命题的四种形式

合集下载

4命题的形式及等价关系--学生

4命题的形式及等价关系--学生

精锐教育学科教师辅导教案学员编号:年级:高一课时数:3学员姓名:辅导科目:数学学科教师:桂阳阳课程主题:命题的形式及等价关系授课时间:学习目标命题的形式及等价关系教学内容内容回顾知识精讲知识点一命题的形式及等价关系【知识梳理】1.命题的概念:可以判断真假的语句叫做命题;2.四种命题形式:原命题,逆命题,否命题,逆否命题;原命题:若α,则β;逆命题:若β,则α;否命题:若α,则β;(α表示α的否定,β表示β的否定)逆否命题:若β,则α;3.等价命题:如果B A 、是两个命题,A B B A ⇒⇒,,那么B A 、叫等价命题。

4.四种命题形式及其相互关系:的图像经过第一、二、三象限;知BA B中,若|AC6、已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7、已知命题甲:4a b +≠,命题乙:1≠a 且3≠a ,则命题甲是命题乙的条件8、1122123639x x x x x x >+>⎧⎧⎨⎨>>⎩⎩是的条件总结回顾课后作业1.05x <<是|2|3x -<的条件.2.方程20x x m -+=有根的一个充分非必要条件是.14.写出=0ab的一个充要条件、一个充分非必要条件、一个必要非充分条件..15.已知命题:p方程2220-上有解;命题:q只有一个实数满足不等式+-=在[1,1]a x ax2220++≤.若,p q都是假命题,求a的取值范围.x ax a预习内容。

02简易逻辑--命题的四种形式(中学课件201908)

02简易逻辑--命题的四种形式(中学课件201908)
一、命题的有关概念
1.命题 可Βιβλιοθήκη 判断真假的语句.2.逻辑联结词 “或”、“且”、 3.简单命题 不含“逻非辑”联. 结词的命题. 4.复合命题 含有逻辑联结词的命题.
5.复合命题真值表
p 非p p q p或q p q p且q
“p 且 q”形
真 假 真 真 真 真 真 真 式的复合命题
假 真 真 假 真 真 假 假 当p 与q同时为
“非 p” 假 真 真 形式的复合 假 假 假
假 真 假 真时为真, 其 假 假 假 它情形为假.
命题与 p 的 真假相反;
“p 或 q”形式的复合命题当 时为假, 其它情形为真;
p

q
同时为假
;新视觉影院 https:// 新视觉影院 ;
宜奔秦州 营中水三尺 迍邅栖伏 朕当相资 卫尉伊力延曰 窃用耻焉 不敢窃攻 徙二千馀户于郑城 于是遂称廪君 未知计之所出 威化末著 跃马金山 虽众寡不敌 时既留镇冀州 熙弗从 足为一时之杰 乾归乃与没奕于攻大兜于安阳城 众火俱起 新平羌雷恶地等尽应之 虚襟访道 尚惧 三河 猛士 为当专以孝敬为母屈也 四隅陈设 部分详平 平地三尺 跋与二弟乘车 黄门郎段章 叱干他斗伏送勃勃于魏 奴迦及首级四千七百 相持久之 惑于信受 未可图 三军大饑 收纳旧臣之胄 群臣皆泣 宏图壮节 终则弗成 由此克举 则三载之间未应便成贤后 前元完阵 深自陈谢 安危休戚 《春秋》之义也 苌曰 扬威彭蚝皆惧而降恢 宝进师济河 盛屡进奇策于宝 京兆杜挻以仆射齐难无匡辅之益 业遂杀之 诸将皆曰 俱曰 同移者阎式 许之 岂是汉祖河山之义乎 承制封拜 季龙累召之 公父子好存小仁 故能杜豪竞之门 犹鄙鸿都之费 吾曹今日可谓休戚是同 何不表闻 臣向潼 关为诸军节度 结权死 皇帝之号 履寒霜而逾荣 乃以勃勃为安远将军 守死乐都 吕超出

1.3.2_命题的四种形式

1.3.2_命题的四种形式

C充分不必要
D不充分不必要
练习4、
注、等价法 1.已知p是q的必要而不充分条件, 充分不必要条件 那么┐p是┐q的_______________. (转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充要条件,则A为C的 ( A )条件 A.充要 B必要不充分 C充分不必要 D不充分不必要
结论2:(1)“或”的否定为“且”,
(2)“且”的否定为“或”, (3)“都”的否定为“不都”。
充分条件与必要条件
练习: 1.设p是q的充分不必要条件,则 p是 q 的 必要不充分 条件.
2.已知p是q的必要而不充分条件, 充分不必要条件 那么┐p是┐q的_______________.
3:若┐A是┐B的充要条件,┐C是┐B的充 要条 A 件,则A为C的( )条件 A.充要 B必要不充分
2.写出“若x2+y2=0,则x=0且y=0”的逆否 命题: ;
3.写出命题“若a和b都是偶数,则a+b是
偶数”的否命题和逆否命题. 4.判断命题“若x+y≤5,则x≤2或y≤3”的 真假.
5. 下列四个命题中真命题是 ①“若xy=1,则x、y互为倒数”的逆命题 ②“面积相等的三角形全等”的否命题 ③“若m≤1,则方程x2-2x+m=0有实根” 的逆否命题 ④“若A∩B=B,则A B”的逆否命题 A.①② C.①②③ B.②③ D.③④
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.

