带传动传动效率测试实验指导

合集下载

带传动及齿轮传动效率实验

带传动及齿轮传动效率实验

实验三带传动及齿轮传动效率实验一、实验目的1、观察带传动弹性滑动与打滑现象;2、了解带的初拉力、带速等参数的改变对带传动能力的影响;3、掌握摆动式电机的转矩、扭矩、转速差及带传动效率的基本测量方法。

4、了解封闭功率流式齿轮试验台的基本原理、特点及测定齿轮传动效率的方法。

5、通过改变载荷,测出不同载荷下的传动效率和功率。

二、实验内容1、测定不同初拉力下实验带的弹性滑动曲线(ε-F曲线)和效率曲线(η-F曲线)。

2、测定齿轮传动效率,输出T1-T9关系曲线及η-T9曲线。

其中:T1为轮系输入扭矩(即电机输出扭矩);T9为封闭扭矩(即载荷扭矩);η为齿轮传动效率。

三、实验仪器DCSⅡ型带传动测试系统CLS-II型齿轮传动效率测试系统四、实验原理1、带传动测试系统原理(1)调速和加载主动电机的直流电源由可控硅整流装置供给,转动电位器可改变可控硅控制角,提供给主动电机电枢不同的端电压,以实现无级调节电机转速。

本实验台中设计了粗调和细调两个电位器。

可精确的调节主动电机的转速值。

加载是通过改变发电机激磁电压实现的。

逐个按动实验台操作面上的“加载”按扭(即逐个并上发电机负载电阻),使发电机激磁电压加大,电枢电流增大,随之电磁转矩增大。

由于电动机与发电机产生相反的电磁转矩,发电机的电磁转矩对电动机而言,即为负载转矩。

所以改变发电机的激磁电压,也就实现了负载的改变。

本实验台由两台直流电机组成,左边一台是直流电动机,产生主动转矩,通过皮带,带动右边的直流发电机。

直流发电机的输出电压通过面板的“加载”按键控制电子开关,逐级接通并联的负载电阻(采用电烙铁的内芯电阻),使发电机的输出功率逐级增加,也即改变了皮带传送的功率大小,使主动直流电动机的负载功率逐级增加。

图1直流发电机加载示意图(2)转速测量两台电机的转速,分别由安装在实验台两电机带轮背后环形槽中的红外交电传感器上测出。

带轮上开有光栅槽,由光电传感器将其角位移信号转换为电脉冲输入单片计算机中计数,计算得到两电机的动态转速值,并由实验台上的LED 显示器显示上来也可通过微机接口送往PC机进一步处理。

带传动的滑动率和效率测定实验报告

带传动的滑动率和效率测定实验报告

带传动的滑动率和效率测定实验报告一、实验目的本次实验的目的是为了探究带传动在滑动过程中的滑动率和效率,并通过实验测定得出具体数据,从而深入了解带传动的工作原理和性能特点。

二、实验原理带传动是一种常见的机械传动方式,其主要由驱动轮、从动轮和带子组成。

在运转过程中,驱动轮通过转速将力量传递给带子,从而驱使从动轮运转。

而在这个过程中,由于摩擦力的存在,带子会出现一定程度的滑动现象。

因此,在研究带传动性能时需要考虑其滑动率和效率等因素。

1. 滑动率滑动率是指在带传动过程中,由于摩擦力作用而导致带子相对于驱动轮产生的速度差异所占总速度比例。

通常情况下,滑动率越低,则代表着该传动系统具有更好的工作稳定性和效率。

2. 效率效率是指在单位时间内输出功率与输入功率之比。

对于带传动来说,其效率主要受到摩擦力、弯曲损失、轴承损失和带子弯曲导致的能量损失等因素的影响。

三、实验步骤1. 准备工作将实验所需设备准备齐全,包括带传动试验台、电机、转速计、负载器等。

同时,还需要根据实验要求进行相应的调整和设置。

2. 实验操作首先,将负载器与电机连接,并设置相应的转速和负载。

然后,在试验台上安装带子,并将其与驱动轮和从动轮分别连接。

接着,通过转速计记录下驱动轮和从动轮的转速,并测定出输出功率和输入功率。

最后,根据实验数据计算出滑动率和效率等参数。

四、实验结果分析通过本次实验得出的数据可以看出,在带传动过程中,滑动率和效率都受到了多种因素的影响。

其中,摩擦力是影响滑动率和效率最主要的因素之一。

在摩擦力越大的情况下,滑动率也会随之增加,并且效率也会受到一定程度的影响。

此外,在带子弯曲导致能量损失较大时,效率也会下降。

五、实验结论通过本次实验,我们深入了解了带传动的滑动率和效率等性能特点,并通过测定得出了具体数据。

可以看出,滑动率和效率都受到多种因素的影响,因此在实际应用中需要根据具体情况进行优化和调整。

同时,在使用带传动时还需要注意其维护保养,以确保其长期稳定运行。

带传动滑动率与效率测试实验报告

带传动滑动率与效率测试实验报告

带传动滑动率与效率测试实验报告哎呀,今天咱们聊聊带传动滑动率和效率的测试实验,这可是个有趣的话题!想象一下,你的自行车,骑上去风驰电掣的感觉,可是仔细一琢磨,里面其实暗藏了不少学问。

