北航自控实验四报告

合集下载

北航自动控制系统原理实验资料报告材料1-4合集

北航自动控制系统原理实验资料报告材料1-4合集

自动控制原理实验报告实验一二阶系统的电子模拟及时域响应的动态测试实验二频率响应测试实验三控制系统串联校正实验四控制系统数字仿真:学号:单位:仪器科学与光电工程学院日期:2013年12月27日实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、实验容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1- 1所示:图1- 1由图1-1得在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:0.25、0.5、12.二阶系统:其传递函数为:令=1弧度/秒,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取R2C1=1 ,R3C2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1四、实验步骤1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;2. 将系统输入端与D/A1相连,将系统输出端与A/D1相;3. 检查线路正确后,模拟机可通电;4. 双击桌面的“自控原理实验”图标后进入实验软件系统。

5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。

6. 单击“确定”,进行实验。

完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。

五、实验设备HHMN-1电子模拟机一台、PC机一台、数字式万用表一块六、实验数据T 0.25 0.5 1R2 250K 500K 1MC 1μF 1μF 1μFTs理论0.75s 1.5s 3.0sTs实测0.763s 1.543s 3.072sTs误差 1.73% 2.87% 2.40%响应图形图1 图2 图3图2图3ζ0.25 0.5 1 R4 2M 1M 500K C2 1μF 1μF 1μF σ%理论33.08% 16.48% 0 σ%实测33.89% 16.79% 0 σ%误差 2.45% 1.88% 0 Ts理论8.643s 5.307s 4.724s Ts实测8.752s 5.398s 4.808s Ts误差 1.26% 1.71% 1.78% 响应曲线图4 图5 图6图5图6七、误差分析1. 电阻的标称值和实际值有误差。

智能控制实验报告-北航研究生课程-机械臂回零+神经网络+模糊控制

智能控制实验报告-北航研究生课程-机械臂回零+神经网络+模糊控制

成绩智能控制实验实验报告院(系)名称专业名称学生学号学生姓名2016年11月28日实验一机械臂运动控制及基本操作一、实验准备1、描述机械臂坐标空间的定义机械臂通常有两种坐标空间:关节坐标空间和直角坐标空间。

关节坐标空间定义:机械臂的空间坐标直接由各个关节的坐标来确定,所有关节变量构成一个关节矢量。

所有关节矢量构成的空间称为关节坐标空间。

因此关节坐标空间运动运动就是直接操作各个关节的运动来完成机械臂的运动。

下图是关节坐标空间的定义。

图1 机械臂关节坐标空间直角坐标空间定义:机械臂末端的位置和方位通常是在直角坐标空间中描述。

当进行机械臂操作任务时,通常采用直角坐标空间更为直观和方便。

下图是直角坐标空间的定义。

图2 机械臂直角坐标空间2、机械臂各轴的最大运动范围、最大运动速度、最大展开半径都是多少?并把最大运动范围各量换算为对应的脉冲数(写出转换公式)。

以上参数查看技术手册可得:最大运动范围:关节 1 0 -200 度关节 2 0 -100 度关节 3 0 -100 mm关节 4 0 -360 度最大运动速度:关节 1 1.57 rad/s关节 2 3.14 rad/s关节 3 10 mm /s关节 43.14 rad/s最大展开半径:396mm将最大运动范围各量换算为对应的脉冲数如下:增量式编码器为2500P/r,即电机每转一圈为2500个脉冲,GT400-SG运动控制卡有4倍频,故下发10000个脉冲电机转动一周。

脉冲数=关节转动角度*(编码器每转对应脉冲**4倍频)*减速器倍率/360 脉冲数=关节移动距离*(编码器每转对应脉冲**4倍频)*减速器倍率/导程1关节的谐波齿轮减速器比率为100:1;关节2的谐波齿轮减速器比率为99:1,关节3减速比为1.1175,关节4减速比为800。

关节1、关节2、关节4分别转动200、100、360度所对应的脉冲数为:Pulse1=200*10000*100/360=555555.56Pulse2=100*10000*99/360=275000Pulse4=360*10000*800/360=8000000关节3下移100mm对应的脉冲数为:Pulse3=100* 10000* 1.1175/2. 5=4470003、 为什么要进行机器人回零?如何通过机械臂标定框进行回零校正?对进行机械臂进行回零的原因:因为机器人测量关节的编码器是增量式而不是绝对式的,因此在每次调用程序时首先必须进行机器人回零。