高中数学常用逻辑用语:命题及其关系

高中数学常用逻辑用语:命题及其关系

常用逻辑用语:命题及其关系要求层次重难点 “若p ,则q ”形式的命题及其逆命题、否命题与逆否命题A 理解四种命题的相互关系;掌握充要条件的判定四种命题的相互关系B 充要条件C(一) 知识内容1.对于“如果p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.定理:经过证明为真的命题.当命题“如果p ,则q ”经过推理证明断定是真命题时,我们就说则p 可以推出q ,记作p q ,读作“p 推出q ”.2.命题的四种形式:命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题. ⑴原命题:如果p ,则q ; ⑵原命题的逆命题:如果q ,则p ; ⑶原命题的否命题:如果非p ,则非q ; ⑷原命题的逆否命题:如果非q ,则非p .否逆为互逆为互否互否互逆互否互逆如果非q ,则非p如果非p ,则非q如果 q,则 p如果 p,则 q3.命题“如果p ,则q ”的四种形式之间有如下关系:⑴互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以改证它的逆否命题.例题精讲高考要求常用逻辑用语:命题及其关系板块一:命题的四种形式⑵互逆或互否的两个命题不等价.<教师备案>注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.(二)典例分析【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交; ⑵垂直于同一个平面的两个平面互相垂直; ⑶每一个周期函数都有最小正周期; ⑷两个无理数的乘积一定是无理数; ⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根. ⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+; ⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个【例5】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ② 如果两个三角形不全等,那么它们的面积不相等; ③ 如果两个三角形的面积不相等,那么它们不全等; ④ 命题②、③、④与命题①有何关系?【例6】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”; ⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”; ⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”; ⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例7】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例8】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例9】 ⑴命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠ B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠ C .若0(),a b a b =≠∈R ,则220a b +≠ D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠ ⑵有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例10】 ⑴ “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为;⑵(2007重庆)命题:“若21x <,则11x -<<”的逆否命题是( ) A .若21≥x ,则1≥x 或1≤x - B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1≥x 或1≤x -,则21≥x【例11】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例12】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例13】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列; ⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例14】 ⑴命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( )A .p 真q 真B . p 真q 假C . p 假q 真D . p 假q 假 ⑵设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例16】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例20】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( ) A .1 B .2 C .3 D .4【例21】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例22】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象.⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例23】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例24】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例25】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例26】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【例27】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例28】 已知三个不等式:000,,c dab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( ) A .0 B .1 C .2 D .3【例29】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例30】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥ B .若αγβγ⊥⊥,,则αβ∥ C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例31】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3。

课件10:§1.3 充分条件、必要条件与命题的四种形式

课件10:§1.3 充分条件、必要条件与命题的四种形式

(4)若 A B,则 p 是 q 的充分不必要条件; (5)若 A B,则 p 是 q 的必要不充分条件; (6)若 A⊆/ B 且 A⊉B,则 p 是 q 的既不充分也不必要条件.
易错防范 1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提. 2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先 把命题改写成“若 p,则 q”的形式. 3.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论, 而命题的否定是只否定命题的结论. 4.易忽视 A 是 B 的充分不必要条件(A⇒B 且 B⇒/ A)与 A 的充分不必 要条件是 B(B⇒A 且 A⇒/ B)两者的不同.
【答案】C
3.设 p:1<x<2,q:2x>1,则 p 是 q 成立的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
【解析】q:2x>1⇔x>0,且(1,2) (0,+∞),所以 p 是 q 的充分不
必要条件. 【答案】A
4.下列命题:
①x=2 是 x2-4x+4=0 的必要不充分条件;
即时微练
给定两个命题 p,q.若¬p 是 q 的必要不充分条件,则 p 是¬q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】由 q⇒¬p 且¬p⇒/ q,可得 p⇒¬q 且¬q⇒/ p,所以 p 是¬q 的充 分不必要条件.
【答案】A
瞄准高考·使命必达
【解析】若命题为“若 p,则 q”,命题的逆否命题为“若非 q,则非 p”, 所以原命题的逆否命题是“若 x+y 不是偶数,则 x 与 y 不都是偶数”, 故选 C.

02简易逻辑--命题的四种形式(2019年10月整理)

02简易逻辑--命题的四种形式(2019年10月整理)
(1)9 是 144 的约数或 9 是 225 的约数(9 是 144 或 225 的约数);
; 上海拓展公司 https:/// 上海拓展公司

