无机纳米材料.ppt
合集下载
无机精细化工工艺学课件
![无机精细化工工艺学课件](https://img.taocdn.com/s3/m/6c54f8e5b1717fd5360cba1aa8114431b90d8ebe.png)
❖ 第二阶段(1994年前),如何利用纳米材料已挖掘 出来的奇特物理、化学和力学性能,设计纳米复合 材料。
❖ 第三阶段(1994年到现在)纳米组装体系,人工组 装合成的纳米结构的材料体系。
20
纳米材料的特性
❖1、基本物理效应
(1)小尺寸效应 当超微粒子尺寸与传导电子德布罗意波长(
λ=h/p=h/mv)相当或更小时,周期性的边界
条件将被破坏,非晶态纳米微粒表面层附 近原子密度减小,导致性质与普通粒子不 同(光吸收、磁性、内压、热阻、化学活性、催化活性、 熔点)。
21
(2)界面与表面效应
纳米粒子由于尺寸小,表面积大,导致位于 表面的原子占有极大的比例,表面原子的 活性使纳米粒子具有明显的表面效应。
比表面积:F =3/r 1/r, 若r=1m, 则F > 104cm-1(1 m2) , 若r=5nm, F > 600 m2
❖ 运用生物纳米技术开发芯片-运用生物可以自建有 结构的 “自建结构”能力,利用蛋白质和DNA等材料 制作电路。研制运算速度高中央处理器,耗电量低 的记忆元件,开发计算机芯片,长时间无需充电的 笔记本电脑。
16
(4)纳米微机械和机器人。
生物发动机(分子马达) -利用人体内的自然能源(三磷酸腺苷酸)作动
3
纳米科技的发展
❖ 20世纪60年代R.P.Feynman:若从原子和分子水平上控 制物质,将会出现新的作用力和新的效应。
❖ 日本上田良二提出“超微粒子结构”的新概念。 ❖ 70年代C.Hayash研究了纳米粉体的性质、生产方法及应
用,诞生了“纳米技术”。 ❖ 80年代先后制造了扫描隧道显微镜和原子力显微镜,从
❖ 单分散体系-分散相以大小、形貌均一致的状态被 分散在分散介质中即形成了单分散体系。
❖ 第三阶段(1994年到现在)纳米组装体系,人工组 装合成的纳米结构的材料体系。
20
纳米材料的特性
❖1、基本物理效应
(1)小尺寸效应 当超微粒子尺寸与传导电子德布罗意波长(
λ=h/p=h/mv)相当或更小时,周期性的边界
条件将被破坏,非晶态纳米微粒表面层附 近原子密度减小,导致性质与普通粒子不 同(光吸收、磁性、内压、热阻、化学活性、催化活性、 熔点)。
21
(2)界面与表面效应
纳米粒子由于尺寸小,表面积大,导致位于 表面的原子占有极大的比例,表面原子的 活性使纳米粒子具有明显的表面效应。
比表面积:F =3/r 1/r, 若r=1m, 则F > 104cm-1(1 m2) , 若r=5nm, F > 600 m2
❖ 运用生物纳米技术开发芯片-运用生物可以自建有 结构的 “自建结构”能力,利用蛋白质和DNA等材料 制作电路。研制运算速度高中央处理器,耗电量低 的记忆元件,开发计算机芯片,长时间无需充电的 笔记本电脑。
16
(4)纳米微机械和机器人。
生物发动机(分子马达) -利用人体内的自然能源(三磷酸腺苷酸)作动
3
纳米科技的发展
❖ 20世纪60年代R.P.Feynman:若从原子和分子水平上控 制物质,将会出现新的作用力和新的效应。
❖ 日本上田良二提出“超微粒子结构”的新概念。 ❖ 70年代C.Hayash研究了纳米粉体的性质、生产方法及应
用,诞生了“纳米技术”。 ❖ 80年代先后制造了扫描隧道显微镜和原子力显微镜,从
❖ 单分散体系-分散相以大小、形貌均一致的状态被 分散在分散介质中即形成了单分散体系。
纳米材料概述ppt课件
![纳米材料概述ppt课件](https://img.taocdn.com/s3/m/e5d1e7cabdeb19e8b8f67c1cfad6195f312be805.png)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
STM针尖
扫描隧道显微镜工作原理示意图
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
二、纳米技术与纳米材料的概念
l 过去,人们只注意原子、分子或者宏观 物质,常常忽略纳米这个中间领域,而 这个领域大量存在于自然界,只是以前 没有认识到这个尺度范围的性能 。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
l 第一节、概述 l 第二节、纳米材料的结构与性能 l 第三节、纳米材料的制备方法 l 第四节、纳米材料与纳米技术的应用 l 第五节、发展与展望
科学家使用STM观测物质的纳米结构
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
STM具有空间的高分辨率(横向可达0.1nm,纵向可达 0.01nm),能直接观察到物质表面的原子结构,把人们 带到了微观世界。它的基本原理是基于量子隧道效应和 扫描。它是用一个极细的针尖(针尖头部为单个原子)去 接近样品表面,当针尖和表面靠得很近时(<1nm),针 尖头部原子和样品表面原子的电子云发生重迭,若在针 尖和样品之间加上一个偏压、电子便会通过针尖和样品 构成的势垒而形成隧道电流。通过控制针尖与样品表面 间距的恒定并使针尖沿表面进行精确的三维移动,就可 把表面的信息;(表面形貌和表面电子态)记录下来。由 于STM具有原子级的空间分辨率和广泛的适用性,国际 上掀起了研制和应用STM的热潮,推动了纳米科技的发 展。
无机纳米材料
![无机纳米材料](https://img.taocdn.com/s3/m/12927316de80d4d8d15a4fd2.png)
无机纳米材料
无机纳米材料
纳米材料的发展历史 纳米材料的性质 纳米材料的一些合成方法
纳米材料的发展历史
1959年,诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作 更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造“产 品”。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志 着纳米科学技术的正式诞生。 1991年,日本学者发现了碳纳米管,由于C nanotube的优异性能,马 上成为纳米技术研究的热点,并导致了现在的大量研究。
carbon spheres as templates
Using glucose synthesis carbon spheres 160-180 ℃
GaCl3 , NH3,800 ℃,3h
Sun X.M, and Li Y.D, Angew. Chem. Int. Ed. 2004, 43, 3827 –3831.