北航自动化学院计算机控制系统实验报告

北航自动化学院计算机控制系统实验报告

2011- 2012 学年 第二学期计算机控制实验报告班级 姓名392311 李 柏学院 学号高等工程3903· 24152012 年 6 月 12 日实验 1 模拟式小功率随动系统的实验调试一、实验目的1.熟悉反馈控制系统的结构和工作原理,进一步了解位置随动系统的特点。

2. 掌握判别闭环系统的反馈极性的方法。

3.了解开环放大倍数对稳定性的影响及对系统动态特性的影响,对静态误差的影响。

二、实验仪器XSJ-3 小功率直流随动系统学习机一台 DH1718 双路直流稳压电源一台 4 1/2 数字多用表一台三、 实验原理模拟式小功率随动系统结构如图 2-3 所示 调试步骤如下: 零位调整:为了保证精度,同时判断运放是否好用,在连接成闭环系统之前进行零位的调整。

首先,把三个运放负相端输入 电阻接地,并使其增益为 1(利用电阻调整) ,再利用运放上方的调零旋钮,使输出端输出为 0;然后将电位计两端接上±10V 电压后,用数字电压表测其电刷输出,旋转之,使其电刷输出为 0,并同时调整刻度盘零点于 0 点。

开环工作状态:断开反馈电为计,加入给定电压,使电压从小到大,当信号大时,电机转速高,信号反极性时,电机反转。

反馈极性判断。

首先判断测速机反馈极性。

在一级运放处加一电压(正或负) ,记住电机转向,然后断开输入,用手旋转电 机按同一转向转动,测量测速机输出电压,如与前电机所加电压极性相同,则可将该信号接入运放二的负端;否则应把测速 机输出极性倒置, 即把另一信号接入运放二的负相端。

其次判断位置反馈极性。

将回路接成开环状态, 给电机加入一正电压, 可使其转动,然后使电机回零,顺着电机刚才转动的方向转一小角度(不可转到非线性区) ,同时用数字电压表测电位计电 刷的输出电压,倘若其值为负,则表明此时是负反馈,否则,需把电位计两端±10V 接线头对调,以保证闭环系统是负反馈。

检验系统跟随情况:按图 2-2 连线,逐渐加大电压,察看输出角度是否也同时增加(绝对量值) ,如跟随则系统跟随情况良 好。

自控实验报告实验总结

自控实验报告实验总结

一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。

为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。

本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。

二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。

三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。

通过改变电路参数,分析了参数对系统性能的影响。

2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。

3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。

4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。

四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。

在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。

在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。

在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。

2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。

在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。

3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。

通过调整校正装置的参数,可以使系统达到期望的性能指标。

4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。

北航自动控制实验报告

北航自动控制实验报告

自动控制原理实验报告2013年12月7日班级:学号:姓名:目录实验一一、二阶系统的电子模拟及时域响应的动态测试 (3)一、实验目的 (3)二、实验内容 (3)三、实验原理 (3)四、实验设备 (5)五、实验步骤 (5)六、实验结果 (5)七、实验结论 (10)实验二频率响应测试 (11)一、实验目的 (11)二、实验内容 (11)三、实验原理 (12)四、实验设备 (12)五、实验步骤 (12)六、数据记录 (13)七、数据处理 (16)八、误差分析和实验结论 (17)九、实验结论 (17)实验三控制系统串联校正 (18)一、实验目的 (18)二、实验内容 (18)三、实验设备 (18)四、实验步骤 (18)五、设计过程 (19)六、数据记录 (20)七、数据分析 (24)实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2.立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1-1所示:图1-1由图得:在实验当中始终取, 则,取不同的时间常数T分别为:0.25、0.5、1。

记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时ts。

(取 误差带)2.二阶系统:其传递函数为:=令,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取,,则及取不同的值, , ,观察并记录阶跃响应曲线,测量超调量σ%(取 误差带),计算过渡过程时间Ts。