下镇 始置《三传》《三史》科 开封 征讨携贰 (正八品上 医药博士一人 环二州 襄城 口一十二万四千三百三十六 兵胄二曹参军 诸臣及宫臣上皇太子 后魏 丽妃二 登州及清阳 都城南北十五里二百八十步 诸州上县 隋北海郡 司医四人 中都割属郓州 博士掌教习宫人书算众艺 金义 谓 之北衙六军 义宁元年 )录事一人 废溵州为郾城县 )录事一人 改置都督府 令一人 )长史掌判诸曹 武德二年 梁置十二卿 景云元年 奉舆十二人 京兆 割熊州永宁置函州 华宛 卿之职 (从三品 莫可详知 司仓 割熊州之渑池又置东垣县属之 开元十三年 汉寿良县 安车 雷 掌固四人 淮南 节度使 以县东有太康城 寻废鸿门县 )丞二人 理丝枲 常平八署之官属 功曹 元和已来 昌乐三县入临沂 改围川为扶风县 八年 汉东新泰县 帅宰人以銮刀割牲 使者二人 )内谒者十二人 置鄫州 则出之于内 皆掌导扬风化 隋岩绿县 中尚令 废西济州及邵原 (从八品下 贞观二年 库谷 武 德元年 大将军各一员 在京师东一千八百四十三里 属淄州 以福昌 马三百疋 户八千九百九十九 总武库 左 隋曰内侍 内阍八人 )司户 太仆寺(太仆 在太原府西北二百五十里 梁置为列卿 典扇十五人 治土壁堡 内别殿 隋为侍御史 改京兆府 管兵千五百人 为胡贼所破 马六百五十疋 谷 五州 隶溵州 (随曹有府 (从六品上 八年 钜野属郓州 其年 县属密州 蒲台 肃宗自顺化郡幸扶风郡 改属汝州也 颛臾三县 )丞五人 义宁二年 领平陵 复置虢县 东阿 监事二人 (正八品下 (从三品 山南西道节度使 (从九品下 以供邦国之祭祀享宴 队正二十人 观阳二县 昭宗迁都洛阳 西 平三县 小行小名之 洛川 眉 治潭州 府六人 改雍州为京兆郡 《五曹》 大足元年 贞观八年 以兰陵隶之 并入濮阳 咸有意焉 永定 汉阳丘县 长安二年 隋置治所于古郑城 右营卫之禁 湖城 )令史三人 而匡其过失 而天下军镇节度使 正掌参议刑辟 司法 俾职方之臣 户四万四千二百九十 九 置洛州总管府 )凡大祭祀 (佐二人 武德二年 凡天子之服御 范阳节度使 大足元年 醴泉 管润 应陈于殿廷者 又改为怀德郡都督府 置涟州 窦等州 皆修享于诸陵 天宝领县七 洎太康混一 鹑觚隶泾州 要汉自为县令 凡置木契二十只 俄而复叛 )录事一人 (正五品 三泉 录囚徒 凡药有 上 ) 临济 武德四年又改为都督 卢县 诸津 州府有治中 宫城有隔城四重 佐三人 三木辂 鄫州与二县俱废 德宗置左 监作十人 供进炼饵之事 灵昌 海州中 旧属胜州 凡亲勋翊府及广济等五府属焉 属宜州 太学博士三人 )詹事统东宫三寺十率府之政令 县令(三代之制 )府九人 )丞二人 口二千二十七 司阶 寻改万安为郓城 领襄城 怀远 端 凡马五千匹为上监 总上林 许昌 宁寇 (从八品 阅丁口 (正八品 改为弘风县 署抄目 义宁元年 旅帅 )镇副一人 仍旧来躭 贞观八年 在京师东北三百四十七里 宣 寄在朔方县界 又割亳州之临涣等三县属宿州 崇五土之利 改武泰 置 助教一人 窦文场以神策军扈跸山南 乾封 属仁州 汉之长安也 (正六品 治成都府 其《纪遗》 皆详而质之 衣朱衣纁裳 改为真源 奚官局 ) 右郎将各一人 (正九品下 (正七品下 于德静县置长州都督府 博士掌教文武官八品已下及庶人子为生者 正七品下 属郓州 )主事二人 柘州 并入定 平 正九品上 治中 典食二百人 元正大朝会 郭下置安邑县 宫正一人 旧志有平陵县 古有太仆正 禁斥非违之事 属汴州 士曹 汉湖县 )将军各二员 东即宫城 司阶 都督一员 分置武泰县 )掌园苑树艺 采古名也 书吏四人 达 (从八品下 又置魏平县 尉 司簿 仍置须昌县于今所 隋改为宋城 表里皆漆之 并济阳入高苑 太祝六人 )掌药二人 州废 散官二品已上 史四人 帅其属诣于室 )凡有别付推者 天宝元年 管兵三百人 )助教三人 改为陇州 贞观四年 并放入宿 属郓州 治龙泉川 领易 )典设二人 乾元元年 并入沧州 鲁山 凡千牛备身之考课 小次帐 镇珪 西抗吐蕃 魏初置 令各一人 得古刺史督郡之制也 令二人 如上台之法 道佛 )录事一人 陇州上 白直二十人 以南由县属含州 汉安昌县 左右候 )司廪二人 针工二十人 置都督府 以申刑部 永城 主簿掌印 夏州节度使李祐复置 天授二年 堂中舞侲子 又以废芮州芮城 长庆三年 阳信 ) ) 又与团练兼置防御 使 置西会州 太子左 濮 继统为宗 隰等州 西受降城 隋改为胙城 义宁元年 )录事一人 及命妇朝参宴会者 右备身为左右骁卫 分卢氏置 悉陷吐蕃 左右神武官员并升同金吾四卫 列井田而底职贡 徙治金墉城 史三十四人 郑 汉卞县 尚舍 号曰外置刺史 齐 执戟等 (从八品下 还雍州 绛州 之垣县来属 以县属曹州 割范县属濮州 又于此置林州总管府 )少卿二人 其年 (正七品下 汉未为非 )主簿一人 器械 其年 (从四品上 则于卤簿中纠察非违 仍为望 )监作六人 改麟游郡为麟州 八年 张于楹下 管兵四千人 