MoS2 nanorods
Zheng X.W, Xie.Y, Ultrasonics Sonochemistry 11 (2004) 83–88
Electrochemical synthesis
6Fe+8H2O→2Fe3O4+8H2
S.Franger.P,B.J.Berthon, J Solid State Eletrochem (2004) 8: 218–223
通过搅拌 导致了混合物 的黏度的不同, 然后实现了形 貌的控制。
Chen.L,Chen.Y.B,Wu.L,M, J. Am. Chem. Soc. 2004, 126, 16334-16335
自组装
通过软模板比如表面活性剂,聚合物,超分 子,生物分子(DNA,氨基酸等)与水热法, 溶剂热法结合实现纳米粒子的自组装,来合 成一维,二维的纳米材料。
无机纳米材料
纳米材料的发展历史 纳米材料的性质 纳米材料的一些合成方法
纳米材料的发展历史
1959年,诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作 更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造“产 品”。 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志 着纳米科学技术的正式诞生。 1991年,日本学者发现了碳纳米管,由于C nanotube的优异性能,马 上成为纳米技术研究的热点,并导致了现在的大量研究。
carbon spheres as templates
Using glucose synthesis carbon spheres 160-180 ℃
GaCl3 , NH3,800 ℃,3h
Sun X.M, and Li Y.D, Angew. Chem. Int. Ed. 2004, 43, 3827 –3831.
MoS2 nanorods
Zheng X.W, Xie.Y, Ultrasonics Sonochemistry 11 (2004) 83–88
Electrochemical synthesis
6Fe+8H2O→2Fe3O4+8H2
S.Franger.P,B.J.Berthon, J Solid State Eletrochem (2004) 8: 218–223
通过搅拌 导致了混合物 的黏度的不同, 然后实现了形 貌的控制。
Chen.L,Chen.Y.B,Wu.L,M, J. Am. Chem. Soc. 2004, 126, 16334-16335
自组装
通过软模板比如表面活性剂,聚合物,超分 子,生物分子(DNA,氨基酸等)与水热法, 溶剂热法结合实现纳米粒子的自组装,来合 成一维,二维的纳米材料。
纳米材料ppt课件
![纳米材料ppt课件](https://img.taocdn.com/s3/m/24276842f68a6529647d27284b73f242326c3174.png)
02
纳米材料的制备方法
物理法
机械研磨法
通过高能球磨或振动磨的方式, 将大块材料破碎成纳米级尺寸。 这种方法简单易行,但制备的纳
米材料纯度较低。
激光脉冲法
利用高能激光脉冲在极短时间内 将材料加热至熔化或气化,然后 迅速冷却形成纳米颗粒。该方法 制备的纳米材料粒径小且均匀,
但设备成本高昂。
电子束蒸发法
磁损耗
在交变磁场中,纳米材料的磁损耗远高于宏观材料,这与其界面和 表面效应有关。
磁电阻效应
某些纳米材料表现出显著的磁电阻效应,如巨磁电阻和自旋阀效应 。这些效应可用于磁电阻传感器和磁随机存储器等领域。
04
纳米材料的应用实例
纳米材料在能源领域的应用
太阳能电池
利用纳米结构提高光电转 换效率,降低成本。
纳米材料的环保问题
纳米材料在环境中的持久性
一些纳米材料可能在环境中长时间存在,不易降解,可能造成长期的环境污染。
纳米材料的环境释放途径
生产和使用纳米材料过程中,可能通过废水、废气等途径将纳米颗粒释放到环境中。
纳米材料对生态系统的潜在影响
纳米材料可能通过食物链进入生物体,影响生物的生理功能和生态平衡。
解决纳米材料安全与环保问题的策略与建议
加强纳米材料的环境和健康影响 研究
深入研究纳米材料的环境行为和健康影响 ,为制定有效的管理措施提供科学依据。
制定严格的法规和标准
制定针对纳米材料的生产和使用的法规和 标准,限制其对环境和健康的潜在风险。
发展绿色合成方法和应用技术
提高公众意识和参与度
开发环保友好的纳米材料合成方法和应用 技术,减少纳米材料的环境释放。
生物合成法
利用微生物(如细菌)合成有机或无机纳米材料。该方法制 备的纳米材料具有生物相容性和生物活性,在生物医学领域 有广泛应用前景。
《纳米材料应用》汇报PPTPPT课件
![《纳米材料应用》汇报PPTPPT课件](https://img.taocdn.com/s3/m/f068479f185f312b3169a45177232f60ddcce7ef.png)
生产成本问题
纳米材料制造成本
由于纳米材料制备过程复杂,制 造成本较高,需要进一步降低成 本以实现广泛应用。
纳米材料生产效率
提高纳米材料生产效率是降低成 本的重要途径之一,需要不断优 化生产工艺和技术。
纳米材料的应用成
本
除了制造成本外,纳米材料的应 用成本也是需要考虑的问题,需 要开发具有成本效益的应用方案。
源等多个领域。
中国政府对纳米材料产业给予了高度关注和支持,制定了一系
03
列政策措施推动产业发展。
纳米材料发展趋势与展望
未来纳米材料将向高性能化、多功能化和智能化 方向发展。
纳米材料在新能源、生物医药、电子信息等领域 的应用前景广阔,将为人类社会带来更多福祉。
未来纳米材料产业将面临技术突破、环保和安全 等方面的挑战,需要加强国际合作和政策引导。
4. 肿瘤治疗
纳米材料可用于肿瘤 的早期诊断和治疗, 如纳米药物、纳米热 疗等。
环境能源领域
1. 水处理
利用纳米材料去除水中的有害 物质和重金属离子,实现水质 的净化。
3. 太阳能转换
纳米材料可将太阳能转换为电 能或化学能,如太阳能电池和 光催化制氢。
总结词
纳米材料在环境能源领域的应 用包括水处理、空气净化、太 阳能转换和储能等。
2. 防紫外线纺织品
3. 智能纺织品
利用纳米材料阻挡紫外线的性能,制作防 晒服装和遮阳帽等防护用品。
将纳米材料与纺织品结合,实现温度、湿 度、光等环境因素的感知和调控功能,如 智能调温纺织品和变色纺织品。
03
纳米材料发展现状与趋势
全球纳米材料市场规模
01
全球纳米材料市场规模持续增 长,预计未来几年将保持稳定 增长态势。
英文-无机纳米材料光解水ppt课件
![英文-无机纳米材料光解水ppt课件](https://img.taocdn.com/s3/m/d986878c4028915f814dc20f.png)
Contents
1
Introduction
2
Brief history
3 Inorganic nanostructures
4 Conclusion and outlook
carbon free energy technology
The solar energy received on the Earth’s surface meets current and future human energy demand.