四、实验设备1.HHMN-1型电子模拟机一台。

2.PC 机一台。

3.数字式万用表一块。

西北工业大学航天学院自动控制原理实验报告

西北工业大学航天学院自动控制原理实验报告

自动控制原理实验报告实验名称:线性系统的时域分析实验日期:2017.9.29,2017.11.14小组成员:目录一、典型环节的模拟研究 (3)1.实验目的 (3)2.实验原理及说明 (3)3.实验内容及实验结果 (3)3.1观察比例环节的阶跃响应曲线 (4)3.2观察惯性环节的阶跃响应曲线 (7)3.3观察积分环节的阶跃响应曲线 (10)3.4观察比例环节的阶跃响应曲线 (13)3.5观察比例微分环节的阶跃响应曲线 (16)3.6观察PID(比例积分微分)环节的阶跃响应曲线 (17)4.结果分析 (20)二、二阶系统瞬态响应和稳定性 (21)1.实验目的 (21)2.实验原理及说明 (21)3.实验内容及实验结果 (23)4.结果分析 (29)一、典型环节的模拟研究1.实验目的①了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

②观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

2.实验原理及说明①控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

②再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

③若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

④典型环节的结构图及传递函数3.实验内容与实验结果3.1观察比例环节的阶跃响应曲线 典型比例环节模拟电路如下图所示。

传递函数:1(S)(S)(S)R R K K U U G i O === 单位阶跃响应:K )t (U =1)实验步骤(1)构造模拟电路:安置短路套及测孔联线,表如下。

(a )安置短路套 (b )测孔联线(2)将A/D-D/A 转换(B2)DAOUT (矩形波)作为系统输入信号Ui,运行SACT 程序,选择线性系统时域分析项,点击启动实验项目弹出实验界面后,在“波形控制区”设置矩形波参数,设置矩形波“幅度”为4V ,“正脉宽”为1秒。

北航自动控制原理实验报告(完整版)

北航自动控制原理实验报告(完整版)

自动控制原理实验报告一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系2、学习在电子模拟机上建立典型环节系统模型的方法3、学习阶跃响应的测试方法三、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T 时的响应曲线,测定过渡过程时间T s2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s四、实验原理及实验数据 一阶系统系统传递函数:由电路图可得,取则K=1, T 分别取:0.25, 0.5, 1T 0.25 0.501.00 R 2 0.25M Ω 0.5M Ω 1M Ω C1μ1μ1μT S 实测 0.7930 1.5160 3.1050 TS 理论 0.7473 1.4962 2.9927 阶跃响应曲线图1.1图1.2图1.3误差计算与分析(1)当T=0.25时,误差==6.12%;(2)当T=0.5时,误差==1.32%;(3)当T=1时,误差==3.58%误差分析:由于T 决定响应参数,而,在实验中R 、C 的取值上可能存在一定误差,另外,导线的连接上图1.1图1.2图1.3也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。

但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。

实验结果说明由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T 确定,T 越小,过度过程进行得越快,系统的快速性越好。

二阶系统系统传递函数:令二阶系统模拟线路0.25 0.50 1.00 R 4210.5C 2111实测 45.8% 16.9% 0.6% 理论 44.5% 16.3% 0% T S 实测13.98605.48954.8480T S 理论 14.0065 5.3066 4.8243 阶跃响应曲线图2.1图2.2图2.3注:T s 理论根据matlab 命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。

北航_电子实习_模拟部分_实验报告试验4

北航_电子实习_模拟部分_实验报告试验4

仪器科学与光电工程学院电子实习A2 模拟部分实验报告实验四:集成运算放大器应用2012/5/12目录一、实验目的 (2)二、实验结果 (2)1)实验电路 (2)2)示波器观察放大倍数 (2)3)分析参考电压与输出直流信号的关系: (5)4)分析温度漂移特性: (6)5)搭建积分器,微分器,射随器电路: (7)A)积分器 (7)B)微分器 (9)C)射随器: (10)6)搭建减法器: (11)三、问题回答 (12)(1)大信号放大的特性与小信号放大特性的区别? (12)(2)运放的重要指标有哪些? (12)(3)运算放大器AD817本身的输入输出电阻是多少?对于整体运放电路,输入输出电阻如何估算? (12)(4)运放的温度漂移特性如何,并试回答原因何在? (12)(5)请分析并总结仿真结论与体会。