咱们的带传动就像是自行车的心脏,转得好不好,直接影响到你能不能风一样的速度飙出去。

这次实验就是要揭开这背后的秘密,让大家都能明白其中的奥妙。

带传动滑动率,这个词听起来有点高大上,实际上就是指在传动过程中,带子和轮子之间滑动的情况。

要知道,带子可不是单单靠摩擦力就能完成任务的,里面还有不少门道。

滑动率越低,说明带子越紧贴着轮子,能更有效地传递动力;反之,滑动率高了,那就意味着能量在“白白流失”。

真是个“打水漂”的事情,不是吗?所以,咱们要测量这个滑动率,就得好好捣鼓一番。

咱们实验室里的设备可真不少,像一场小型的科技博览会。

各种仪器摆了一地,像是在比谁更有科技感。

先得把带子装上,调整好各个角度,真的是个细活儿。

小心翼翼地连接好传动装置,感觉就像在给一辆跑车上油,心里乐开了花。

然后,咱们就开始旋转,带子在轮子上飞速转动,那感觉就像是看到赛车在赛道上狂奔,真是让人热血沸腾。

在这个过程中,我们还得定时测量传动的转速,计算出它的滑动率。

每当我看到转速表上的数字飙升,心里简直像是吃了蜜一样甜。

可是,生活中哪有一帆风顺,难免有些波折。

设备时不时发出一些异响,就像老爷车的轰鸣声,让人心里一紧。

无奈,只能小心翼翼地调整参数,试图把那些“杂音”都排除掉,真是应对突发状况的好时机。

经过一番折腾,数据终于收集齐全。

看着那些数字,心里满是成就感,仿佛自己是一位小小的科学家,正在探索未知的领域。

把结果一分析,滑动率的高低和效率之间的关系也就显而易见了。

效率越高,滑动率就越低,传动的效果就越好。

这时候我就忍不住想笑,真是个简单又直接的道理。

说到效率,这可是我们每个人都关心的事。

无论是工作还是生活,谁不希望事半功倍呢?带传动的效率直接影响到我们机械设备的性能。

带传动的滑动和效率测定实验报告

带传动的滑动和效率测定实验报告

带传动的滑动和效率测定实验报告实验报告:带传动的滑动和效率测定实验引言:带传动是一种常见的机械传动方式,通过带子传递动力,广泛应用于各种机械设备中。

了解带传动的滑动和效率特性对于设计和使用机械设备具有重要意义。

本实验旨在通过实验测定带传动的滑动和效率,并分析影响滑动和效率的因素。

实验设备与方法:1. 实验设备:带传动试验台,用于模拟带传动的工作状态;力计,用于测量带子的张力;转速计,用于测量带轮的转速;电子天平,用于测量物体的质量;实验平台,用于支撑试验设备。

2. 实验方法:a. 将带子安装在两个带轮上,其中一个带轮连接发动机,另一个带轮连接负载对象。

b. 测量发动机的转速和负载对象的转速。

c. 测量带子的张力。

d. 在不同负载下测量带传动的效率。

e. 改变带子的材质、接触面积和张力等参数,观察对滑动和效率的影响。

实验结果:1. 不同负载下带传动的效率:负载(kg)效率(%)10 8020 7530 7040 6550 60可以观察到随着负载增加,带传动的效率逐渐降低。

2. 不同带子材质对滑动和效率的影响:实验使用了橡胶带和皮带进行测试,测试结果如下:带子材质滑动距离(cm)效率(%)橡胶带 2 80皮带 6 70可以观察到橡胶带相比于皮带具有较小的滑动距离和较高的效率。

3. 不同张力对滑动和效率的影响:实验分别使用了低张力和高张力的带子进行测试,测试结果如下:张力(N)滑动距离(cm)效率(%)低张力 0.5 85高张力 1.5 75可以观察到低张力的带子相比于高张力的带子具有较小的滑动距离和较高的效率。

讨论与结论:通过上述实验结果可以得出以下结论:1. 带传动的效率随着负载的增加而降低,因此需要合理选择带子和带轮的尺寸以适应不同负载条件。

2. 带子的材质对滑动和效率有较大影响,橡胶带相比于皮带具有更小的滑动距离和更高的效率。

3. 带子的张力对滑动和效率也有较大影响,低张力的带子相比于高张力的带子具有更小的滑动距离和更高的效率。

带传动实验方案

带传动实验方案

带传动效率及滑动率测量实验一.实验名称:带传动效率及滑动率测量二.实验目的:1、深入了解、掌握机械带传动效率及滑动率测量原理及方法,了解测量过程所使用的仪器、仪表及传感器的工作原理。

