∠SOT的最大值并求取得最大值时直线l的斜率.由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程-得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-.所以|AB|=|x1-x2|=.由题意可知圆M的半径r为r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立方程得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t>1,∈(0,1),因此--=--≥1,当且仅当,即t=2时等号成立,此时k1=±,所以sin ,因此.所以∠SOT最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为k1=±.2.(2016全国Ⅱ·20)已知椭圆E:=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;2|AM|=|AN|时,求k的取值范围.设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×.(2)由题意t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=-得x1=-,故|AM|=|x1+.由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.t>3等价于-----<0,即--<0.由此得--或--解得<k<2.因此k的取值范围是(,2).3.(2016全国Ⅰ·20)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为:=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由-得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=-,所以|MN|=|x1-x2|=.过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2-=4.故四边形MPNQ的面积S=|MN||PQ|=12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8.新题演练提能·刷高分1.(2018江西南昌一模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.依题意F,当直线AB的斜率不存在时,|y1y2|=-p2=-4,p=2.当直线AB的斜率存在时,设AB:y=k-,由-化简得y2-y-p2=0.由y1y2=-4,得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),B,则E(-1,t).又由y1y2=-4,可得A-.因为k EF=-,AD⊥EF,所以k AD=,故直线AD:y+-.由---化简得y2-2ty-8-=0,所以y1+y0=2t,y1y0=-8-.所以|AD|=·|y1-y0|=-.设点B到直线AD的距离为d,则d=---.所以S△ABD=|AD|·d=≥16,当且仅当t4=16,即t=±2.当t=2时,直线AD的方程为x-y-3=0,当t=-2时,直线AD的方程为x+y-3=0.2.(2018山东济南一模)在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B 两点.(1)若直线OA,OB的斜率之积为-,证明:直线l过定点;(2)若线段AB的中点M在曲线C2:y=4-x2(-22)上,求的最大值.A(x1,y1),B(x2,y2),由题意可知直线l的斜率存在,设直线l的方程为y=kx+m,由得x2-4kx-4m=0, Δ=16(k2+m)>0,x1+x2=4k,x1x2=-4m,k OA·k OB==-,由已知:k OA·k OB=-,所以m=1,所以直线l的方程为y=kx+1,所以直线l过定点(0,1).M(x0,y0),则x0==2k,y0=kx0+m=2k2+m,将M(x0,y0)代入C2:y=4-x2(-2<x<2),得2k2+m=4-(2k)2,∴m=4-3k2.∵-2<x0<2,∴-2<2k<2,∴-<k<.∵Δ=16(k2+m)=16(k2+4-3k2)=32(2-k2)>0,∴-<k<,故k的取值范围是k∈(-.|AB|=-,将m=4-3k2代入,得|AB|=4-≤4-=6当且仅当k2+1=2-k2,即k=±时取等号,所以|AB|的最大值为63.(2018山东青岛一模)已知O为坐标原点,点A,B在椭圆C:+y2=1上,点E-在圆D:x2+y2=r2(r>0)上,AB的中点为Q,满足O,E,Q三点共线.(1)求直线AB的斜率;(2)若直线AB与圆D相交于M,N两点,记△OAB的面积为S1,△OMN的面积为S2,求S=S1+S2的最大值.设A(x1,y1),B(x2,y2),AB的中点Q(x0,y0).∵点A,B在椭圆C上,∴相减得-+(y1-y2)(y1+y2)=0.∴k AB=-=-.-∵x0=,y0=,∴k AB=-.∵E-,∴k OE=-.∵O,E,Q三点共线,∴k OQ=k OE=-,∴k AB=-=1.(2)∵点E-在圆D上,∴r2=-.∴圆D的方程为x2+y2=.设直线AB的方程:y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0得m2<3.x1+x2=-,x1x2=-,则|AB|=--.设O到直线AB的距离为d,d=,∴|MN|=2-=2-.∴S=S1+S2=|AB|·d+|MN|·d=-×2-|m|--=--,∴当m2=<3时,即m=±时,S max=.4.(2018广东珠海3月质检)已知抛物线C1:y2=2px(p>0),圆C2:x2+y2=4,直线l:y=kx+b与抛物线C1相切于点M,与圆C2相切于点N.(1)若直线l的斜率k=1,求直线l和抛物线C1的方程;F为抛物线C1的焦点,设△FMN,△FON的面积分别为S1,S2,若S1=λS2,求λ的取值范围.