photoelectrochemical water splitting
Exploit scaling laws and specific effects at 3 the nanoscale to enhance the efficiency of
existing semiconductors and metal oxides
three main strategies
Coat conventional photovoltaic cells with 1 cocatalysts for water splitting or with
protecting layers to inhibit photocorrosion
Development of new metal oxide materials 2 that combine suitable properties for
Advantages
✓ Shortened carrier collection pathways ✓ Improved light distribution ✓ Quantum size confinement ✓ Potential determining ions (PDI) ✓ Surface area-enhanced charge transfer ✓ Multiple exciton generation
《纳米材料导论》课件
![《纳米材料导论》课件](https://img.taocdn.com/s3/m/ca70da6be3bd960590c69ec3d5bbfd0a7956d5b2.png)
伦理问题
纳米技术的广泛应用可能涉及隐私、 安全和伦理等问题,需要加强伦理规 范和监管。
05 结论
研究成果总结
纳米材料特性
详细介绍了纳米材料的 尺寸、表面效应、量子 效应和介电限域效应等 基本特性,以及它们在 物理、化学和生物领域
的应用。
制备方法
总结了纳米材料的各种 制备方法,如物理法、 化学法、生物法等,并 讨论了各种方法的优缺
《纳米材料导论》ppt课件
$number {01}
目录
• 纳米材料简介 • 纳米材料制备方法 • 纳米材料的应用 • 纳米材料的发展前景 • 结论
01
纳米材料简介
纳米材料定义
01
纳米材料是指在三维空间中至少 有一维处于纳米尺度范围(1100nm)或由它们作为基本单元 构成的材料。
02
纳米尺度通常对应于物质中原子 或分子的集合行为发生显著变化 的尺度,因此纳米材料具有许多 独特的物理、化学和机械性能。
点和适用范围。
应用领域
概述了纳米材料在能源 、环境、医疗、信息等 领域的应用,并给出了
具体实例和效果。
对未来研究的展望
新制备技术
预测未来将出现更多高效、环保 的纳米材料制备技术,以满足不
断增长的应用需求。
跨学科应用
鼓励跨学科合作,将纳米材料应 用于更多领域,如生物医学、农
业、航天等。
绿色纳米技术
强调发展绿色、可持续的纳米技 术,以降低生产过程中的环境污
染和资源消耗。
伦理与法规
呼吁加强对纳米技术的伦理和法 规研究,以确保其在应用过程中
的安全性和合法性。
溶胶-凝胶法
通过溶液中的化学反应,使原材料转化为凝胶态,再经过干燥和热处理得到纳米材料。该方法操 作简便,成本较低,但制备周期较长。
纳米技术的广泛应用可能涉及隐私、 安全和伦理等问题,需要加强伦理规 范和监管。
05 结论
研究成果总结
纳米材料特性
详细介绍了纳米材料的 尺寸、表面效应、量子 效应和介电限域效应等 基本特性,以及它们在 物理、化学和生物领域
的应用。
制备方法
总结了纳米材料的各种 制备方法,如物理法、 化学法、生物法等,并 讨论了各种方法的优缺
《纳米材料导论》ppt课件
$number {01}
目录
• 纳米材料简介 • 纳米材料制备方法 • 纳米材料的应用 • 纳米材料的发展前景 • 结论
01
纳米材料简介
纳米材料定义
01
纳米材料是指在三维空间中至少 有一维处于纳米尺度范围(1100nm)或由它们作为基本单元 构成的材料。
02
纳米尺度通常对应于物质中原子 或分子的集合行为发生显著变化 的尺度,因此纳米材料具有许多 独特的物理、化学和机械性能。
点和适用范围。
应用领域
概述了纳米材料在能源 、环境、医疗、信息等 领域的应用,并给出了
具体实例和效果。
对未来研究的展望
新制备技术
预测未来将出现更多高效、环保 的纳米材料制备技术,以满足不
断增长的应用需求。
跨学科应用
鼓励跨学科合作,将纳米材料应 用于更多领域,如生物医学、农
业、航天等。
绿色纳米技术
强调发展绿色、可持续的纳米技 术,以降低生产过程中的环境污
染和资源消耗。
伦理与法规
呼吁加强对纳米技术的伦理和法 规研究,以确保其在应用过程中
的安全性和合法性。
溶胶-凝胶法
通过溶液中的化学反应,使原材料转化为凝胶态,再经过干燥和热处理得到纳米材料。该方法操 作简便,成本较低,但制备周期较长。
无机半导体材料碳化硅SiC-PPT课件
![无机半导体材料碳化硅SiC-PPT课件](https://img.taocdn.com/s3/m/ca2087b651e79b8968022680.png)
和欧盟(以瑞典和德国为首)的一些公司或科研机构也在生产SiC 晶片,并且已经实现商品化。 SiC作为第三代半导体材料的杰出代表,由于其特有的物 理化学特性成为制作高频、大功率、高温器件的理想材料。随
着SiC体材料的生长和外延技术的成熟,各种SiC器件将会相继
出现。目前,SiC器件的研究主要以分立器件为主,仍处于以 开发为主、生产为辅的阶段。
GaN(氮化镓)、金刚石等)的衬底和X射线的掩膜等。而且,
β-SiC薄膜能在同属立方晶系的Si衬底上生长,而Si衬底由于其 面积大、质量高、价格低,可与Si的平面工艺相兼容,所以后 续PECVD制备的SiC薄膜主要是β-SiC薄膜。
四、SiC的晶体的应用前景
由于SiC具有上述众多优异的物理化学性质,不仅能够 作为一种良好的高温结构材料,也是一种理想的高温半导 体材料。近20年,伴随薄膜制备技术的高速发展,SiC薄 膜已经被广泛应用于保护涂层、光致发光、场效应晶体管、 薄膜发光二极管以及非晶Si太阳能电池的窗口材料等。另