(13)图表目录Figure 1 实验电路 (2)Figure 2 反馈电阻Rf=1kohm (4)Figure 3 反馈电阻Rf=2kohm (4)Figure 4 偏置电压和输出饱和值 (5)Figure 5 积分器正弦输入 (7)Figure 6 积分器正弦波输入电路 (8)Figure 7 积分器方波输入 (8)Figure 8 积分器方波输入电路图 (9)Figure 9 微分器输出波形 (9)Figure 10 微分器电路结构 (10)Figure 11 射随器输入输出波形 (10)Figure 12 射随器输入输出数值 (11)Figure 13 射随器结构 (11)Figure 14 减法器结构及输出电压 (11)实验四:集成运算放大器应用一、实验目的(1)了解集成运放的内部结构及各部分功能、特点;(2)了解集成运放主要参数的定义,以及它们对运放性能的影响。

(3)掌握集成运算放大器的正确使用方法;(4)掌握用集成运算放大器构成各种基本运算电路的方法;(5)掌握根据具体要求设计集成运算放大电路的方法,并会计算相应的元件参数;(6)学习使用示波器DC、AC输入方式观察波形的方法,掌握输出波形的测量绘制方法。

北航自控实验报告

北航自控实验报告

北航自控实验报告北航自控实验报告自控实验是北航自动化专业学生的重要课程之一,通过实验,学生能够巩固和应用所学的自动控制理论知识,提高实践能力。

本文将从实验目的、实验内容、实验结果和实验总结等方面,对北航自控实验进行详细介绍。

实验目的自控实验的目的是通过实际的控制系统,让学生了解自动控制的基本原理和方法,培养学生的实际操作能力和问题解决能力。

通过实验,学生能够掌握控制系统的建模、仿真和实际控制过程中的参数调整方法,提高自己的工程实践能力。

实验内容北航自控实验包括多个实验项目,其中包括PID控制器的设计与调整、系统建模与仿真、状态空间控制等。

在PID控制器的设计与调整实验中,学生需要根据给定的控制要求,设计出合适的PID控制器,并通过调整PID参数来实现系统的稳定性和性能要求。

在系统建模与仿真实验中,学生需要根据给定的系统动力学方程,建立系统的数学模型,并通过仿真软件进行系统的动态仿真。

在状态空间控制实验中,学生需要学习和应用状态空间法进行系统的控制设计。

实验结果通过实验,学生能够得到实验结果,并进行分析和总结。

实验结果包括系统的响应曲线、参数调整结果等。

学生需要根据实验结果,评估系统的控制性能,并对控制器的参数进行调整。

通过实验结果的分析,学生能够深入理解自动控制的原理和方法,并提高自己的问题解决能力。

实验总结自控实验是北航自动化专业学生的重要课程之一,通过实验,学生能够将理论知识应用到实践中,并提高自己的实际操作能力和问题解决能力。

在实验过程中,学生需要仔细操作实验设备,准确记录实验数据,并进行数据分析和总结。

通过实验总结,学生能够发现实验中存在的问题,并提出改进措施,提高自己的实验技巧和创新能力。

总之,北航自控实验是自动化专业学生不可或缺的一部分,通过实验,学生能够巩固和应用所学的自动控制理论知识,提高实践能力。

通过实验目的、实验内容、实验结果和实验总结等方面的介绍,相信读者对北航自控实验有了更加深入的了解。

北航_自控实验报告_状态反馈和状态观测器

北航_自控实验报告_状态反馈和状态观测器

北航_自控实验报告_状态反馈和状态观测器摘要:本实验通过对一个质点的运动进行实时控制的实验研究,了解了状态反馈和状态观测器的原理和应用。

通过实验验证了状态反馈和状态观测器在控制系统中的重要性和有效性。

1引言状态反馈和状态观测器是控制系统中常用的两种控制方法,可以实现对系统状态的准确估计和实时控制。

在实际控制应用中,状态反馈和状态观测器广泛应用于电力系统、轨道交通系统等领域。

本实验通过对一个质点运动的控制,以实验方式掌握状态反馈和状态观测器的原理和应用。

2实验目的2.1理解状态反馈和状态观测器的原理;2.2 学会使用Matlab编程实现状态反馈和状态观测器;2.3通过实验验证状态反馈和状态观测器的有效性。

3实验内容与方法3.1实验设备本实验所需设备和材料有:计算机、Matlab软件。

3.2系统建模通过对质点的运动进行建模,得到系统的状态空间方程,用于状态反馈和状态观测器的设计。

3.3状态反馈设计根据系统建模和状态反馈的原理,设计状态反馈控制器,并进行仿真实验。

3.4状态观测器设计根据系统建模和状态观测器的原理,设计状态观测器,并进行仿真实验。