由题设知l:x-y+b=0,且b>0,由l与C2相切知,C2(0,0)到l的距离d==2,得b=2,∴l:x-y+2=0.将l与C1的方程联立消x得y2-2py+4p=0,其Δ=4p2-16p=0得p=4∴C1:y2=8x.综上,l:x-y+20,C1:y2=8(2)不妨设k>0,根据对称性,k>0得到的结论与k<0得到的结论相同.此时b>0,又知p>0,设M(x1,y1),N(x2,y2),由消y得k2x2+2(kb-p)x+b2=0,其Δ=4(kb-p)2-4k2b2=0得p=2kb,从而解得M,由l与C2切于点N知C2(0,0)到l:kx-y+b=0的距离d==2,得b=2,则p=4k,故M.由得N,故|MN|=M-x N|=.F到l:kx-y+b=0的距离d0==2k2+2,∴S1=S△FMN=|MN|d0=,又S2=S△FON=|OF|·|y N|=2k,∴λ=(k2+1)=2k2++3≥2+3.当且仅当2k2=即k=时取等号,与上同理可得,k<0时亦是同上结论.综上,λ的取值范围是[3+2,+∞).命题角度4圆锥曲线的定值、定点问题高考真题体验·对方向1.(2017全国Ⅰ·20)已知椭圆C:=1(a>b>0),四点P1(1,1),P2(0,1),P3-,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l 过定点.P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为---.则k 1+k 2=- --=-1,得t=2,不符合题设.从而可设l :y=kx+m (m ≠1). 将y=kx+m代入 +y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-,x 1x 2=-.而k 1+k 2= --= - - =-.由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0. 即(2k+1)· -+(m-1)·-=0.解得k=-. 当且仅当m>-1时,Δ>0,于是l :y=-x+m ,即y+1=-(x-2), 所以l 过定点(2,-1). 2.(2016北京·19)已知椭圆C :=1(a>b>0)的离心率为,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN|·|BM|为定值.解得a=2,b=1. 所以椭圆C 的方程为+y 2=1. (1)知,A (2,0),B (0,1).设P (x 0,y 0),则 +4=4.当x 0≠0时,直线PA 的方程为y= -(x-2).令x=0,得y M =--,从而|BM|=|1-y M |=-.直线PB的方程为y=-x+1.令y=0,得x N=--,从而|AN|=|2-x N|=-.所以|AN|·|BM|=--=----=----=4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.3.(2015全国Ⅱ·20)已知椭圆C:=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.由题意有-=1,解得a2=8,b2=4.所以C的方程为=1.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入=1,得(2k2+1)x2+4kbx+2b2-8=0.故x M=-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.新题演练提能·刷高分1.(2018福建厦门第一次质检)设O为坐标原点,椭圆C:=1(a>b>0)的左焦点为F,离心率为.直线l:y=kx+m(m>0)与C交于A,B两点,AF的中点为M,|OM|+|MF|=5.(1)求椭圆C的方程;(2)设点P(0,1),=-4,求证:直线l过定点,并求出定点的坐标.F1,则OM为△AFF1的中位线.∴OM=AF1,MF=AF,∴|OM|+|MF|==a=5,∵e=,∴c=2,∴b=∴椭圆C的方程为=1.A(x1,y1),B(x2,y2),联立消去y,整理得(1+5k2)x2+10mkx+5m2-25=0.∴Δ>0,x1+x2=-,x1x2=-,∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=--=-.∵P(0,1),=-4,∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4,∴--+5=0,整理得3m2-m-10=0,解得m=2或m=-(舍去).∴直线l过定点(0,2).2.(2018安徽合肥第二次质检)已知点A(1,0)和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.(1)求动点B的轨迹方程;(2)已知点P(2,0),Q(2,-1),经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.(1)解如图,设以线段AB为直径的圆的圆心为C,取A'(-1,0).依题意,圆C内切于圆O,设切点为D,则O,C,D三点共线,∵O为AA'的中点,C为AB中点,∴A'B=2OC.∴|BA'|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA'|=2,∴动点B的轨迹是以A,A'为焦点,长轴长为4的椭圆,设其方程为=1(a>b>0), 则2a=4,2c=2,∴a=2,c=1,∴b2=a2-c2=3,∴动点B的轨迹方程为=1.当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆=1相切,与题意不符.②当直线l的斜率存在时,设直线l的方程为y+1=k(x-2).由-消去y整理得(4k2+3)x2-(16k2+8k)x+16k2+16k-8=0.