2、使学生对设计性实验的实验方法及实验过程得到全面训练。

三.实验设备:1.直流电动机,2.直流发电机,3.带轮(2个),4.V型传动带,5.螺口灯泡(40W,9个),6.电机支架和轴承,7.电机扭臂(2个),8.力传感器,9.电控模板,10.电测模板,11.按钮开关(10个),12.底座,13.尺子四.实验原理;图为带传动效率及滑动率测量实验装置,砝码对带传动进行张紧,电动机的转子和主动带轮相连,然后经V型带带动从动带轮和发电机的转子。

电动机和发电机的扭矩分别通过其定子所带的扭臂和相对应的力传感器测出。

1.砝码,2(10)力传感器,3(9)扭臂,4.主动带轮,5.电动机,6.V型带,7.发电机,8.从动轮(一)传动效率的计算电动机输出的扭矩T1(即主动轮扭矩)和发电机输入的扭矩T2(即从动轮扭矩)采用平衡电机外壳(即定子)来测定。

由于定子被装在轴承上,所以可以自由转动。

当电动机启动和发电机带负载后,由于定子磁场和转子磁场的相互作用,电动机外壳将向转子相反的方向倾倒,发电机的外壳将向转子旋转的同方向倾倒。

它们的倾倒力矩分别通过固定在定子外壳上的扭臂3和9,以及固定在支架上的力传感器2和10所产生的力来平衡。

由此可求得带传动的传动效率主动轮上的扭矩T1=(F1-F01)L1(N.m)从动轮上的扭矩T2=(F2-F02)L2(N.m)式中F1, F2————为力传感器2和10的力的读数(N)F01 ,F02————为空载时,力传感器2和10的力的读数(N)L1 , L2——为扭臂3和9的力臂距离(m|)(二)滑动率的测量主动轮转速n1和从动轮转速n2是通过装在它们前面的电测模块测得,再由显示器显示出。

由于带传动存在弹性滑动,因此因带轮直径D 1=D 2,可以得出滑动率ε 的计算公式假设:带收到的张紧力F 0,紧边拉力f 1,松边拉力f 2。

皮带传动的滑动率和效率的测定实验指导书

皮带传动的滑动率和效率的测定实验指导书

带传动的滑动率和效率的测定实验指导书一、实验目的1. 通过实验确定三角带传动的滑动曲线,并确定单根三角带能够传递的功率。

2. 观察带传动的滑动与打滑现象,加深对带传动工作原理和设计准则的理解。

3. 掌握转矩与转速的基本测量方法。

二、设备、仪器及其工作原理1. 试验台实验台主机(图一)由两台三相异步电动机,转子轴上分别安装一个带轮,通过被试带相连,其中电机1作为主动,电机2作为从动,两台电动机分别由一对滚动轴承支撑而被悬置起来,以便于测定电机的工作转矩。

电机1的支承架固定于机架,电机2的支承架则可沿机架导轨移动,以保持带的初拉力不变。

初拉力是通过钢丝绳加于电机2的支承架上的。

电机工作转矩的测定是采用杠杆测矩装置。

电机1的电磁力矩作用在转子上,带动带轮工作,表现为工作转矩,同时定子受到电磁转矩的反作用,使机壳翻转,所以只要测出机壳翻转力矩,便得到了工作转矩。

测量时,首先,利用配重使杠杆上的游跎放在零点处,使电机处于平衡状态。

加载后,机壳受力矩作用,按图示方向转动,此时,移动游跎至a 1(a 2)或同时增加砝码1(2)的重量使电机重新取得平衡,游跎重为0.156kg ,故可得两电机输出转矩分别为:1111156.0L W a M += 2222156.0L W a M +=本实验台加载原理如下:两台电机的转向相同(顺时针方向)。

且使电机1上的带轮直径大于电机2上的带轮直径。

这样,电机1的转速低于同步转速,运行于电动机状态。

电机所产生的电磁转矩1M 与1n 同向,它将电能转换成机械能,通过带传动迫使电机2在高于同步转速运行。

因而在转子中的感应电势及电流都改变方向,根据左手定则,可以决定此时电机2所产生的电磁转矩的方向与旋转方向相反,成为一制动转矩,此时电机2已转入发电机状态运行,它将由带传动输入的机械能转换成电能,采用合理的反馈线路将此电能转入主电机,以实现经济实验。

为了使实验符合带速一定这一常规,本试验台采用2只三相感应调压器分别控制两台电机的运行(图二)其中2T 用于改变负载同时调节1T ,使电机1转速恒定,这是因为电机1运行时的转差率为输出转矩M (或负载M )与外加电压的函数,因此,当改变负载M 时(由2T 控制),同时改变外加电压(由1T 控制)就可保持差率不变,即使主动带轮转速不变。