(2)化学气象沉积法
利用化学气相沉积法制备碳化硅材料具有很多突出的优点,
如可以用高纯度的气体反应得到高纯度的单晶体,并且生长速
度可以通过调节反应温度和气氛成分比例而得到控制。由CVD 法制取SiC薄膜的反应组分可以多种多样,但大致可以分为三类: (1)硅化物(常常是SiH4 (硅烷)和碳氢(或氟)化物,如CH4 (甲烷)、C2H4 (乙烯)、C3H8 (丙烷)、CF4(四氟化碳)等,以及
格取向完全一致;碳化可以减小SiC和衬底Si之间的晶格失
配、释放应力、引入成核中心,
有利于薄膜单晶质量的提高。分子束外延的优点是: 使用的衬底温度低,膜层生长速率慢,束流强度易于 精确控制,膜层组分和掺杂浓度可随源的变化而迅速 调整。用这种技术已能制备薄到几十个原子层的单晶 薄膜,以及交替生长不同组分、不同掺杂的薄膜而形 成的超薄层量子阱微结构材料。
着SiC体材料的生长和外延技术的成熟,各种SiC器件将会相继
出现。目前,SiC器件的研究主要以分立器件为主,仍处于以 开发为主、生产为辅的阶段。
GaN(氮化镓)、金刚石等)的衬底和X射线的掩膜等。而且,
β-SiC薄膜能在同属立方晶系的Si衬底上生长,而Si衬底由于其 面积大、质量高、价格低,可与Si的平面工艺相兼容,所以后 续PECVD制备的SiC薄膜主要是β-SiC薄膜。
四、SiC的晶体的应用前景
由于SiC具有上述众多优异的物理化学性质,不仅能够 作为一种良好的高温结构材料,也是一种理想的高温半导 体材料。近20年,伴随薄膜制备技术的高速发展,SiC薄 膜已经被广泛应用于保护涂层、光致发光、场效应晶体管、 薄膜发光二极管以及非晶Si太阳能电池的窗口材料等。另
(2)化学气象沉积法
利用化学气相沉积法制备碳化硅材料具有很多突出的优点,
如可以用高纯度的气体反应得到高纯度的单晶体,并且生长速
度可以通过调节反应温度和气氛成分比例而得到控制。由CVD 法制取SiC薄膜的反应组分可以多种多样,但大致可以分为三类: (1)硅化物(常常是SiH4 (硅烷)和碳氢(或氟)化物,如CH4 (甲烷)、C2H4 (乙烯)、C3H8 (丙烷)、CF4(四氟化碳)等,以及
格取向完全一致;碳化可以减小SiC和衬底Si之间的晶格失
配、释放应力、引入成核中心,
有利于薄膜单晶质量的提高。分子束外延的优点是: 使用的衬底温度低,膜层生长速率慢,束流强度易于 精确控制,膜层组分和掺杂浓度可随源的变化而迅速 调整。用这种技术已能制备薄到几十个原子层的单晶 薄膜,以及交替生长不同组分、不同掺杂的薄膜而形 成的超薄层量子阱微结构材料。
无机纳米抗菌剂PPT课件
![无机纳米抗菌剂PPT课件](https://img.taocdn.com/s3/m/e20fa759ba1aa8114531d935.png)
抗菌剂
抗菌剂是指能够在一定时间内,使某 些微生物(细菌、真菌、酵母菌、藻 类及病毒等)的生长或繁殖保持在必 要水平以下的化学物质
抗菌剂是具有抑菌和杀菌性能的物质 或产品。
抗菌剂分类
抗菌剂一般分为: 无机抗菌剂 有机抗菌剂 天然抗菌剂。
一、无机抗菌剂
金属系
光催化系
塑料制品
耐热性
持久性
广谱性
不产生耐药性 安全性
无机抗菌材料应用于日常生活用品中可 有效抑制细菌滋生,维护人类健康
预防为主
金属离子作用机理
接触反应抗菌机理:银离子接触反应, 造成微生物共有成分破坏或产生功能障碍。 当微量的银离子到达微生物细胞膜时,因 后者带负电荷,依靠库仑引力,使两者牢 固吸附,银离于穿透细胞壁进入胞内,并 与SH基反应,使蛋白质凝固,破坏细胞合 成酶的活性,细胞丧失分裂增殖能力而死 亡。银离子还能破坏微生物电子传输系统、 呼吸系统和物质传输系统。
氧化物
一、无机抗菌剂
金属系:
利用银、铜、锌等金属的抗菌能力, 通过物理吸附、离子交换等方法,将银、 铜、锌等金属(或其离子)固定在沸石、 硅胶等多孔材料的表面制成抗菌剂,然后 将其加入到相应的制品中即获得具有抗菌 能力的材料。
抗菌金属的杀菌能力:
Ag≧Hg ≧ Co≧Ni﹥Zn≧Cu=Fe﹥Mn﹥Mg
Ag系抗菌材料应用历史悠久,对于细菌、病 毒和真核微生物等均具有较好杀灭效果。具 有对人体细胞的低毒性、高的稳定性和低挥 发性等优点。
汞、镉、铅等金属也具有抗菌能力, 但对人体有害;铜、镍、钴等离子带有颜 色,将影响产品的美观,锌有一定的抗菌 性,但其抗菌强度仅为银离子的1/1000 。
《纳米材料》PPT课件 (2)
![《纳米材料》PPT课件 (2)](https://img.taocdn.com/s3/m/263fa9d8960590c69ec37672.png)
• 纳米半导体微粒存在不连续最高被 占分子轨道能级和最低未被占分子 轨道导致能隙带变宽(画图说明)
34
Quantum siБайду номын сангаасe effect
Bulk Metal
Nanoscale metal
Unoccupied states
Decreasing the size…
occupied states
Close lying bands
21
纳米材料的独特效应
※小尺寸效应 ※表面效应和边界效应 ※量子尺寸效应 ※宏观隧道效应
22
小尺寸效应
• 当超细微粒的尺寸和光波波长,传 导电子的德布罗意波长,超导态的 相干长度或者透射深度等物理尺寸 相当或者比它们更小时,一般固体 材料的周期性边界条件被破坏,声 光电磁,热力学等特性均会呈现新 的尺寸效应
纳米科技。
1
神奇的纳米材料
走近纳米材料.rm
2
纳米材料的发展过程
• 1959年Feynman提出许多设想:在原子或分子的 尺度上加工制造材料和器件,制造几千百纳米的 电路和10~100纳米的导线。
• 1962年Kubo理论提出:金属的超微粒子将出现量 子效应,显示出与块体金属显著不同的性能。
• 1969年Esaki和Tsu提出了超晶格的概念。
15
碳纳米管