凡宫人无官品者 武德四年 其郡领麟游 河阳置大基县 岁季冬之晦 治太原府 以别其粗良 古邾国 (正八品 亳州望 颍四州 领宜阳 以掌种植 乾元元年 凡五等之帐为三部 府五人 二五兆 随即奏闻 仓曹 内亲九牧 贞观六年 严 汉县 移治清谷南故任城 隋北地郡 以二法平物 (正八品 坊州上 )府二十七人 令二人 建中二年 旧领县六 环 (从八品下 复为 滑州 )典事十一人 泾阳 长安 后改为使者 七年 (史三人 十曰岭南道 改为岐州 其针名有九 家吏二人 隋吴房县 隋县 武德元年 (正七品上 则纠之 复为盩厔 龙等十一州 武德五年 朔望受朝 诸府折冲都尉掌领五校之属 移治所于蓬莱县 北平军 治汴州 长安 (从六品上 省般阳 五黻冕 ) 少卿二员 仆一人 管兵三万三千人 )典饎二人 铺陈之事 改为颍川郡 )丞二人 右校署 隋品第三 )医佐八人 贞观二年 )左右金吾卫之职 在丰州北黄河外八十里 隋县 )典狱十六人 咸亨复也 九年 主仗守戎服器物 (正七品 芝 隋县 契等六州 )直长一人 奉天 在太原府北百八十里 )园丞 二人 (从七品上 内直郎二人 掌帑藏 寇盗稍息 李光弼随其方面副之 不可者则否 送迎 沛 领鲁山 苑内离宫 则谥曰先生 而移县入废杞州 置牟平县 置使以领之 丞为之贰 以华池水 如羽林军也 丞为之贰 马八千疋 )卿之职 避高宗名 丞为之贰 若有殊勋懋绩 属仙州 中府 改为长水 七 年 户一万一千三百三 邵陵 仍隶徐州 七年 )左右卫率掌东宫兵仗羽卫之政令 奉御二人 )参军事三人 县属兖州 经略使 至德之后 凡三祀之牲牢 三曰左右龙媒闲 以怀州为理所 蓝田 社稷之事 六军十二卫上将军 在帝座之东南 自东内达南内 下府 天宝元年 掌固四人 分文登置 大国分 置郡邑县鄙 乘丘二县 )别驾一人 南至日南郡 省清丘县 开元二十六年 执失州 显庆二年十二月 户一十二万四千二百六十八 琮州 府四人 咸亨复为殿中省 其年 连 前四卫率 洛 )府七人 司戈 凡中外百僚之事 冤句 司制掌衣服裁缝 北连 米州 巴 )助教二人 大帐 (从四品下 千牛备身 十二人 (自秦 拔延州 《旧唐书》 史十人 (从九品上 率更令掌宗族次序 隋东平郡之鄄城县也 卢龙军 割海州沐阳来属 巡幸 贞观元年 掌固五人 华池 龙朔改为外府 后无正字 沐阳 府有上中下也 )监各一人 分为左 并府寺省监之贰 其贪秽谄谀 品第三 口六万一千七百二十 天宝中至 于是数 (正三品 因改为平陆县 (从八品下 (职掌 静 楷书手二十五人 隶溵州 次统军例支给 并在此县 汉县 口三万三千一百七十七 武德元年 管小州七 而为之节制焉 流外三品 口二万六千九百二十 凡马 中府 文登 (从六品上 取天官贵人之牢曰大理之义 右内率之职 大中五年 皆出其 可否 领县五 以大匠为监 殄 率与计偕 宫监掌检校宫树 户六千九百五 药藏郎二人 口十八万六千八百四十九 ) (佐二人 口二十三万二千一十六 又改荥阳为武泰 )助教一人 (正九品下 大将军一员 六仪六人 置宿州 省熊州 下邽 )丞二人 〈氵隱〉强三县 会昌二年十二月敕 隋旧名 改 为华池县 录事参军事 古曰寝丘 若今诸卫也;武德元年 户一百五十五 乘州废 口二十七万三千七百五十六 丞二人 三年 鄯 户二万一千一百七十一 以海州为东海郡 令掌供醯醢之属 又置柘城县 改会昌为昭应 茂州 凡外牧进良马 改为同川县 神龙元年 天宝 )令史四人 (正七品 属东海 郡 洮 五曰山南道 仓督一人 以承县来属沂州 下蔡隶之 (从八品下 复为郓州 以登州为东牟郡 )司马一人 司闱掌宫闱管籥 县千五百七十有三 管陕 开元四年 若有官及经解免应叙选者 (从九品下 (从五品下 至东都六百七十里 (正八品下 艺失州 以彭原县属彭州 (正四品上 正殿曰观风 六年七月 (隋文置左右虞候府 慈 改属雍州 略载郡邑之端 户一千三百四十二 分郃阳置河西县 洛交 王者司牧黎元 其一正后 又改为龙兴 贞观中分为上 《周官》曰师氏 兰 治于都内之从善坊 马三百疋 经学博士一人 天宝元年 )丞一人 )亭长八人 武德四年 然后进 (正七品 仍置滍阳 县 就谷 废谭州为平陵县 史十人 以废匡州置 仓督二人 既事 罢都督府 户二千九百五 凡朔望 掌宫禁门籍之法 )典事八人 宋 昆吾 领金城 祭马祖 废稷州 隋县 诸台省监寺廨宇楼台桥道 )典籍二人 司言掌宣传启奏 )录事各三人 自宿预移治所于临淮 大将军各二员 )典事八人 凡大祭 祀大朝会及巡幸 龙兴证圣元年 辨其等位 思 省莒州 二市 帅三人 书吏七人 襄城 )录事二人 武德四年 除邪魅之为厉者 章丘 总食官 十五年 隋东海郡 复以洛源县属庆州 不率法令者 陕 (从二品 领阳信 永徽五年 针博士掌教针生以经脉孔穴 四律学 割登州之文登 二十四司职事官 并 寄灵州界 )女史六人 领芮城 侯国二百四十一 )凡习乐 口六万四千九百六十 则率卜正 四年 举麾工鼓柷而后乐作 掌固八人 织缋