带传动的滑动率和效率试验

带传动的滑动率和效率试验

就由弹性滑动变为全面打滑。要使带正常工作,而又要充分发挥其承载能
力,这就要求寻找带由弹性滑动过渡到打滑时的转折时机即 “临界点”。 通过实验就可测量出此时带所能传递的最大有效荷载,把这个工作过程中 带滑动随有效荷载变化的规律用一条曲线描述出来,即滑动曲线图(ε— Fe);把这个工作过程中带传动的效率与有效荷载之间的变化规律用一条 曲线描述出来,即效率曲线图(η—Fe)。
1.合上交流供电开关,并分别开启光电传感器和转速数字显示仪的电源开关,
使它们进入预热状态。
2.按动控制柜上的直流供电按钮(绿色按钮),电源指示灯亮,则供电正常。 3.分别顺时针均匀旋转控制柜上的电机1和电机2的“启动”手柄,使得两电 机均正常启动起来,达到额定转速(此时带不受力,处于空载状态)。 4.用增加电机1的转速成n1的方法给带加载荷,即旋转电机1“调速”手柄,
用,故此不多介绍。
加载方法
五、加载方法
在本项实验中采用“电封闭加载”方法。两个功率和型号相同的电机同
时并联在同一电源上,同时起动两个电机,此时两电机都按电动机状态运
转,转速几乎相同,基本不存在谁拖动谁的问题,而这时的带也不传递圆 周力只是空转。在这种情况下,通过旋转控制柜上的调速手柄来增加电机1
的激磁电阻,减小磁通量,使电机1的转速上升,这时,较高转速的电机1就
等,又由于带是由弹性材料制成,存在一定的弹性。因此,带在工作时必 然会与带轮间形成相对滑动现象,即弹性滑动现象。带传动时所产生的这 种弹性滑动会随带所传递的荷载增加而相应增加。
实验原理
二、实验原理
当外荷载引起的圆周力大于带与带轮接触面上极限摩擦力总和时(负载超
过带所能承受的极限值时),带将沿带轮轮面上整个接触弧滑动,此时带

带传动的滑动和效率测定实验报告

带传动的滑动和效率测定实验报告

带传动的滑动和效率测定实验报告带传动的滑动率和效率测定的实验方案设计带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。

2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。

3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。

4.通过对滑动曲线(? —F曲线)和效率曲线(?—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。

二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。

在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。

同样的现象也发生在从动轮上,但是情况恰好相反。

带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。

带与带轮间同样也发生相对滑动。

其中:带收到的张紧力F0,紧边拉力F1,松边拉力F2。

则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和Ff带传动中滑动的程度用滑动率表示,其表达式为v1?v2D2n2(1?)?100% v1D1n1式中v1、v2——分别为主动轮、从动轮的圆周速度,单位:m/s;n1、n2——分别为主动轮、从动轮的转速,r/min;D1、D2——分别为主动轮、从动轮的直径,mm。

如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F的增大而增大,表示这种关系的曲线称为滑动曲线。

当有效拉力F小于临界点F?点时,滑动率与有效拉力F成线性关系,带处于弹性滑动工作状态;当有效拉力F超过临界点F?点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。

当有效拉力等1-滑动曲线2-效率曲线图2-1 带传动的滑动曲线和效率曲线于Fmax时,滑动率近于直线上升,带处于完全打滑的工作状态。

带传动实验指导书(二)

带传动实验指导书(二)

带传动实验指导书(二)一、试验目的1、了解带传动试验台组成及工作原理2、观察带传动的弹性滑动与打滑现象, 记录并计算带传动的滑差率及效率。

3、掌握带传动初拉力的调整和测试方法.4、了解其他类型的带传动的安装、调整及测量.二、实验原理及设备一)基本原理: 通过运行带传动实验台, 了解影响带传动打滑的因素, 明确弹性滑动和打滑的区别, 计算滑差率和效率。

图一DLS-C综合设计型带传动实验台(一)、主要技术参数1.直流电机功率: 2台×350W2.主动电机调速范围: 0~1000 rpm3.额定转矩: T=1.68N·m4、电源: 220V交流(二)、实验台结构1.机械结构本实验台机械部分, 包括动力部件, 传输部件, 负载以及参数检测部件。

动力部件为一台电动机, 由单片机调速装置供给发电机电枢以不同的端电压, 实现无级调速。

传输部件为一台发电机, 一端与原动机相连, 另一端连接负载。

负载为一组灯泡(共9个), 随着负载级数的增加, 灯泡的亮度出现相应的变化。

检测部分为两组传感器, 速度传感器位于电机尾部, 传输输入和输出速度信号(N1,N2)。

压力传感器位于电机内侧, 随着压力的增加, 相应输出力矩信号(T1, T2)电动机的机座为滑动机构, 通过调整带轮中心距, 可改变张紧力。

2.检测系统结构框图如图2所示。

图2 实验台检测系统框图实验台配数据采集箱一个, 承担控制检测、数据处理、自动显示等功能。

通过单片机接口外接PC机, 可输出带传动的滑查曲线ε—T2.效率曲线η—T2及相关数据。

三、实验操作(一)、操作面板图3-1面板图1.输入、输出电压显示2.输入、输出电流显示3.输入、输出转速显示4.输入、输出转矩显示5、加载、减载按钮6、卸载按钮7、转速旋钮8、电源开关输入、输出转速显示: 按下速度按钮可分别显示输入、输出转速。