∵直线l与椭圆交于M,N两点,∴Δ=(16k2+8k)2-4(4k2+3)(16k2+16k-8)>0,解得k<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=-,∴k PM+k PN=--------=2k---=2k----=2k---=2k----=2k+3-2k=3(定值).3.(2018北京丰台期末)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=-1的距离相等,记点P的轨迹为C.(1)求C的方程;(2)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C 相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.因为动点P到点F(1,0)的距离和它到直线x=-1的距离相等,所以动点P的轨迹是以点F(1,0)为焦点,直线x=-1为准线的抛物线.设C的方程为y2=2px,则=1,即p=2.所以C的轨迹方程为y2=4x.(2)设A,m,则B+2,0,所以直线AB 的斜率为k= -=-.设与AB 平行,且与抛物线C 相切的直线为y=-x+b ,由-得my 2+8y-8b=0, 由Δ=64+32mb=0得b=-,所以y D =-,所以点D,-.当,即m ≠±2时,直线AD 的方程为y-m=-x-,整理得y=-(x-1),所以直线AD过定点(1,0).当,即m=±2时,直线AD 的方程为x=1,过定点(1,0).综上所述,直线AD 过定点(1,0).4.(2018四川德阳二诊)已知长度为3 的线段AB 的两个端点A ,B 分别在x 轴和y 轴上运动,动点P 满足=2 ,设动点P 的轨迹为曲线C. (1)求曲线C 的方程;(2)过点(4,0)且斜率不为零的直线l 与曲线C 交于M ,N 两点,在x 轴上是否存在定点T ,使得直线MT 与NT 的斜率之积为常数.若存在,求出定点T 的坐标以及此常数;若不存在,请说明理由. 设P (x ,y ),A (m ,0),B (0,n ),由于=2 ,所以(x ,y-n )=2(m-x ,-y )=(2m-2x ,-2y ),即 - - - 所以又|AB|=3 ,所以m 2+n 2=18,从而+9y 2=18. 即曲线C的方程为=1. (2)由题意设直线l 的方程为:x=my+4,M (x 1,y 1),N (x 2,y 2), 由得(m 2+4)y 2+8my+8=0, 所以--故x 1+x 2=m (y 1+y 2)+8= , x 1x 2=m 2y 1y 2+4m (y 1+y 2)+16= - ,假设存在定点T (t ,0),使得直线MT 与NT 的斜率之积为常数,则k MT ·k NT =- -=.---当t2-8=0,且t-4≠0时,k MT·k NT为常数,解得t=±2.显然当t=2时,常数为;当t=-2时,常数为-,所以存在两个定点T1(2,0),T2(-2,0),使得直线MT与NT的斜率之积为常数,当定点为T1(2,0)时,常数为;当定点为T2(-2,0)时,常数为-.命题角度5圆锥曲线的探究、存在性问题高考真题体验·对方向1.(2015全国Ⅰ·20)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点. (1)当k=0时,分别求C在点M和N处的切线方程;轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2), 即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=--=-.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.2.(2015全国Ⅱ·20)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C 有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M=-,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由-得,即x P=.将点的坐标代入l的方程得b=-,因此x M=-.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×-,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.3.(2014山东·21)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A 的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF 为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,①证明直线AE过定点,并求出定点坐标;②△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.由题意知F,设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+-,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)①由(1)知F(1,0).设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1.由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0, 由题意Δ==0,得b=-.设E(x E,y E),则y E=-,x E=.当≠4时,k AE=--=---,可得直线AE的方程为y-y0=-(x-x0),由=4x0,整理可得y=-(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).②由①知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=-.设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.