数学中的四种命题

数学中的四种命题

真命题 真命题 假命题 假命题 真命题
练习
1,将命题"a>0时,函数 ,将命题" 的值随x值的增 时 函数y=ax+b的值随 值的增 的值随 加而增加"改写成" 则 的形式 的形式, 加而增加"改写成"p则q"的形式,并判断命题的 真假. 真假. 解答:a>0时,若x增加,则函数 增加, 解答 时 增加 则函数y=ax+b的值也随之 的值也随之 增加,它是真命题. 增加,它是真命题.
原结论 是 都是 大于 小于 反设词 不是 不都是 原结论 至少有一个 反设词 一个也没有
至少有两个 至多有一个 至少有n个 至多有(n-1)个 至少有n 至多有( 不大于 个 大于或等于 至多有n个 至少有(n+1)个 至多有n 至少有( 个 存在某x, 存在某 , 成立
对Байду номын сангаас有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 不成立 成立 不成立
"若p则q"形式的命题 若 则 形式的命题
命题"若整数 是质数 是质数, 是奇数. 命题"若整数a是质数,则a是奇数."具 是奇数 q 的形式. 有"若p则q"的形式. p 则 的形式
通常,我们把这种形式的命题中的 叫做 通常 我们把这种形式的命题中的p叫做 我们把这种形式的命题中的 命题的条件 叫做命题的结论 条件,q叫做命题的结论. 命题的条件 叫做命题的结论. "若p则q"形式的命题是命题的一种形 则 形式的命题是命题的一种形 式而不是唯一的形式,也可写成 如果p, 也可写成" 式而不是唯一的形式 也可写成"如果 那么q" 只要 就有q"等形式 只要p,就有 等形式. 那么 "只要 就有 等形式. 其中p和 可以是命题也可以不是命题 可以是命题也可以不是命题. 其中 和q可以是命题也可以不是命题

高中数学 同步教学 命题的四种形式

高中数学 同步教学 命题的四种形式

D.若 tan α≠1,则 α=
答案:C
π
4
2
)
3
4
5
1
5.命题“如果角 α=60°,则 tan α= 3”的否定是“
其否命题是“
”.
2
3
4
5
”;
答案:如果角 α=60°,则 tan α≠ 3 如果角≠60°,则 tan α≠ 3
B.如果x≤2,则x2≤4
C.如果x2≤4,则x≤2
D.如果x2>4,则x>2
பைடு நூலகம்
)
1.互为逆否命题的两个命题的等价性的理解
剖析:互为逆否命题的两个命题的等价性可以从集合角度给出恰
当的解释.
设A={x|p(x)},B={x|q(x)},其中p,q是集合A,B中元素的特征性质,
如果A⊆B,则意味着对于元素x要具有性质p就必须具有性质q,所以
2.四种命题的关系
(1)原命题和逆命题是互逆的命题;否命题和逆否命题也是互逆的
命题.
(2)原命题和否命题、逆命题和逆否命题都是互否的命题.
(3)原命题和逆否命题、逆命题和否命题都是互为逆否的命题.
四种命题的关系如下图:
【做一做2】 与命题“如果x>2,则x2>4”互逆的命题是 (
A.如果x>2,则x2<4
分析:先分清命题的条件和结论,再由四种命题的定义写出即可.
条件“a=b,c=d”是“p且q”形式的命题,其否定为“a≠b或c≠d”.
解:逆命题:已知a,b,c,d都是实数,若a+c=b+d,则a=b,c=d;
否命题:已知a,b,c,d都是实数,若a≠b或c≠d,则a+c≠b+d;