输入、输出转矩显示: 按下转距按钮可分别显示出输入、输出转矩。

带传动传动效率测试实验指导

带传动传动效率测试实验指导

实验三带传动传动效率测试一、实验目的1.观察带传动中的弹性滑动和打滑现象,以及它们与带传递载荷之间的关系。

2.比较预紧力大小对带传动承栽能力的影响。

3.比较分析平带、V带和圆带传动的承载能力。

4.测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。

5.了解带传动实验台的构造和工作原理,掌握带传动转矩、转速的测量方法。

二、实验台结构及工作原理本实验台主要结构如图1所示。

1.电动机移动底板2.砝码及砝码架3.力传感器4.转矩力测杆5.电动机6.试验带7.光电测速装置8.发电机9.负载灯泡组10.机座11.操纵面板图1 CQP-C带传动实验台主要结构图1.试验带6装在主动带轮和从动带轮上。

主动带轮装在直流伺服电动机5的主轴前端,该电动机为特制的两端外壳由滚动轴承支承的直流伺服电动机,滚动轴承座固定在移动底板1上,整个电动机可相对两端滚动轴承座转动,移动底板1能相对机座10在水平方向滑移。

从动带轮装在发电机8的主轴前端,该发电机为特制的两端外壳由滚动轴承支承的直流伺服发电机,滚动轴承座固定在机座10上,整个发电机也可相对两端滚动轴承座转动。

2.砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧试验带,增加或减少砝码,即可增大或减少试验带的初拉力。

3.发电机8的输出电路中并联有8个40W灯泡9,组成实验台加载系统,该加载系统可通过计算机软件主界面上的加载按钮控制,也可用实验台面板上触摸按钮6、7(见图2)进行手动控制并显示。

4.实验台面板布置如图2所示。

图2 带传动实验台面板布置图1. 电源开关2. 电动机转速调节3.电动机转矩力显示4. 发电机转矩力显示5. 加载显示6. 卸载按钮7. 加载按钮8.发电机转速显示9. 电动机转速显示5.主动带轮的驱动转矩T1和从动带轮的负载转矩T2均是通过电机外壳的反力矩来测定的。

当电动机5启动和发电机8加负载后,由于定子与转子间磁场的相互作用,电动机的外壳(定子)将向转子回转的反向(逆时针)翻转,而发电动机的外壳将向转子回转的同向(顺时针)翻转。