所以点B到直线AE的距离为d=-==4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.新题演练提能·刷高分1.(2018山西太原一模)已知椭圆C:=1(a>b>0)的左顶点为A,右焦点为F2(2,0),点B(2,-在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.依题意,c=2.∵点B(2,-)在C上,∴=1.∵a2=b2+c2,∴a2=8,b2=4,∴椭圆方程为=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),则F(-x1,-y1),联立消去y化简得(1+2k2)x2-8=0,解得x1=,y1=.∵A(-2,0),∴AE所在直线方程为y=·(x+2),∴M0,,同理可得N0,-,=-x0,,=-x0,-,由=0,得-4=0.∴x0=2或x0=-2.∴存在点P,使得无论非零实数k怎么变化,总有∠MPN为直角,点P坐标为(2,0)或(-2,0).2.(2018山东菏泽一模)已知抛物线E的顶点为平面直角坐标系xOy的坐标原点O,焦点为圆F:x2+y2-4x+3=0的圆心F.经过点F的直线l交抛物线E于A,D两点,交圆F于B,C两点,A,B 在第一象限,C,D在第四象限.(1)求抛物线E的方程;(2)是否存在直线l使2|BC|是|AB|与|CD|的等差中项?若存在,求直线l的方程;若不存在,请说明理由.∵圆F的方程为(x-2)2+y2=1,∴圆心F的坐标为(2,0),半径r=1.根据题意设抛物线E的方程为y2=2px(p>0),∴=2,解得p=4.∴抛物线E的方程为y2=8x.(2)∵2|BC|是|AB|与|CD|的等差中项,|BC|=2r,∴|AB|+|CD|=4|BC|=4×2r=8.∴|AD|=|AB|+|BC|+|CD|=10r=10.讨论:若l垂直于x轴,则l的方程为x=2,代入y2=8x,解得y=±4.此时|AD|=8,不满足题意; 若l不垂直于x轴,则设l的斜率为k(k≠0),此时l的方程为y=k(x-2),由-得k2x2-(4k2+8)x+4k2=0.设A(x1,y1),B(x2,y2),则x1+x2=.∵拋物线E的准线方程为x=-2,∴|AD|=|AF|+|DF|=(x1+2)+(x2+2)=x1+x2+4.∴+4=10,解得k=±2.当k=±2时,k2x2-(4k2+8)x+4k2=0化为x2-6x+4=0.∵(-6)2-4×1×4>0,∴x2-6x+4=0有两个不相等的实数根.∴k=±2满足题意.∴存在满足要求的直线l:2x-y-4=0或2x+y-4=0.3.(2018山西晋城一模)已知直线l1是抛物线C:x2=2py(p>0)的准线,直线l2:3x-4y-6=0,且l2与抛物线C没有公共点,动点P在抛物线C上,点P到直线l1和l2的距离之和的最小值等于2.(1)求抛物线C的方程;(2)点M在直线l1上运动,过点M作抛物线C的两条切线,切点分别为P1,P2,在平面内是否存在定点N,使得MN⊥P1P2恒成立?若存在,请求出定点N的坐标,若不存在,请说明理由.解(1)作PA,PB分别垂直l1和l2,垂足为A,B,抛物线C的焦点为F0,,由抛物线定义知|PA|=|PF|,所以d1+d2=|PA|+|PB|=|PF|+|PB|,易知d1+d2的最小值即为点F到直线l2的距离,故d=--=2,∴p=2,所以抛物线C的方程为x2=4y.(2)由(1)知直线l1的方程为y=-1,当点M在特殊位置(0,-1)时,易知两个切点P1,P2关于y轴对称,故要使得MN⊥P1P2,点N必须在y轴上.故设M(m,-1),N(0,n),P1x1,,P2x2,,抛物线C的方程为y=x2,求导得y'=x,所以切线MP1的斜率k1=x1,直线MP1的方程为y-x1(x-x1),又点M在直线MP1上,所以-1-x1(m-x1),整理得-2mx1-4=0,同理可得-2mx2-4=0,故x1和x2是一元二次方程x2-2mx-4=0的两根,由韦达定理得-=x2-x1,·(-m,n+1)=(x2-x1)[-4m+(n+1)(x2+x1)]=(x2-x1)[-4m+2m(n+1)]=m(x2-x1)(n-1),可见n=1时,=0恒成立,所以存在定点N(0,1),使得MN⊥P1P2恒成立.4.(2018河北衡水中学七调)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P为该双曲线上异于顶点的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,且点A,C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得||+||=?若存在,求出点P的坐标;若不存在,请说明理由.由题意知,椭圆离心率e=,即a=c,又2a+2c=4(+1),所以a=2,c=2,所以b2=a2-c2=4,所以椭圆的标准方程为=1.所以椭圆的焦点坐标为(±2,0).又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为=1.(2)设P(x0,y0)(x0≠±2),则,因为点P在双曲线=1上,所以=1.-设A(x1,y1),B(x2,y2),直线PF1的方程为y=k(x+2),所以直线PF2的方程为y=(x-2),联立得(2k2+1)x2+8k2x+8k2-8=0,所以x1+x2=-,x1·x2=-,所以|AB|=----.同理可得|CD|=.由题知||+||=|·||·cos θ(θ=∠F1PF2), 即cos θ=.因为=||||cos θ,即(-2-x0)(2-x0)+(-y0)(-y0)=-,又因为=4,所以2(-4)=-----,所以=8,=4.即存在满足题意的点P,且点P的坐标为(±2±2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(通用版)高考数学复习专题七解析几何7.3解析几何(压轴题)练
习理
7.3 解析几何(压轴题)
命题角度1曲线与轨迹问题
高考真题体验·对方向
1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.