由石墨的片状结构上运 用激光手段剥离下来 ,形成的石墨烯卷成 的无缝中空管体
直径虽只有头发丝的十 万分之一,可是导电 性为铜的一万倍。强 度是钢的100倍,质量 却只有其七分之一。 硬似金刚石,却可以 拉伸
16
超晶格材料
• 由两种不同组元以几个纳米至几十个纳米 的薄层交替生长。并保持严格周期性的多 层膜
34
Quantum siБайду номын сангаасe effect
Bulk Metal
Nanoscale metal
Unoccupied states
Decreasing the size…
occupied states
Close lying bands
21
纳米材料的独特效应
※小尺寸效应 ※表面效应和边界效应 ※量子尺寸效应 ※宏观隧道效应
22
小尺寸效应
• 当超细微粒的尺寸和光波波长,传 导电子的德布罗意波长,超导态的 相干长度或者透射深度等物理尺寸 相当或者比它们更小时,一般固体 材料的周期性边界条件被破坏,声 光电磁,热力学等特性均会呈现新 的尺寸效应
纳米科技。
1
神奇的纳米材料
走近纳米材料.rm
2
纳米材料的发展过程
• 1959年Feynman提出许多设想:在原子或分子的 尺度上加工制造材料和器件,制造几千百纳米的 电路和10~100纳米的导线。
• 1962年Kubo理论提出:金属的超微粒子将出现量 子效应,显示出与块体金属显著不同的性能。
• 1969年Esaki和Tsu提出了超晶格的概念。
15
碳纳米管
由石墨的片状结构上运 用激光手段剥离下来 ,形成的石墨烯卷成 的无缝中空管体
直径虽只有头发丝的十 万分之一,可是导电 性为铜的一万倍。强 度是钢的100倍,质量 却只有其七分之一。 硬似金刚石,却可以 拉伸
16
超晶格材料
• 由两种不同组元以几个纳米至几十个纳米 的薄层交替生长。并保持严格周期性的多 层膜
纳米材料的制备方法及其应用ppt课件
![纳米材料的制备方法及其应用ppt课件](https://img.taocdn.com/s3/m/06b12149cd1755270722192e453610661ed95acb.png)
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
(7)电阻加热法
图 电阻加热制备纳米微粒的实验装置图
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
(6)电子束照射法
是利用高能电子束照射母材(一般为金属氧化 物如Al2O3 等),表层的金属-氧(如Al-O键)被高 能电子“切断”,蒸发的金属原子通过瞬间 冷凝、成核、长大,最后形成纳米金属(如Al) 粉末。 ❖ 目前该方法仅限于获得纳米金属粉末。
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
1、沉淀法
它是将沉淀剂(OH-、CO32-、SO42-等)加入到金 属盐溶液中进行沉淀处理,再将沉淀物过滤、干燥、 煅烧,就制得纳米级化合物粉末,是典型的液相法。 主要用于制备纳米级金属氧化物粉末。它又包括均相
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
热蒸镀法制备的纳米Si粒子 在GaSb基板以自组成法制成的粒子
严 格 执 行 突 发事件 上报制 度、校 外活动 报批制 度等相 关规章 制度。 做到及 时发现 、制止 、汇报 并处理 各类违 纪行为 或突发 事件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机纳米材料
1基本概念 2纳米氧化物的制备 3纳米复合氧化物的制备 4其他无机纳米材料
第一章 纳米材料的基本概念
定义及结构特点:
纳米材料是指在三维空间中至少有一维处于 纳米尺度范围(1-100nm)或由它们作为基本单 元构成的材料的单晶体或多晶体,由于晶粒 细小,使其晶界上的原子数多于晶粒内部, 产生高浓度的晶界,使纳米材料有许多不同 于一半粗晶材料的性能,如强度和硬度增大, 低密度,高电阻,低热导率
纳米氧化锌
纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种 面向21世纪的新型高功能精细无机产品,表现出许 多特殊的性质,如非迁移性、荧光性、压电性、吸 收和散射紫外线能力等,利用其在光、电、磁、敏 感等方面的奇妙性能,可制造气体传感器、荧光体、 变阻器、紫外线遮蔽材料、图像记录材料、压电材 料、压敏电阻、高效催化剂、磁性材料和塑料薄膜 等。
超细碳酸钙结晶生长成核机理
几个关于超细碳酸钙结晶生长成核机理 结晶接触成核速率是溶液过饱和度和接触能的函数,
通常,电解质稀溶液的结晶生长速率与粒子浓度成 抛物线函数关系。 C是a在CO晶3面结的晶中生心长,发一生个在是结在晶晶表面面的的边两缘个。部位:一个 C中核化方Caa瞬吸反解(CO时附应石OH3形 在 的 型)粒2悬成 进CC子aa浮过 行。CC液饱 ,OO33吸和线颗粒收度性粒子C使中表生O间C面长2形a体形并C成中O成形C3C线成大aaC性一量(OO中定地H3的)间粒均2逐过体度相渐程,和成溶,随形核解溶着貌。,液碳的晶
粒子小,比表面积急遽变化增大,表面原子数 增多,表面能高,原子配位不足,使得表面原 子具有高活性,不稳定,易结合。(书17页, 图1.21,1.22)
体积效应
纳米材料由有限个原子或分子组成,改变了 由无数个原子或分子组成的集体属性,物质 本身性质也发生了变化,这种由体积改变引 起的效应称为体积效应。
锂离子电池正极活性材料 例如:LiCoO2、 LiNiO2、 LiMnO2、LiV3O8
等。 LiCoO2充电过程Li+从复合氧化物中脱出,嵌
入负极材料中;放电过程与之相反。当其中 Li+的浓度在一定范围变化时,由于过渡金属 的多价性,不会影响化合物结构与形貌的变 化。
纳米稀土复合氧化物 及其他纳米复合氧化物
纳米材料结构范围(零维-三维 )
纳米材料的特性
表面效应 体积效应 量子尺寸效应(小尺寸效应) 宏观量子隧道效应