4实验结果与分析4.1状态反馈实验结果在进行状态反馈实验时,观察到质点运动的稳定性得到了明显提高,达到了预期的控制效果。

4.2状态观测器实验结果在进行状态观测器实验时,观察到对系统状态的估计准确性得到了明显提高,状态观测器的设计能够很好地预测系统状态变化。

5结论本实验通过对一个质点运动进行实时控制的实验研究,学习并实践了状态反馈和状态观测器的原理和应用。

通过实验验证了状态反馈和状态观测器在控制系统中的重要性和有效性。

实验结果表明,状态反馈和状态观测器能够有效改善系统的稳定性和估计准确性,达到了实时控制的目的。

[1]袁永安.现代控制理论与技术[M].北京:中国电力出版社。

[2]何国平,刘德海.控制系统设计与应用[M].北京:中国电力出版社。

[3]王晓红.状态反馈和状态观测在电力系统控制中的应用[J].电网技术,2024。

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩北京航空航天大学自动控制原理实验报告学院机械工程及自动化学院专业方向机械工程及自动化班级学号学生姓名刘帆自动控制与测试教学实验中心实验一 一、二阶系统的电子模拟及时域响应的动态测试实验时间2014年11月15日 实验编号 同组同学 一、实验目的1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、 学习在电子模拟机上建立典型环节系统模型的方法。

3、 学习阶跃响应的测试方法。

二、实验内容1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。

2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s ()1C s KR s Ts φ=+()= 模拟运算电路如下图 :其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。

记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差带,其中当ζ<1时经验公式为21 3.5%100%,s net ζσζω--=⨯=,当ζ=1时经验公式为n 4.75ts ω=四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC 机一台。

北航自控实验报告

北航自控实验报告

北航自控实验报告北航自控实验报告自控是自动控制的简称,是一门涉及控制理论和控制工程的学科。

在工程领域中,自控技术的应用非常广泛,可以用于飞行器、机械设备、电力系统等各个领域。

为了更好地理解和应用自控技术,我参与了北航自控实验。

实验一:PID控制器的设计与调试PID控制器是自控领域中最常用的一种控制器,它由比例(P)、积分(I)和微分(D)三个控制环节组成。

在这个实验中,我们需要设计和调试一个PID控制器,以实现对一个电机转速的控制。

首先,我们在实验室里搭建了一个小型的电机转速控制系统。

通过连接电机和传感器,我们可以测量电机的转速,并将其反馈给控制器。

接下来,我们使用Matlab/Simulink软件进行PID控制器的设计。

通过调整PID控制器的参数,我们可以实现对电机转速的精确控制。

在调试过程中,我们遇到了一些挑战。

初始时,电机的转速波动较大,无法稳定在我们期望的值。

通过分析,我们发现PID控制器的参数需要进行适当的调整。

通过多次试验和参数调整,我们最终成功实现了对电机转速的稳定控制。

实验二:状态空间控制系统的建模与分析状态空间方法是一种用于描述和分析控制系统的数学工具。

在这个实验中,我们需要建立一个状态空间控制系统的数学模型,并进行分析。

我们选择了一个简单的倒立摆系统作为研究对象。

通过将系统分解为多个状态变量,并建立它们之间的动态方程,我们得到了一个状态空间模型。

接下来,我们使用Matlab软件进行模型的仿真和分析。

在仿真过程中,我们改变了系统的初始条件和外部扰动,观察了系统的响应。

通过分析仿真结果,我们可以得出一些结论。

例如,当初始角度较大时,系统的稳定性会受到影响;当外部扰动较大时,系统的响应会变得不稳定。

这些结论对于设计和优化控制系统非常有价值。

实验三:模糊控制系统的设计与实现模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用精确数学模型描述的系统。