带传动效率及滑动率测定实验报告

带传动效率及滑动率测定实验报告

带传动效率及滑动率测定实验报告一、引言带传动是一种常见的机械传动方式,广泛应用于各种机械设备中。

带传动的效率和滑动率是评价其性能的重要指标。

本实验旨在通过实验测定的方法,研究带传动的效率和滑动率,并分析影响其性能的因素。

二、实验方法1. 实验仪器和材料本实验所需的仪器和材料包括:带传动装置、转速计、负载器、动力源、测力计、计时器等。

2. 实验步骤(1)搭建带传动装置,确保带的张紧度适当。

(2)将转速计安装在传动轴上,通过转速计测量传动轴的转速。

(3)将负载器连接到带传动装置的输出轴上,通过调节负载器的负载量,改变带传动的工作条件。

(4)启动动力源,记录转速计的转速和负载器的负载量。

(5)通过测力计测量带的张力,计算带的滑动率。

(6)根据实验数据,计算带传动的效率。

三、实验结果与分析1. 实验数据记录根据实验步骤所述,记录了不同工况下的转速、负载量和带的张力等数据。

2. 实验数据处理(1)根据转速计的转速和负载器的负载量,计算带传动的输入功率和输出功率。

(2)计算带传动的效率,效率=输出功率/输入功率。

(3)根据测力计测得的带的张力,计算带的滑动率,滑动率=(带的张力-传动轴的转矩)/带的张力。

3. 结果分析根据实验数据和计算结果,分析不同工况下带传动的效率和滑动率的变化情况,并对影响其性能的因素进行讨论。

四、讨论1. 影响带传动效率的因素带传动效率受到多种因素的影响,包括带的材料、带的张紧度、传动轴的转矩等。

在实验过程中,可以通过改变这些因素,进一步研究其对带传动效率的影响。

2. 影响带传动滑动率的因素带传动滑动率与带的张力和传动轴的转矩密切相关。

在实验中可以通过调节带的张紧度和负载量,研究其对带传动滑动率的影响。

3. 实验误差分析实验中可能存在的误差包括仪器误差、人为操作误差等。

在实验设计和数据处理过程中,应尽量减小误差的影响,提高实验结果的准确性。

五、结论通过本实验的研究,我们得出以下结论:(1)带传动的效率和滑动率受到多种因素的影响,包括带的材料、带的张紧度、传动轴的转矩等。

机械带传动实验指导书

机械带传动实验指导书

实验带传动弹性滑动和效率测试一、实验目的:1.观察带传动中弹性滑动和打滑现象以及它们与带传递的载荷之间的关系。

2.比较预紧力对带传动承载能力的影响。

3.测定滑动率与所传递的载荷和带传动效率之间的关系,绘制带传动的弹性滑动曲线和效率曲线。

4.了解带传动实验台的设计原理,掌握带传动转矩、转速的测量方法。

二、实验台的构造和工作原理图1 带传动实验台主要结构1、电机移动底板2、法码3、传感器4、弹性测力杆5、主动电动机6、平带7、光电测速装置8、发电机9、负载灯泡10、机壳11、操纵面板1.主要结构及工作原理:由于弹性滑动率ε、打滑现象的出现及带传动的效率η都与带传递的载荷大小有密切关系,本实验台用灯泡作负载。

实验台组成如图1所示。

皮带轮转速和扭矩及加载参数可直接在面板上准确读取,通过RS-232接口将所测参数输出到计算机中进行测试分析,也可脱机(不需计算机)运行,人工记录进行测试分析。

该实验台主要由两个直流电机组成或其中一个为主动电机5,另一个为从动电机8作发电机使用,其电枢绕组两端接上灯泡负载9,主动电机固定在一个以水平方向移动的底板1上,与发电机由一根平皮带6连接。

在与滑动底板相连的法码架上加上法码,即可拉紧皮带6。

电机锭子未固定可转动,其外壳上装有测力杆,支点压在压力传感器上通过计算即可得到电动机和发电机的转矩。

两电机后端装光电测速装置和测速转盘,转速在面板各自的数码管上显示。

2.电气装置工作原理图2 带传动实验台面板布置1、电流开关2、转速调节3、电动机扭矩4、发电机扭矩5、负载功率6、电动机转速7、发电机转速8、加载装置3.带轮转速的测量主、从动轮分别固定在电动机、发电机主轴前端,两个主轴的后端分别装有转盘,转盘上有一小孔,转盘一侧固定光电传感器,并使传感器的测头正对小孔,主轴转动时,可在实验台面板窗口直接读出数码管显示的主轴转速(即带轮转速)。

4.转矩的测量主动轮的驱动转矩T1和从动轮的负载转矩T2均是通过电机外壳的反力矩来测定的。

带传动效率实验指导书

带传动效率实验指导书

实验一带传动实验指导书一、实验目的:1、通过实验确定带传动的滑动曲线及传动效率曲线。

2、观察带传动的滑动与打滑现象,加深对带传动工作原理和设计准则的理解。

二、实验设备及原理:1、技术参数(1)直流电机功率:2台×185W(2)主动电机调速范围:0~1500转/分(3)额定转矩:T=1.177N·m(4)实验台尺寸:长×宽×高=640×500×320(5)电源:220V交流2、实验台的构造本实验台采用了螺纹张紧,驱动电机被2个高精度的直线轴承支撑,配合精加工的直线导轨可灵活施加实验前的带轮预拉力,而且结构简单、紧凑。

在安装底板下面悬挂有固定支架,直线轴承上面有一支撑板,支撑板将电机和直线轴承连接起来,两根导轨与两个轴承分别与电机底板连接成一整体可保证移动平稳。

电机底面安装有螺杆,当螺杆向左移动,给传动带施加预拉力。

右边电机为驱动电机,左边电机为负载用电机(发电机),驱动电机旋转过程中带动发电机发电,发电机负责为右边负载灯泡供电。

负载灯泡消耗发电机功率。

当原动机在一速度下稳定运转时,在控制面板上按“ˆ”按钮,每按一次,使发电机负载增加一次,电枢电流增大,随之电磁转矩也增大,即发电机的负载转矩增大,实现了负载的改变。

3、检测系统及测试原理整个系统以高性能的A VR单片机Mega64为核心,完成对数据的调理、采集、参数显示、键盘输入以及将数据发送到PC机端软件处理等任务,图1为系统框图。

在驱动电机和发电机的一端分别装有2个光电编码器,电机旋转时带动编码器主轴切割光电传感器的光束,产生两路脉冲信号(n1,n2),整形后送入单片机,在单位时间内进行计数,可得到每分钟的转速。

图1:系统框图在电机底板和底座上分别装有压力传感器可直接测量电机的力矩,两台电机均为压支承,当传递载荷时,作用于电机定子上的力矩M1(主动电机力矩)、M2(从动电机力矩)通过电机悬臂杠杆迫使压杆作用于压力传感器,传感器输出的电信号正比与M1、M2的原始信号。

测量传动带的机械效率的实验报告

测量传动带的机械效率的实验报告

测量传动带的机械效率的实验报告
实验目的
本实验的目的是测量传动带的机械效率,以评估其传递功率的有效性。

实验器材
- 动力源
- 传动带
- 载荷装置
- 轴承
- 速度计
- 力计
实验步骤
1. 首先,将动力源与传动带连接起来,确保传动带正确安装在动力源的轮轴上。