表面效应
固体表面原子和内部原子多处环境不同,当粒 子直径比原子直径大时,表面能可以忽略,当 粒子直径逐渐接近原子直径时,表面原子的数 目及作用不能忽略,这时粒子的比表面积、表 面能、表面结合能都发生很大的变化。把由此 引起的种种特殊效应称为表面效应。
光学性质
宽频带强吸收(纳米微粒几乎都呈现黑色) 蓝移:量子尺寸效应 表面效应 红移:比表面大,界面存在大量缺陷
化学性质
化学活性高 纳米材料比表面积大,界面原子 数多,界面原子区域原子扩散系数高,原子 配位不饱和性,使得纳米材料具有较高的化 学活性,
例如CuEr的合成,催化剂催化效率提高、化 学反应性提高等
细晶强化效应 材料硬度和强度随着晶粒尺寸 的减小而增大,导电性改变。
宏观量子隧道效应
宏观量子隧道效应是基本的量子现象之一, 即当微观粒子的总能量小于势垒高度时,该 粒子仍能穿越这一势垒。近年来,人们发现 一些宏观量,例如微颗粒的磁化强度,量子 相干器件中的磁通量等亦有隧道效应,称为 宏观的量子隧道效应。
纳米铁酸盐
是一类以Fe氧化物为主要成分的纳米复合物。 磁性质(10mn以下显示超顺磁性) 吸波特性 催化特性
纳米二氧化钛复合氧化物
光催化剂:TiO2复合氧化物较单一级纯TiO2 有较高的光催化活性。( TiO2╱SnO2)
紫外吸收剂 其他用途(光过滤等)
纳米锂复合氧化物
晶粒减小到纳米级,材料的强度和硬度比粗 晶材料提高4-5倍。(Cu样品硬度)
电学性能
晶界上原子体积分数增加,纳米材料的电阻 高于同类粗晶材料。(书24页,表)
纳米材料在磁场中材料电阻减小的现象十分 明显。磁场中粗晶电阻仅下降1%-2%,纳米材 料可达50%-80%,这个性质很重要。
磁学性质
纳米材料的性能
力学性能 电学性能 磁学性能 热学性能 光学性能 化学性能
力学性能
纳米结构材料力学性质的重要因素:晶界结 构、晶界滑移、位错运动。
纳米材料晶界原子间隙的增加,使其杨氏模 量减小,硬度提高。(杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉 或抗压的物理量,在物体的弹性限度内,应力 与应变成正比,比值被称为材料的杨氏模量 )
高温高压下一些氢氧化物在水中的溶解度大 于对应的氧化物在水中的溶解度,氢氧化物 溶于水中同时析出氧化物。
它的优点:所的产物纯度高,分散性好、粒 度易控制。
微乳液法
热力学稳定分散的、各向同性、外观透明或 者半透明的不互溶液体组成的宏观均一而微 观不均一的液体混合物。
可有效控制微粒粒度和形态,但单次制备数 量有限,不易回收利用
其他纳米氧化物的制备
用于CO╱CO2 +H2 反应的超细CuOZnO-SiO2 ?
第三章 纳米复合氧化物制备应用
纳米复合氧化物制备 共沉淀法,溶胶凝胶法,水热法,微乳液法,喷雾 法,固相法
纳米复合氧化物的应用 纳米铁酸盐,纳米二氧化钛复合氧化物,纳米锂复 合物,纳米稀土复合物等
共沉淀法
纳米稀土复合氧化物做荧光材料 溶胶凝胶法制备镧-钼复合氧化物超细微粒
催化剂(对苯甲醛的选择性)
其他无机纳米材料
纳米SiC的制备:固-固法,固-液法
应用:制备复合陶瓷(书,141)
纳米CaCO3的制备与应用
纳米SiC的制备与应用
word
纳米CaCO3的制备与应用
1: CaCO3的分类
直接沉淀法 在金属盐溶液中加入沉淀剂,在一定条件下生成沉
淀析出,沉淀经洗涤、热分解等处理工艺后得到超 细产物。不同的沉淀剂可以得到不同的沉淀产物, 常(N见H4的)2沉CO淀3、剂为(N:H4N)2HC32•OH24O等、。NaOH 、 Na2CO3、 直接沉淀法操作简单易行,对设备技术要求不高, 不易引入杂质,产品纯度很高,有良好的化学计量 性,成本较低。缺点是洗涤原溶液中的阴离子较难, 得到的粒子粒经分布较宽,分散性较差。 PbTiO3的制备 (H2O2、 NH3•H2O、H2TiO3、Pb(NO)3)
纳米粒子尺寸小到一定临界值时,进入超顺 磁状态。
从单畴颗粒集合体看,不同颗粒的磁矩取向 每时每刻都在变换方向,这种磁性的特点和 正常顺磁性的情况很相似,但是也不尽相同。 因为在正常顺磁体中,每个原子或离子的磁 矩只有几个玻尔磁子,但是对于直径5nm的 特定球形颗粒集合体而言,每个颗粒可能包 含了5000个以上的原子,颗粒的总磁矩有可 能大于10000个玻尔磁子。所以把单畴颗粒 集合体的这种磁性称为超顺磁性
第二章 纳米氧化物的制备
气相法: 物理气相沉积
ቤተ መጻሕፍቲ ባይዱ
化学气相沉积 气相氧化法
气相热解法
气相水解法
液相法:直接沉淀法、均匀沉淀法、溶胶凝胶法、 有机配合物前驱法、水热合成法、微乳液法
固相法:
气相法
气相氧化法: 金属单质或金属化合物+氧气→金属氧化物蒸
汽→纳米粒子(Zn) 气相热解法:(高温反应区) 气体反应物→高温分解成氧化物 气相热解法:
隧道效应将会是未来电子器件的基础,或者 它确立了现存微电子器件进一步微型化的极 限。当电子器件进一步细微化时,必须要考 虑上述的量子效应。
上述效应使得纳米粒子具有与粗晶不同的性 质。
例如:金属为导体,但纳米金属微粒在低温 下由于量子尺寸效应会呈现出绝缘性。
又如:金属大多数情况下由于光反射而呈现 出各种美丽的特征颜色,但金属纳米粒子的 光反射能力显著下降,通常可低于1%,
纳米材料随着晶粒尺寸的减小,样品的磁有 序状态将发生改变。粗晶状态下为铁磁性的 的材料,当颗粒尺寸小于某一临界值时,矫 顽力趋向于0,转变为超顺磁状态。
这是由于纳米材料中晶粒取向是无规则的, 因此,各个晶粒的磁距也是混乱排列的,当 小晶粒的磁各向异性能减小到与热运动能基 本相等时,磁化方向就不再固定在一个易磁 化方向而作无规律变化,结果导致超顺磁性 的出现。
例如氧化锆的制备(书42,氢氧化锆+正丁醇)
纳米氧化物
纳米二氧化硅 纳米二氧化钛 纳米氧化锌 纳米稀土氧化物 其他纳米氧化物的制备
纳米二氧化硅