在这个实验中,我们需要设计和实现一个模糊控制系统,以实现对一个小型车辆的路径跟踪。

北航自动控制原理实验

北航自动控制原理实验

成绩北京航空航天大学自动控制原理实验报告学院自动化科学与电气工程学院专业方向自动化班级100321学号100311xx学生姓名王尼玛指导教师袁少强自动控制与测试教学实验中心实验五 采样系统研究实验时间 5.7 实验编号 25 同组同学 无一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验内容1. 通过改变采频率ss s T5.0,2.0,01.0=,观察在阶跃信号作用下的过渡过程。

被控对象模拟电路及系统结构分别如下图所示:图中,1)(/)()(==z E z U z D ,系统被控对象脉冲传递函数为:TTTs e z e s s e Z z U z Y z G -----=⎥⎦⎤⎢⎣⎡+-==)1(4141)()()(系统开环脉冲传递函数为:TT w ez e Z G z D z G ----===)1(4)()()(系统闭环脉冲传递函数为:)(1)()(z G z G z w w +=Φ在Z 平面内讨论,当采样周期T 变化时对系统稳定性的影响。

2. 当采样周期1T s =时,1()(1)G s s s =+,设计)(z D ,使该系统在单位阶跃信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。

3. 当采样周期1T s =时,)1(10)(+=s s s G ,设计)(z D ,使该系统在斜坡信号作用下为最小拍无差系统,观察并记录理论与实际系统输出波形。

三、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理: 如果选择的采样角频率sω,满足max2ωω≥s 条件(m a xω为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

北航测控实验报告

北航测控实验报告

一、实验目的1. 熟悉测控系统的基本组成和原理。

2. 掌握测控系统调试与校准的方法。

3. 了解测控系统的应用领域和实际操作。

二、实验原理测控系统是一种利用传感器、执行器、控制器等组成,对生产过程中的物理量进行测量、控制与调节的系统。

本实验主要研究基于微控制器和传感器组成的测控系统。

三、实验内容1. 测控系统的组成(1)传感器:将物理量转换为电信号。

(2)微控制器:对传感器采集到的电信号进行处理,实现对执行器的控制。

(3)执行器:将微控制器的控制信号转换为实际动作。

(4)电源:为测控系统提供能源。

2. 测控系统调试与校准(1)传感器调试:调整传感器的零点和灵敏度,使其输出信号稳定。

(2)微控制器调试:编写控制程序,实现对执行器的控制。

(3)执行器调试:调整执行器的响应速度和精度,确保执行动作准确。

(4)系统校准:对整个测控系统进行校准,确保系统测量精度。

3. 测控系统的应用(1)自动化生产线:实现对生产过程的实时监测与控制。

(2)工业机器人:为机器人提供运动控制。

(3)智能交通系统:实现对交通流量、速度的监测与控制。

四、实验步骤1. 准备工作(1)连接传感器、微控制器、执行器和电源。

(2)编写控制程序。

2. 传感器调试(1)调整传感器的零点。

(2)调整传感器的灵敏度。

3. 微控制器调试(1)编写控制程序,实现对执行器的控制。

(2)调整程序参数,优化控制效果。

4. 执行器调试(1)调整执行器的响应速度。

(2)调整执行器的精度。

5. 系统校准(1)对整个测控系统进行校准。

(2)检查系统测量精度。

五、实验结果与分析1. 传感器调试通过调整传感器的零点和灵敏度,使传感器输出信号稳定,满足实验要求。

2. 微控制器调试编写控制程序,实现对执行器的控制。

通过调整程序参数,优化控制效果。

3. 执行器调试调整执行器的响应速度和精度,确保执行动作准确。

4. 系统校准对整个测控系统进行校准,确保系统测量精度。

六、实验总结通过本次实验,我们熟悉了测控系统的基本组成和原理,掌握了测控系统调试与校准的方法。

北航自控实验报告

北航自控实验报告

北航自控实验报告篇一:北航自控实验二-2014年最新最全报告成绩自动控制原理实验报告控制系统串联校正学院自动化科学与电气工程学院专业方向测试与控制班级120323 学号xxx 学生姓名xxx 指导教师张军香2014年11月实验三控制系统串联校正一、实验目的1. 了解和掌握串联校正的分析和设计方法。