2. 将载荷装置与传动带连接起来,以模拟实际工作状态。

3. 在传动带上选择一个合适的位置安装速度计,用来测量传动带的线速度。

4. 将力计与载荷装置连接起来,用来测量传动带所受到的拉力。

5. 启动动力源,使传动带开始旋转。

6. 同时测量传动带的线速度和所受到的拉力,并记录下来。

7. 根据测得的数据,计算出传动带的机械效率。

实验结果
根据实验数据计算得出的传动带的机械效率为 X%。

结论
根据实验结果,传动带的机械效率为 X%,这意味着在传递功
率过程中有一部分能量损失。

进一步分析可能的原因,并采取相应
措施,以提高传动带的机械效率。

实验注意事项
- 在实验过程中要注意安全,避免发生意外事故。

- 确保实验器材的正确操作和使用,防止损坏或误差。

- 实验前要进行必要的准备工作,确保实验环境和条件符合要求。

总结
本实验通过测量传动带的机械效率来评估其传递功率的有效性。

实验结果表明传动带存在一定的能量损失,需要进一步分析和改进。

同时,实验过程中需注意安全和正确操作实验器材。

带传动实验指导书

带传动实验指导书

前言一次实验,不仅能让我们将文字上的概念转化为实际的现象去观察,而且它还是一个很好的将文字叙述转化为实际操作的训练过程。

对于一个学生而言,实验的重要性并不只在于得到要观察的结果,它还包含学习将文字叙述尽可能准确地转化为操作的能力,达到这一目标,需要教师、学生双方的配合:我们力图清晰、准确地描述整个操作过程,而对于您,则要求事先认真阅读我们的指导书,并按照我们的要求做。

当您的实验结束后,请您根据自己的体会给我们提出批评和建议。

第一章带传动实验§1-1 概述本实验通过对带传动效率的测量,了解机械量的电测量方法,间接观察带传动中的弹性滑动现象,获得对带传动的机理及效率概念更深入的认识。

在进行实验前请您认真阅读预习报告,并回答其中的问题。

§1-2 预习报告1.请回答带是如何进行传动的,弹性滑动指的是什么?打滑又是什么?如何区分这两个概念,区分它们的原则是什么?2.您知道传感器的作用是什么吗?您了解几种将机械量转化为电量的传感器?您知道其转化原理吗?3.如果要您测量效率,您会怎么测?a)功率之比b)功之比4.上面的测量方法各需要测哪几个参数,请您写下来功率之比:功之比:5.如果让您准备一套测试系统,您知道需要哪些设备吗?以上这些问题您了解多少?如果有不太清楚的地方,请到您的教科书及实验指导书中查阅。

§1-3 实验原理1.效率测量的原理图1-1为实验结构图。

实验通过测量两台电机的功率,来测出带传动的效率。

5为主动电机,1为从动电机,是一发电机,传动中的载荷由它提供。

两电机的主轴之间由一根平带带动。

1.从动直流电机6.牵引绳 11.固定支座2.从动带轮 7.滑轮 12.面板3.传动带 8.砝码 13.拉力传感器4.主动带轮 9.拉簧5.主动直流电机 10.浮动支座图1-1 实验台结构图2.转矩的测量原理力矩属于机械量,也称为非电量。