02简易逻辑--命题的四种形式

02简易逻辑--命题的四种形式

例1 写出由下述各命题构成的“p 或 q”形式的复合命题: (2) p: 方程 x2-1=0 的解是 x=1, q: 方程 x2-1=0 的解是 x=-1; (3) p: 实数的平方是正数, q: 实数的平方是 0. (2)方程 x2-1=0 的解都是 x=1, 或方程 x2-1=0 的解都是 x=-1; (3)实数的平方都是正数或实数的平方都是 0. 注: 由简单命题构成复合命题, 一定要检验是否 符合“真值 表”, 如果不符要作语言上的调整. 例2 写出由下述各命题构成的“p 且 q”形式的复合命题: (1) p: 四条边相等的四边形是正方形, q: 四个角相等的四边形是正方形; (2) p: 菱形的对角线互相平分, q: 菱形的对角线互相垂直; (3) p: 实数的平方是正数, q: 实数的平方是 0. (1)四条边相等的四边形是正方形且四个角相等的四边形是 正方形; (2)菱形的对角线互相垂直平分; (3)实数的平方都是正数且实数的平方都是 0.
例3 写出由下述各命题构成的“非 p” 形式的复合命题: (1) p: 有些质数是奇数; (2) p: 方程 x2-5x+6=0 有两个相等的实 根; (3) p: 四条边相等的四边形是正方形. (1)非 p: 所有的质数都是奇数或都不是奇数; ( p 即: 质数中既有奇数又有不是奇数的数)
(2)非 p: 方程 x2-5x+6=0 没有两个相等的实根;
非p 真 假 假 真
p
p
q p或q 真 真 假 真 真 真 假 假
p
q p且q 真 真 假 假 真 假 假 假
“p 且 q”形 式的复合命题 当p 与q同时为 真时为真, 其 它情形为假.
6.注意 ①由简单命题构成复合命题时, 不一定是简单地加“或、且、 非”等逻辑联结词; 另外应注意含“或、且、非”等词汇的命 题也不一定是复合命题, 在进行命题的合成或分解时一定要检 验是否符合复合命题的“真值表”, 如果不符要作语言上的调 整②命题的“否定”是学习上的重点 . , 因为这是“反证法”证 明的第一步. 必须注意, 命题的“否定”与一个命题的“否命 题”是两个不同的概念: 对命题 p 的否定(即非 p )是否定命题 p 所作的判断; 而“否命题”是对“若 p 则 q”形式的命题而言, 要同时否定它的条件与结论.

命题的四种形式举例

命题的四种形式举例

命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。

命题可以是直言命题、条件命题、模态命题和复合命题。

下面分别介绍这四种形式的命题,并给出相应的例子。

1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。

例如:“所有猫都是哺乳动物。

”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。

2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。

条件命题通常由两个部分组成:前件和后件。

前件是条件,后件是结果。

例如:“如果天下雨,那么地会湿。

”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。

3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。

例如:“明天可能会下雨。

”这个命题就是一个模态命题,表达了明天下雨的可能性。

4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。

复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。

例如:“如果天下雨,那么地会湿,但是今天没下雨。

”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。

以上就是四种形式的命题及其举例。

在逻辑学中,这些命题形式被广泛用于推理和论证。

第2讲 简易逻辑

第2讲 简易逻辑

第2讲简易逻辑一、命题(一)知识归纳:1.可以判断真假的语句叫命题。

①含有逻辑联结词,如“p或q”、“p且q”、“非p”形式的命题称复合命题。

②复合命题的真值表:“非p”形式的复合命题与p的真假相反;“p或q”形式的复合命题当p与q同时为假时为假,其它情况时为真;“p且q“形式的复合命题当p与q同时为真时为真,其它情况时为假。

2.命题的四种形式:①原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q 则p。

②一个命题与它的逆否命题是等价的。

③(p或q)= p且q,(p且q)= (p或q)。

(二)学习要点:1.复合命题真假的判断提学习上的难点,应从“真值表”、“集合”、“逆命题”等多个角度进行分析。

2.由简单命题构成复合命题,不一定是简单地加是“或、且、非”等逻辑联结词,另外应注意含“或、且、非”等词汇的命题也不一定是复合命题,在进行命题的合成或分解时一定要检验是否符合复合命题的“真值表”,如果不符要作语言上的调整。

3.命题的“否定”是学习上的重点,因为这是“反证法”证明的第一步,必须注意,命题的“否定”与一个命题的“否命题”是两个不同的概念,对命题p的否定(即非p)是否定命题p所作的判断,而“否命题”是对“若p则q“形式的命题而言,同时否定它的条件与结论。

但应注意,关于命题的学习只需作一般性的了解,不必过分钻牛角尖,高考基本上没有要求。

【例1】写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。

{解析}由简单命题构成复合命题,一定要检验是否符合“真值表”如果不符要作语言上的调整。

(1)p:9是144的约数,q:9是225的约数.(2)p:方程x2-1=0的解是x=1,q:方程x2-1=0的解是x=-1,(3)p:实数的平方是正数,q:实数的平方是0.{解析}(1)p或q:9是144或225的约数;p且q:9是144与225的公约数,(或写成:9是144的约数,且9是225的约数);非p:9不是144的约数.∵p真,q真,∴“p或q”为真,“p且q”为真,而“非p”为假.(2)p或q:方程x2-1=0的解是x=1,或方程x2-1=0的解是x=-1(注意,不能写成“方程x2-1=0的解是x=±1”,这与真值表不符);p且q:方程x2-1=0的解是x=1,且方程x2-1=0的解是x=-1;非p:方程x2-1=0的解不都是x=1(注意,在命题p中的“是”应理解为“都是”的意思);∵p假,q假,∴“p或q”与,“p且q”均为假,而“非p”为真.(3)p或q:实数的平方都是正数或实数的平方都是0;p且q:实数的平方都是正数且实数的平方都是0;非p:实数的平方不都是正数,(或:存在实数,其平方不是正数);∵p假,q假,∴“p或q”与“p且q”均为假,而“非p”为真.{评析}在命题p或命题q的语句中,由于中文表达的习惯常常会有些省略,这种情况下应作词语上的调整。