(1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).
由得x0=x,y0=y.
因为M(x0,y0)在C上,所以=1.
因此点P的轨迹方程为x2+y2=2.
(2)证明由题意知F(-1,0).设Q(-3,t),P(m,n),
则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).
由=1得-3m-m2+tn-n2=1.
又由(1)知m2+n2=2,故3+3m-tn=0.
所以=0,即.
又过点P存在唯一直线垂直于OQ,
所以过点P且垂直于OQ的直线l过C的左焦点F.
2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B 两点,交C的准线于P,Q两点.
(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;
(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.
(1)证明由题知F.
设l1:y=a,l2:y=b,则ab≠0,
且A,B,P,Q,R.
记过A,B两点的直线为l,
则l的方程为2x-(a+b)y+ab=0.
由于F在线段AB上,故1+ab=0.
记AR的斜率为k1,FQ的斜率为k2,
则k1==-b=k2.
所以AR∥FQ.
(2)解设l与x轴的交点为D(x1,0),
则S△ABF=|b-a||FD|=|b-a|,S△PQF=.
由题设可得|b-a|,
所以x1=0(舍去),x1=1.
设满足条件的AB的中点为E(x,y).
当AB与x轴不垂直时,由k AB=k DE可得(x≠1).
而=y,所以y2=x-1(x≠1).
当AB与x轴垂直时,E与D重合.
所以所求轨迹方程为y2=x-1.
典题演练提能·刷高分
1.(2019西南名校联盟重庆第八中学高三5月月考六)设抛物线C1的方程为x2=4y,点M(x0,y0)(x0≠0)在抛物线C2:x2=-y上,过M作抛物线C1的切线,切点分别为A,B,圆N是以线段AB为直径的圆.
(1)若点M的坐标为(2,-4),求此时圆N的半径长;
(2)当M在x2=-y上运动时,求圆心N的轨迹方程.
解(1)设N(x,y),A x1,,B x2,,x1≠x2,
切线MA,MB的方程分别为y=(x-x1)+,y=(x-x2)+,
得MA,MB的交点M(x0,y0)的坐标为x0==2,y0==-4.
又k AB==1,
|AB|==4,
∴r=|AB|=2.
(2)∵N为线段AB的中点,
∴x=,y=.
点M在C2上,
即=-y0.
由(1)得2=-,
则2=-.
∴x2=-,x≠0,即x2=y(x≠0).
∴圆心N的轨迹方程为x2=y(x≠0).
2.已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.
(1)求点P的轨迹C的方程;
(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.
解(1)设P(x,y),∵A(-2,0),B(2,0),
∴k1=,k2=,
又k1k2=-,∴=-,
∴=1(x≠±2),
∴轨迹C的方程为=1(x≠±2).
(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故
,S==S△PQO,
当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×;
当直线PQ的斜率存在时,设其方程为y=k(x+1),
设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立
解得(3+4k2)x2+8k2x+4k2-12=0,
Δ=144(k2+1)>0,
故|PQ|=|x1-x2|=,
点O到直线PQ的距离d=,
S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6,故S的最大值为.
3.已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.
(1)求点P的轨迹E的方程;
(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).
①设W(x0,y0),证明:<1;
②求四边形QRST的面积的最小值.
(1)解设动圆半径为r,由于D在圆内,圆P与圆C内切,则|PC|=2-
r,|PD|=r,|PC|+|PD|=2>|CD|=2,
由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b==1,E的方程为+y2=1.
(2)①证明由已知条件可知,垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.
②解若l1或l2的斜率不存在,四边形QRST的面积为2.
若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),
解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,
同理得|RT|=2,
∴S QSRT=|QS|·|RT|=,
当且仅当2k2+1=k2+2,即k=±1时等号成立.
综上所述,当k=±1时,四边形QRST的面积取得最小值.
4.设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.
(1)求E的方程;
(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B 为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.
解(1)设点M(x,y),A(x1,y1),则Q(x1,0),
因为2,
所以2(x1-x,-y)=(0,-y1),
所以解得
由于点A在圆C:x2+y2=4上,所以x2+4y2=4,
所以点M的轨迹E的方程为+y2=1.
(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).
由得(1+4k2)x2+8kx=0.
设B(x1,y1),P(x2,y2),
因此x1=0,x2=-,
|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=,。