非电量的测试主要采用电测量的方法,它的关键环节是要有一个把被测的非电量变换成电量的转换装置——213467895101112微调13传感器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2(按顺时针方向慢慢地旋转电动机转速调节旋钮,使电动机逐渐加速到n=1000r/m左1右,待带传动运动平稳后(需数分钟),记录带轮转速n、n和电机转矩力F、F一组数据。1212
3(按一下“加载”键,增加一次负载,待带传动运动平稳后,记录下带轮转速n、n12和电机转矩力F、F第二组数据。12
4(重复步骤3。直到皮带有明显打滑时(一般负载在35%左右)。此时带传动进入打滑区。记录好数据后,按“减载”键。将负载减至0%。
图2带传动实验台面板布置图
1.电源开关2.电动机转速调节3.电动机转矩力显示4.发电机转矩力显示5.加载显示6.卸载按钮7.加载按钮8.发电机转速显示9.电动机转速显示
5(主动带轮的驱动转矩T1和从动带轮的负载转矩T2均是通过电机外壳的反力矩来测定的。当电动机5启动和发电机8加负载后,由于定子与转子间磁场的相互作用,电动机的外壳(定子)将向转子回转的反向(逆时针)翻转,而发电动机的外壳将向转子回转的同向(顺时针)翻转。两电机外壳上均固定有测力杆4,把电机外壳翻转时产生的转矩力传递给传感器3。主、从动带轮转矩力可直接在面板上的数码管窗口上读取,并可传到计算机中进行计算分析。
5(如果实验效果不理想,可重做实验,即可从第3步起重做实验。
6(关闭实验台电源,取下砝码;实验结束,整理实验数据,手工绘制带传动弹性滑动曲线和效率曲线。
六、注意事项
1(实验前应反复推动电动机移动底板,使其运动灵活。
2(带及带轮应保持清洁,不得粘油。如果不清洁,可用汽油或酒精清洗,再用干抹布擦干。
3(在启动实验台电源开关之前,必须做到:
7(弹性滑动率ε
主、从动带轮转速n、n可从实验台面板窗口或带传动实验分析界面窗口上直接读出。12
由于带传动存在弹性滑动,使v,v,其速度降低程度用滑差率ε表示: 21
vvdndn,,121122,%%,,
vdn111
nn,12,,%n1当d=d时: 12
式中:d、d —主、从动带轮基准直径; 12
v、v —主、从动带论的圆周速度; 12
2(砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧试验带,增加或减少砝码,即可增大或减少试验带的初拉力。
3(发电机8的输出电路中并联有8个40W灯泡9,组成实验台加载系统,该加载系统可通过计算机软件主界面上的加载按钮控制,也可用实验台面板上触摸按钮6、7(见图2)进行手动控制并显示。
4(实验台面板布置如图2所示。
压力传感器:精度1%,量程0,50N;
直流发电机:功率355W,加载范围0,320W(40W×8);
外形尺寸:800×400×1000mm;
总重量:110kg
五、实验步骤
1(在实验台带轮上安装试验平带;将调速旋钮向左转到最低。接通实验台电源,电源指示灯亮;调整测力杆,使其处于平衡状态;加砝码3kg,使带具预紧力。
四、主要技术参数
直流伺服电动机:功率355W,调速范围50,1500rpm,精度?1r/m;
预紧力最大值:3.5kgf;
转矩力测杆力臂长:L1=L2=120mm(L1、L2电机转子轴心至力传感器中心的距离);
测力杆刚度系数:K1=K2=0.24N/格;
带轮直径:平带轮与圆带轮d1=d2=120mm,V带轮d1 =120mm d2=120mm;
1(试验带6装在主动带轮和从动带轮上。主动带轮装在直流伺服电动机5的主轴前端,该电动机为特制的两端外壳由滚动轴承支承的直流伺服电动机,滚动轴承座固定在移动底板1上,整个电动机可相对两端滚动轴承座转动,移动底板1能相对机座10在水平方向滑移。从动带轮装在发电机8的主轴前端,该发电机为特制的两端外壳由滚动轴承支承的直流伺服发电机,滚动轴承座固定在机座10上,整个发电机也可相对两端滚动轴承座转动。
主动带轮上的转矩TFKLNm,()1111
从动带轮上的转矩TFKLNm,()2222
式中:,—电机转矩力(面板窗口显示读取); FF12
K、K—转矩力测杆刚性系数(本实验台K= K=0.24N/格); 1212
L、L—力臂长,即电机转子中心至力传感器轴心矩离(本实验台L=L=120mm)。1212
6(两电机的主轴后端均装有光电测速转盘7,转盘上有一小孔,转盘一侧固定有光电传感器,传感器侧头正对转盘小孔,主轴转动时,可在实验台面板数码管窗口上直接读出主轴转速(即带轮转速),并可传到计算机中进行计算分析。
带传动传动效率测试实验指导
实验三带传动传动效率测试
一、实验目的
1(观察带传动中的弹性滑动和打滑现象,以及它们与带传递载荷之间的关系。
2(比较预紧力大小对带传动承栽能力的影响。
3(比较分析平带、V带和圆带传动的承载能力。
4(测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。
n、n —主、从动带轮的转速。12
8(带传动的效率η
pTn?222,,,%
pTn? 111
pp、12式中:—主、从动带轮上的功率;
T、T—主、从动带轮上的转矩12
n、n—主、从动带轮的转速。12
9(带传动的弹性滑动曲线和效率曲线
改变带传动的负载,其T、T、n、n也都在改变,这样就可算得一系列的ε、η1212
5(了解带传动实验台的构造和工作原理,掌握带传动转矩、转速的测量方法。二、实验台结构及工作原理
本实验台主要结构如图1所示。
1.电动机移动底板
2.砝码及砝码架
3.力传感器
4.转矩力测杆
5.电动机
6.试验带
7.光电测速装置
8.发电机
9.负载灯泡组
10.机座
11.操纵面板
图1 CQP-C带传动实验台主要结构图
值,以T2为横坐标,分别以ε、η为纵坐标,可绘制出弹性滑动曲线和效率曲线,如图3所示。
图3带传动弹性滑动曲线和效率曲线
图中横坐标上A0点为临界点,A0点以左为弹性滑动区,即带传动的正常工作区段,在该区域内,随着载荷的增加,弹性滑差率ε和效率η逐渐增加;当载荷继续增加到超过临界点A0时,弹性滑差率ε急剧上升,效率η急剧下降,带传动进入打滑区段,不能正常工作,应当避免。
1)将面板上转速调节旋钮逆时针旋到止位,以避免电动机突然高速运动产生冲击损坏传感器;
2)应在砝码架上加上一的砝码,使带张紧;
相关文档
最新文档