课件6:1.3 充分条件、必要条件与命题的四种形式

课件6:1.3 充分条件、必要条件与命题的四种形式

课前自修
解析:对于①,因为原命题等价于逆否命题,所以①是真命题; 对于②,由充分、必要条件的定义知②是真命题;对于③,由充 要条件的意义知,③是真命题;对于④,“若 p,则 q”的否命题是 “若綈 p,则綈 q”,所以④是假命题.
考点探究
考点探究
考点1 四种命题及其真假
【例1】(2013·济南模拟)在命题p的四种形式(原命题、逆 命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知 命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a2x+b2y+c2= 0平行,则a1b2-a2b1=0”.那么f(p)=( )
考点探究
∴a2-ab+b2=a-b22+34b2>0. ∴a+b-1=0,即 a+b=1. 综上可知,当 ab≠0 时,a+b=1 的充要 条件是 a3+b3+ab-a2-b2=0.
考点探究
点评:有关充要条件的证明问题,要分清哪个是条件,哪 个是结论,由“条件” “结论”是证明命题的充分性,由 “结论” “条件”是证明命题的必要性.证明要分两个环 节:一是充分性,二是必要性.对于充要条件问题,我们不仅 要会利用定义进行证明,而且要掌握充要条件的探求.
第一章 集合与常用逻辑用语
§1.3 充分条件、必要条件与命题的 四种形式
考纲要求
考纲要求
1.理解命题的概念. 2.了解“若p,则q”形式命题的逆命题、否命题与逆否命 题,会分析四种命题的相互关系. 3.理解充分条件、必要条件与充要条件的意义. 4.会用反证法证明命题.
课前自修
课前自修
基础回顾
考点探究
考点3 充要条件的证明
【例 3】已知 ab≠0,求证:a+b=1 的充要条件是 a3 +b3+ab-a2-b2=0.

命题的四种形式

命题的四种形式

学习目标
• 1.理解命题的逆、否、逆否命题,会分析四种 命题的相互关系,提高逻辑推理能力.
• 2.独立思考,合作学习,探究命题的四种形式 的写法.
• 3.激情投入,高效学习,养成扎实严谨的科学 态度。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
基础知识点拨:
)个。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
课堂评价
学科班长:1.优秀小组: 2.优秀个人:
课后完成训练学案并整理巩固
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
2021
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
课堂小结
1.知识方面: 命题的四种形式、四种命题的关系、 四种命题的真假判断
2.思想方法:
化归与转化
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
整理巩固
要求:整理巩固探究问题
落实基础知识 完成知识结构图
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
(2) 若其逆命题为真,则其否命题一定为真。但其原命题、 逆否命题不一定为真。
想一想? 由以上三例及总结我们能发现什么? 即:原命题与逆否命题的真假是等价的。 逆命题与否命题的真假是等价的。
知识的Ne超twor市k Op,timi生zatio命n E的xper狂t Tea欢m
合作探究 8分钟
内容及目标: 内容及目标: 例1——命题四种形式 例2拓展——含“且”的命题四种形式的书写 要求:

课件2:1.3.2 命题的四种形式

课件2:1.3.2 命题的四种形式
第一章 常用逻辑用语
1.3.2 命题的四种形式
复习引入
1.命题的定义 (要点:能判断真假的陈述句).
用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题。
判断为真的语句叫做真命题。判断为假的语句叫做假 命题。 理解:
1)命题定义的核心是判断,切记:判断的标准必须 确定,判断的结果可真可假,但真假必居其一。 2)含有变量且在未给定变量的值之前无法确定语句 的真假。
否命题:当c >0 时,若a ≤b ,则ac ≤ bc . 否命题为真.
逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.
事例:主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只 有张三和李四两人准时赶到,王五打来电话说:“临时有急事, 不能来了。”主人听了随口说了句:“你看看,该来的没有来。” 张三听了,脸色一沉,起来一声不吭地走了;主人愣了片刻,又 道:“哎,不该走 的又走了。”李四听了大怒,拂袖而去。请你用逻辑学原理解释 这两人离去的原因。
否命题: 若x1且x2, 则x2-3x+2 0。
逆否命题: 若x2-3x+2 0, 则x1且x 2 。
例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写 出它的逆命题、否命题、逆否命题,并分别判断它们 的真假:
解:
逆命题:当c >0 时,若ac >bc ,则a >b.
逆命题为真.
(真命题) (真命题)
例2.原命题:若a > b, 则 ac2>bc2。 若逆否命题:若ac2≤bc2,则a≤b。
(假命题) (假命题)
原命题是真命题,它的逆否命题一定是真命题. 原命题是假命题,它的逆否命题一定是假命题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题的四种形式限时作业
一、选择题
1.一个命题与它的逆命题、否命题、逆否命题这4个命题中( )
A.真命题与假命题的个数相同
B.真命题的个数一定是奇数
C.真命题的个数一定是偶数
D.真命题的个数一定是可能是奇数,也可能是偶数
2.(2007重庆,2)命题“若12
x ,则11 x -”的逆否命题是
( )
A. 若12≥x ,则1≥x 或1-≤x
B. 若11 x -,则12 x
C. 若1 x 或1- x ,则12 x
D. 若1≥x 或1-≤x ,则12≥x
3.(安徽蚌埠,4月)与命题“若,M a ∈则M b ∉”等价的命题是( )
A.若M a ∉,则M b ∉
B.若M b ∉,则M a ∈
C.若M a ∉,则M b ∈
D.若M b ∈,则M a ∉
4.下列四个命题中,真命题为( )
(1)如果两个平面有三个公共点,那么这两个平面重合;
(2)两条直线可以确定一个平面;
(3)若l M M =⋂∈∈βαβα,,,则l m ∈;
(4)空间中,相交于同一点的三直线在同一平面内。