纳米二氧化硅是极其重要的高科技超微细无机新 材料之一,因其粒径很小,比表面积大,表面吸附 力强,表面能大,化学纯度高、分散性能好、热 阻、电阻等方面具有特异的性能,以其优越的稳 定性、补强性、增稠性和触变性,在众多学科及 领域内独具特性,有着不可取代的作用。纳米二 氧化硅俗称“超微细白炭黑”,广泛用于各行业 作为添加剂、催化剂载体,石油化工,脱色剂, 消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂, 金属软性磨光剂,绝缘绝热填充剂,高级日用化 妆品填料及喷涂材料、医药、环保等各种领域。
液相法
溶胶凝胶法 以有机或者无机盐为原料,在有机介质中进
行水解、缩聚反应,使溶液经溶胶凝胶化得 到凝胶,凝胶经加热或冷冻干燥,烧制得产 品。但须煅烧,后处理麻烦 。(例,书39, Fe2O3)
水热合成法
水热合成是指温度为100~1000 ℃、压力为 1MPa~1GPa 条件下利用水溶液中物质化学 反应所进行的合成。
如:金属纳米微粒与金属块体材料的性质不 同。
量子尺寸效应(小尺寸效应)
1基本概念 2纳米氧化物的制备 3纳米复合氧化物的制备 4其他无机纳米材料
第一章 纳米材料的基本概念
定义及结构特点:
纳米材料是指在三维空间中至少有一维处于 纳米尺度范围(1-100nm)或由它们作为基本单 元构成的材料的单晶体或多晶体,由于晶粒 细小,使其晶界上的原子数多于晶粒内部, 产生高浓度的晶界,使纳米材料有许多不同 于一半粗晶材料的性能,如强度和硬度增大, 低密度,高电阻,低热导率
纳米氧化锌
纳米氧化锌(ZnO)粒径介于1-100 nm之间,是一种 面向21世纪的新型高功能精细无机产品,表现出许 多特殊的性质,如非迁移性、荧光性、压电性、吸 收和散射紫外线能力等,利用其在光、电、磁、敏 感等方面的奇妙性能,可制造气体传感器、荧光体、 变阻器、紫外线遮蔽材料、图像记录材料、压电材 料、压敏电阻、高效催化剂、磁性材料和塑料薄膜 等。
超细碳酸钙结晶生长成核机理
几个关于超细碳酸钙结晶生长成核机理 结晶接触成核速率是溶液过饱和度和接触能的函数,
通常,电解质稀溶液的结晶生长速率与粒子浓度成 抛物线函数关系。 C是a在CO晶3面结的晶中生心长,发一生个在是结在晶晶表面面的的边两缘个。部位:一个 C中核化方Caa瞬吸反解(CO时附应石OH3形 在 的 型)粒2悬成 进CC子aa浮过 行。CC液饱 ,OO33吸和线颗粒收度性粒子C使中表生O间C面长2形a体形并C成中O成形C3C线成大aaC性一量(OO中定地H3的)间粒均2逐过体度相渐程,和成溶,随形核解溶着貌。,液碳的晶
粒子小,比表面积急遽变化增大,表面原子数 增多,表面能高,原子配位不足,使得表面原 子具有高活性,不稳定,易结合。(书17页, 图1.21,1.22)
体积效应
纳米材料由有限个原子或分子组成,改变了 由无数个原子或分子组成的集体属性,物质 本身性质也发生了变化,这种由体积改变引 起的效应称为体积效应。
锂离子电池正极活性材料 例如:LiCoO2、 LiNiO2、 LiMnO2、LiV3O8
等。 LiCoO2充电过程Li+从复合氧化物中脱出,嵌
入负极材料中;放电过程与之相反。当其中 Li+的浓度在一定范围变化时,由于过渡金属 的多价性,不会影响化合物结构与形貌的变 化。
纳米稀土复合氧化物 及其他纳米复合氧化物
纳米材料结构范围(零维-三维 )
纳米材料的特性
表面效应 体积效应 量子尺寸效应(小尺寸效应) 宏观量子隧道效应
表面效应
固体表面原子和内部原子多处环境不同,当粒 子直径比原子直径大时,表面能可以忽略,当 粒子直径逐渐接近原子直径时,表面原子的数 目及作用不能忽略,这时粒子的比表面积、表 面能、表面结合能都发生很大的变化。把由此 引起的种种特殊效应称为表面效应。
光学性质
宽频带强吸收(纳米微粒几乎都呈现黑色) 蓝移:量子尺寸效应 表面效应 红移:比表面大,界面存在大量缺陷
化学性质
化学活性高 纳米材料比表面积大,界面原子 数多,界面原子区域原子扩散系数高,原子 配位不饱和性,使得纳米材料具有较高的化 学活性,
例如CuEr的合成,催化剂催化效率提高、化 学反应性提高等
细晶强化效应 材料硬度和强度随着晶粒尺寸 的减小而增大,导电性改变。
宏观量子隧道效应
宏观量子隧道效应是基本的量子现象之一, 即当微观粒子的总能量小于势垒高度时,该 粒子仍能穿越这一势垒。近年来,人们发现 一些宏观量,例如微颗粒的磁化强度,量子 相干器件中的磁通量等亦有隧道效应,称为 宏观的量子隧道效应。
纳米铁酸盐
是一类以Fe氧化物为主要成分的纳米复合物。 磁性质(10mn以下显示超顺磁性) 吸波特性 催化特性
纳米二氧化钛复合氧化物
光催化剂:TiO2复合氧化物较单一级纯TiO2 有较高的光催化活性。( TiO2╱SnO2)
紫外吸收剂 其他用途(光过滤等)
纳米锂复合氧化物
晶粒减小到纳米级,材料的强度和硬度比粗 晶材料提高4-5倍。(Cu样品硬度)
电学性能
晶界上原子体积分数增加,纳米材料的电阻 高于同类粗晶材料。(书24页,表)
纳米材料在磁场中材料电阻减小的现象十分 明显。磁场中粗晶电阻仅下降1%-2%,纳米材 料可达50%-80%,这个性质很重要。
磁学性质
纳米材料的性能
力学性能 电学性能 磁学性能 热学性能 光学性能 化学性能
力学性能
纳米结构材料力学性质的重要因素:晶界结 构、晶界滑移、位错运动。
纳米材料晶界原子间隙的增加,使其杨氏模 量减小,硬度提高。(杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉 或抗压的物理量,在物体的弹性限度内,应力 与应变成正比,比值被称为材料的杨氏模量 )
高温高压下一些氢氧化物在水中的溶解度大 于对应的氧化物在水中的溶解度,氢氧化物 溶于水中同时析出氧化物。
它的优点:所的产物纯度高,分散性好、粒 度易控制。
微乳液法
热力学稳定分散的、各向同性、外观透明或 者半透明的不互溶液体组成的宏观均一而微 观不均一的液体混合物。
可有效控制微粒粒度和形态,但单次制备数 量有限,不易回收利用
其他纳米氧化物的制备
用于CO╱CO2 +H2 反应的超细CuOZnO-SiO2 ?