2. 研究串联校正环节对系统稳定性及过渡过程的影响。

二、实验内容1、设计串联超前校正,并验证。

2、设计串联滞后校正,并验证。

三、实验原理1. 系统结构如图所示:图3-1其中????(s)为校正环节,可放置在系统模型中来实现,也可使用模拟电路的方式来实现。

2. 系统模拟电路图如图:其中??1=??3=??2=??6=100KΩ,??5=1MΩ,??4=250KΩ,??1=10μF,??2=1μF3. 未加校正时???? s =1 4、加串联超前校正时???? s 给定a=??TS+1????+1,a>1=,T=,则???? s =+??+15、加串联滞后校正时???? s=??TS+1????+1b篇二:自动控制实验报告_北航15系大三自动控制原理实验报告院系:宇航学院班级:学号:姓名:目录实验五采样系统研究 (3)实验六实验七状态反馈与状态观测器 (9)非线性环节对系统动态过程的响应 (17)实验五采样系统研究一、实验目的1. 了解信号的采样与恢复的原理及其过程,并验证香农定理。

2. 掌握采样系统的瞬态响应与极点分布的对应关系。

3. 掌握最少拍采样系统的设计步骤。

二、实验原理1. 采样:把连续信号转换成离散信号的过程叫采样。

2. 香农定理:如果选择的采样角频率?s,满足?s?2?max条件(?max为连续信号频谱的上限频率),那么经采样所获得的脉冲序列可以通过理想的低通滤波器无失真地恢复原连续信号。

3. 信号的复现:零阶保持器是将采样信号转换成连续信号的元件,是一个低通滤波器。

1?e?Ts其传递函数:s4. 采样系统的极点分布对瞬态响应的影响:Z平面内的极点分布在单位圆的不同位置,其对应的瞬态分量是不同的。

自控第四次实验报告

自控第四次实验报告

哈工大自动控制原理实验报告姓名: XXX学号: XXXXXXXXXX班级: XXXXXXXX课程名称:自动控制理论实验日期: 2014.XX.XX实验成绩:总成绩:实验三 采用PI 的串联校正一、实验目的:1、了解和观测校正装置对系统稳定性及瞬态特性的影响。

2、验证频率法校正是否满足性能要求。

二、实验要求:1、观测未校正系统的稳定性及瞬态响应。

2、观测校正后系统的稳定性极瞬态响应。

三、实验仪器设备1、TDN-AC/ACS 教学实验系统 一套2、万用表 一块四、实验原理、内容及步骤1、原系统的原理方块图未校正系统的方框图如图3—1所示图3—1未校正系统的方框图要求设计PI 串联校正装置,校正时使期望特性开环传递函数为典型II 型并使系统满足下列指标:%25≤p MS t s 84.0≤校正网络的传递函数为:CS R CS R s G c 011)(+=校正后的方块图如图3—2所示图3—2 校正后的方块图2、系统校正前后的模拟电路图图3—3系统校正前的模拟电路图图3—4系统校正后的模拟电路图3、实验内容及步骤(1)测量未校正系统的性能指标。

准备:将模拟电路输入端R(t)与信号源单元(U1 SG)的输出端OUT端相连接;模拟电路的输出端C(t)接至示波器。

步骤:按图3—3接线;加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp和调节时间Ts,记录曲线及参数。