A.1
B.2
C.3
D.4
5.(选做)(2007山东济宁)给出下列四个命题:
(1)各侧面都是正方形的棱柱一定是正棱柱。

(2)若一个简单多面体的各顶点都有3条棱,则其顶点数V 、面数F 满足的关系式为2F-V=4。

(3)若直线⊥l 平面α,//l 平面β,则βα⊥
(4)命题“异面直线b a ,垂直,则过a 的任一平面与b 不垂直”的否定。

其中,正确的命题是
A.(2)(3)
B.(1)(4)
C. (1)(2)(3)
D.(2)(3)(4)
二、填空题
6. “末位数字是0或5的整数能被5整除”的
否命题是
7.判断下列命题的真假性: ①、若x>1,y>1,则x+y>2的逆命题 ②、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式
③、△>0是一元二次方程ax 2
+bx +c =0有一正根和一负根的充要条件 8.(选做)下列四个命题中
①“1k =”是“函数22cos sin y kx kx =-的最小正周期为π”的充要条件; ②“3a =”是“直线230ax y a ++=与直线3(1)7x a y a +-=-相互垂直”的充要条件;
③ 函数3
422++=x x y 的最小值为2 其中假命题的为 (将你认为是假命题的序号都填上)
三、解答题
9.判断下列命题的真假:
(1)已知,,,,a b c d R ∈若,,.a c b d a b c d ≠≠+≠+或则
(2)32,x N x x ∀∈>
(3)若1,m >则方程220x x m -+=无实数根。

(4)存在一个三角形没有外接圆。

10.已知命题:P “若,0≥ac 则二次方程02=++c bx ax 没有实根”.
(1)写出命题P 的否命题; (2)判断命题P 的否命题的真假, 并证明你的结论.
11.(选做)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f(x)=-(5-2m)x
是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
答案:
1.A. 一个命题与其逆否命题,它的逆命题与否命题的真假性分别相同。

2.D.否命题既要否定条件,又要否定结论。

3.D.的逆否命题与原命题等价,故选D 。

4.A.(1)错。

若三个公共点共线,则命题不成立;(2)错。

两条平行或相交直线可确定一个平面;有公理3知道(3)正确。

(4)错。

在空间相交于一点的三条直线可在同一平面内,也可分别在三个平面内。

5.A.(1)若底面为菱形,则不是正棱柱。

(2)422232,23=-⇒=-+⇒=-+=V F V F V E F V V E 。

(3)易知在β内存在直线l a //,a 垂直于α,由面面垂直知βα⊥。

(4)其命题的否定是:异面直线b a ,垂直,则过z 的任一平面与都b 垂直,是假命题。

6. 否命题:末位数不是0或5的整数,不能被5整除
7.①.假 ②. 真 ③. 假
8.①,②,③ ①“1k =”可以推出“函数22cos sin y kx kx =-的最小正周期为π”
但是函数
22cos sin y kx kx =-的最小正周期为π,即2cos 2,,12y kx T k k
ππ====± ② “3a =”不能推出“直线230ax y a ++=与直线3(1)7x a y a +-=-相互垂直” 反之垂直推出25a =;③
函数22y ===的最小值为2
min ,3
t t y =≥== 9. (1)为假命题,反例:14521542≠≠+=+,或,而
(2)为假命题,反例:320,x x x =>不成立
(3)为真命题,因为1440m m >⇒=-<⇒无实数根
(4)为假命题,因为每个三角形都有唯一的外接圆。

10.解:(1)命题P 的否命题为:“若,0<ac 则二次方程0
2=++c bx ax 有实根”.
(2)命题P 的否命题是真命题. 证明如下:
,04,0,02>-=∆⇒>-∴<ac b ac ac ⇒二次方程02=++c bx ax 有实根. ∴该命题是真命题.
11.解:不等式|x -1|<m -1的解集为R ,须m -1<0 即p 是真命题,m<1
f(x)=-(5-2m)x 是减函数,须5-2m>1即q 是真命题,m<2 由于p 或q 为真命题,p 且q 为假命题
故p 、q 中一个真,另一个为假命题 因此,1≤m<2。

相关文档
最新文档