第三章 纳米复合氧化物制备应用
纳米复合氧化物制备 共沉淀法,溶胶凝胶法,水热法,微乳液法,喷雾 法,固相法
纳米复合氧化物的应用 纳米铁酸盐,纳米二氧化钛复合氧化物,纳米锂复 合物,纳米稀土复合物等
共沉淀法
纳米稀土复合氧化物做荧光材料 溶胶凝胶法制备镧-钼复合氧化物超细微粒
催化剂(对苯甲醛的选择性)
其他无机纳米材料
纳米SiC的制备:固-固法,固-液法
应用:制备复合陶瓷(书,141)
纳米CaCO3的制备与应用
纳米SiC的制备与应用
word
纳米CaCO3的制备与应用
1: CaCO3的分类
直接沉淀法 在金属盐溶液中加入沉淀剂,在一定条件下生成沉
淀析出,沉淀经洗涤、热分解等处理工艺后得到超 细产物。不同的沉淀剂可以得到不同的沉淀产物, 常(N见H4的)2沉CO淀3、剂为(N:H4N)2HC32•OH24O等、。NaOH 、 Na2CO3、 直接沉淀法操作简单易行,对设备技术要求不高, 不易引入杂质,产品纯度很高,有良好的化学计量 性,成本较低。缺点是洗涤原溶液中的阴离子较难, 得到的粒子粒经分布较宽,分散性较差。 PbTiO3的制备 (H2O2、 NH3•H2O、H2TiO3、Pb(NO)3)
纳米粒子尺寸小到一定临界值时,进入超顺 磁状态。
从单畴颗粒集合体看,不同颗粒的磁矩取向 每时每刻都在变换方向,这种磁性的特点和 正常顺磁性的情况很相似,但是也不尽相同。 因为在正常顺磁体中,每个原子或离子的磁 矩只有几个玻尔磁子,但是对于直径5nm的 特定球形颗粒集合体而言,每个颗粒可能包 含了5000个以上的原子,颗粒的总磁矩有可 能大于10000个玻尔磁子。所以把单畴颗粒 集合体的这种磁性称为超顺磁性
第二章 纳米氧化物的制备
气相法: 物理气相沉积
ቤተ መጻሕፍቲ ባይዱ
化学气相沉积 气相氧化法
气相热解法
气相水解法
液相法:直接沉淀法、均匀沉淀法、溶胶凝胶法、 有机配合物前驱法、水热合成法、微乳液法
固相法:
气相法
气相氧化法: 金属单质或金属化合物+氧气→金属氧化物蒸
汽→纳米粒子(Zn) 气相热解法:(高温反应区) 气体反应物→高温分解成氧化物 气相热解法:
隧道效应将会是未来电子器件的基础,或者 它确立了现存微电子器件进一步微型化的极 限。当电子器件进一步细微化时,必须要考 虑上述的量子效应。
上述效应使得纳米粒子具有与粗晶不同的性 质。
例如:金属为导体,但纳米金属微粒在低温 下由于量子尺寸效应会呈现出绝缘性。
又如:金属大多数情况下由于光反射而呈现 出各种美丽的特征颜色,但金属纳米粒子的 光反射能力显著下降,通常可低于1%,
纳米材料随着晶粒尺寸的减小,样品的磁有 序状态将发生改变。粗晶状态下为铁磁性的 的材料,当颗粒尺寸小于某一临界值时,矫 顽力趋向于0,转变为超顺磁状态。
这是由于纳米材料中晶粒取向是无规则的, 因此,各个晶粒的磁距也是混乱排列的,当 小晶粒的磁各向异性能减小到与热运动能基 本相等时,磁化方向就不再固定在一个易磁 化方向而作无规律变化,结果导致超顺磁性 的出现。
例如氧化锆的制备(书42,氢氧化锆+正丁醇)
纳米氧化物
纳米二氧化硅 纳米二氧化钛 纳米氧化锌 纳米稀土氧化物 其他纳米氧化物的制备
纳米二氧化硅
纳米二氧化硅是极其重要的高科技超微细无机新 材料之一,因其粒径很小,比表面积大,表面吸附 力强,表面能大,化学纯度高、分散性能好、热 阻、电阻等方面具有特异的性能,以其优越的稳 定性、补强性、增稠性和触变性,在众多学科及 领域内独具特性,有着不可取代的作用。纳米二 氧化硅俗称“超微细白炭黑”,广泛用于各行业 作为添加剂、催化剂载体,石油化工,脱色剂, 消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂, 金属软性磨光剂,绝缘绝热填充剂,高级日用化 妆品填料及喷涂材料、医药、环保等各种领域。
液相法
溶胶凝胶法 以有机或者无机盐为原料,在有机介质中进
行水解、缩聚反应,使溶液经溶胶凝胶化得 到凝胶,凝胶经加热或冷冻干燥,烧制得产 品。但须煅烧,后处理麻烦 。(例,书39, Fe2O3)
水热合成法
水热合成是指温度为100~1000 ℃、压力为 1MPa~1GPa 条件下利用水溶液中物质化学 反应所进行的合成。
如:金属纳米微粒与金属块体材料的性质不 同。
量子尺寸效应(小尺寸效应)