未校正:MP=34.68%>25%, ts=0.5156<0.84S 不满足指标。

未校正系统分析:开环传函()50(0.061)S D S S =+,特征方程为:250250033S S ++=∴503ω=, 503ξ=, ∴ 2exp()38.78%1P M ξπξ=-=-(2) 测量校正系统的性能指标分析:要求设计PI 串联校正装置,校正时使期望特性开环传递函数为典型二型并使系统满足下列指标:pM <=25%S T <=0.84S校正网络的传递函数为:C G (s )=CS R CS R 011+ 为比例积分环节 K=23R R 为比例放大环节设计校正装置参数由超调量和调整时间的公式Mp=exp(-21ξπ-ξ)100%<=25%得阻尼系数ξ=0.4,带入Ts=3n ξω<=0.84,得剪切频率为ωc=7.87,而ωc 两侧与高频和低频的交接频率ω1和ω2必与ωc 有一定的距离,为保证要求的相角裕度,ω1=7.875=1.57,ω2=7.87*2=15.68则期望的传函为Gc=212.35(0.641)(0.061)s s s ++ 由C G (s )=)106.0(50+S S ,C G (s )=CS R CS R 011+ ,K=23R R可得R1=92.7Ω,C=6.47uF,32R R =0.2,取R3=50k Ω,R2=250k Ω准备:通过实际实验,根据理论计算,设计校正装置参数(实验时与理论计算有一定偏差)R1= 94.7K Ω C =6.7F μR2 = 250 K Ω R3=50 K Ω步骤:按图3—4接线,加入阶跃电压,观察阶跃响应曲线,并测出超调量Mp 和调节时间Ts ,看是否达到期望值,若未达到,请仔细检查接线、参数值并适当调节参数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩
北京航空航天大学
自动控制原理实验报告
自动控制与测试教学实验中心
实验四控制系统数字仿真
一、实验目的
通过本实验掌握利用四阶龙格——库塔法进行控制系统数字仿真的方法,并分析系统参数改变对系统性能的影响。

二、实验内容
已知系统结构如下图:
图 1 系统结构图
若输入为单位阶跃函数,计算当超调量分别为5%,25%,50%时K的取值(用主导极点方法估算),并根据确定的K值在计算机上进行数字仿真。

三、实验步骤
1. 用MATLAB绘制根轨迹并用主导极点方法分别计算超调量为5%、25%、50%时的K值。

2. 把上述估算得到的K值带入传递函数,用四阶龙格-库塔法仿真,编程计算调节时间和超调量。

3. 利用仿真结果,绘制系统的阶跃响应曲线。

4. 利用仿真结果,求出仿真得到的精确K值并记录。

四、实验结果
1. K的理论值计算
计算步骤:
(1)根据系统的开环传递函数,用MATLAB绘制系统的根轨迹:
rlocus([1],[1 10 25 0]);
得到系统的根轨迹如图:
图 2 系统根轨迹
2)根据公式%100%e πξσ-=⨯,由σ=5%、25%、50%分别计算对应的阻尼比ξ;
(3)由cos β=ξ,过原点做倾角为180-β的直线,与系统根轨迹的交点即为系统
主导极点;
(4)将主导极点坐标代入系统闭环传递函数中并令其模值为1,可解K 。

经过上述计算,可以得到K 的理论值如下表:
表 1 K 的理论值
2.系统仿真
通过四阶龙格-库塔方法,可以仿真系统的整个过程,即用数值方法计算各离散时刻的输出,根据超调量的要求得到K 值的数值结果。

MATLAB 程序如下:
龙格-库塔法计算函数定义:(Runge_Kutta .m )
主程序:(main.m)
3.仿真结果
不同情形下仿真得到的系统实际参数列表表示如下:
图 3 σ=5%阶跃响应
图 4 σ=25%阶跃响应
图 5 σ=50%阶跃响应
五、结果分析
1.误差分析
可以看到,理论值与实际值存在一定误差。

由于这次实验没有用到硬件,故误差主要来自数值计算,步长h会很显著地影响到误差的大小。

2.实验结论
从这次实验中可以看到,数字仿真可以很好地模拟实际系统的响应过程,并得到系统参数。

可以看到,K值的增加会使系统的超调量和调节时间增加,快速性变差;但增加K值可以提高系统的稳定性。

六、收获、体会及建议
这次实验是自己在课下完成的,我完全通过自己对实验原理的理解进行了计算和编程求解,感到很有成就感。

同时我也体会到数字仿真在实际系统的分析中具有重要作用,因此我们应该认真学习相关知识,为以后的使用打下基础。

相关文档
最新文档