八年级上册几何证明的重要定理
青岛版八年级数学上册典例举析:几何证明
• 所以∠ADE=∠DAE,故EA=ED. • 因为EA是圆的切线,所以由切割线定理知, • EA2=EC·EB. • 而EA=ED,所以ED2=EC·EB.
ppt精品课件
热点三 四点共圆的判定
【例4】 如图,已知△ABC的两条角平分线 AD和CE相交于H,∠B=60°,F在AC 上,且AE=AF.证明:(1)B、D、H、E 四点共圆; (2)EC平分∠DEF. 证明 (1)在△ABC中,因为∠B=60°, 所以∠BAC+∠BCA=120°. 因为AD、CE是角平分线, 所以∠HAC+∠HCA=60°, 故∠AHC=120°.
• (1)证明:A,P,O,M四点共圆; • (2)求∠OAM+∠APM的大小.
ppt精品课件
(1)证明 连接OP、OM, ∵AP与⊙O相切于P,∴OP⊥AP, 又∵M是⊙O的弦BC的中点, ∴OM⊥BC, 于是∠OMA+∠OPA=180°, 由圆心O在∠PAC的内部,
ppt精品课件
可知四边形 APOM 的对角互补, ∴A,P,O,M 四点共圆. (2)解 由(1)得 A,P,O,M 四点共圆,可知∠OAM =∠OPM,又∵OP⊥AP,由圆心在∠PAC 的内部, 可知∠OPM+∠APM=90°, ∴∠OAM+∠APM=90°.
ppt精品课件
• (2)相似三角形的性质 • ①相似三角形对应高的比、对应中线的比和对应角平分线的比
都等于相似比; • ②相似三角形周长的比等于相似比; • ③相似三角形面积的比等于相似比的平方. • (3)直角三角形的射影定理:直角三角形中,每一条直角边是这
条直角边在斜边上的射影与斜边的比例中项;斜边上的高是两直角 边在斜边上射影的比例中项. • 2.(1)圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角 的一半. • (2)圆心角定理:圆心角的度数等于它所对弧的度数.
八年级数学理科班讲义教学-几何证明
B CD AOB CE DA A CB ’ CA B C B ’ C 8、八年级数学理科班:直角三角形全等判定、性质姓名一、【直角三角形全等的特殊判定方法】知识要点:一条直角边和斜边对应相等的两个直角三角形全等。
简记为HL 。
1、【定理证明】已知:如图,在Rt △ABC 和Rt △A’B’C’中,∠C=∠C’=90°,AC=A’C’,AB=A’B’ 求证: Rt △ABC ≌Rt △A’B’C’2、【直角三角形全等判定方法梳理】如图,具有下列条件的Rt △ABC 和Rt △A’B’C’(其中∠C=∠C’=90°)是否全等?如果全等在( )里打“√”,并在“——”上填写判定三角形全等的理由,如果不全等,在( )里打“×”. (1)AC=A’C’,∠A=∠A’ ( ) _______ (2)AC=A’C’,BC=B’C’ ( ) _______ (3)AB=A’B’,BC=B’C’ ( ) _______ (4)∠A=∠A’,∠B=∠B’ ( ) ________3、【应用练习】 选择题1.下列说法正确的有( )① 斜边和一条直角边对应相等的两个直角三角形全等② 两条边分别相等的两个直角三角形全等 ③ 两条直角边对应相等的两个直角三角形全等 ④ 斜边相等的两个等腰直角三角形全等A .1个B .2个C .3个D .4个2.已知,如图,BD ⊥AC 于D,CE ⊥AB 于E,BD 与CE 相交于O , 且BD=CE ,则图中全等的三角形共有( )A .1对B .2对C .3对D .4对3.如果两个三角形的两条边和其中一边上的高对应相等,那么这两个三角形的第三边 所对的角( )A .相等B .不相等C .互余或相等D .相等或互补4.如图,已知:∠A=∠D=90°,AB=CD,求证:AC=DBBC F E DABC FE D AB C F E D A5.如图,已知:AB=CD,AE ⊥BC,DF ⊥BC,BF=CE.求证:AB ∥CD6.如图,已知:AB=AE, ∠B=∠E=90°,AF 垂直平分CD,求证:BC=DE7.如图,已知:AD 平分∠BAC,DB ⊥AB,DF ⊥AC 于点F ,ED=CD,求证:AC=AE+2BE.8.已知:AC ⊥BC ,AD ⊥BD ,AD=BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F , 求证:CE=DF二、直角三角形的性质 1、【定理】①直角三角形的两个锐角互余(显然) ②直角三角形斜边上的中线等于斜边的一半 2、【定理证明】已知:在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 的中线.求证:AB CD 21例1.如图,△ABC中,BD⊥AC于D,CE⊥AB与E,连接DE,取BC的中点M,DE的中点N,问:MN与DE有什么样的位置关系,并说明理由。
八年级上册数学几何证明定理
七年级常用几何证明的定理1、对顶角相等∵∵1与∵2互为对顶角∵∵1=∵22、垂直的定义∵∵AOB=90°∵AB∵CD∵AB∵CD∵∵AOB=90°3、平行公理平行于同一直线的两直线平行。
∵AB∥EF,CD∥EF∴AB∥CD4、同位角相等,两直线平行∵∠1=∠2∴AB∥CD5、内错角相等,两直线平行∵∠1=∠2∴AB∥CD6、同旁内角互补,两直线平行∵∠1+∠2=180O∴AB∥CD7、垂直于同一直线的两直线平行∵a⊥c,b⊥c∴a∥b8、两直线平行,同位角相等∵AB∥CD∴∠1=∠29、两直线平行,内错角相等∵AB∥CD∴∠1=∠210、两直线平行,同旁内角互补∵AB∥CD∴∠1+∠2=180°11、余角的性质:同角或等角的余角相等∵∠3与∠4互为对顶角∴∠3=∠4∵∠1+∠3=90°∠2+∠4=90°∴∠1=∠212、补角的性质:同角或等角的补角相等∵∠AOB+∠BOD=180°∠AOC+∠COD=180°且∠BOD=∠AOC∴∠AOB=∠COD八年级常用几何证明的定理1、三角形的角平分线∵BD是△ABC的角平分线∴∠ABD=∠CBD=∠ABC2、三角形的中线∵BD是△ABC 的中线∴AD=BD=AB3、三角形的高线:∵AD是△ABC的高∴∠ADB=∠ADC=90°4、三角形三边的关系:三角形两边之和大于第三边,两边之差小于第三边。
如图:|AB-AC|<BC<AB+AC12125、三角形内角和定理(证明:用内角转化为平角)在△ABC中:∠A+∠B+∠C=180°6、直角三角形的两锐角互余∵△ABC中,∠C=90°∴∠A+∠B=90°7、有两个角互余的三角形是直角三角形∵∠A+∠B=90°∴△ABC是直角三角形8、三角形的一个外交等于和它不相邻的两内角之和∵∠ACD是△ABC的外角∴∠ACD=∠A+∠B9、多边形的内角和=180°×(n-2)n边形每增加一条边,内角和的度数就增加180°10、多边形的外角和等于360°11、全等三角形的性质:全等三角形的对应边相等,对应角相等∵△ABC≌△DEF∴AB=DE,BC=EF,AC=DF∠A=∠E,∠B=∠F,∠C=∠G(字母要对应)12、全等三角形的判定定理:13、角平分线的性质(角相等推出垂线段相等)角的平分线上的点到角的两边的距离相等(用AAS证明)∵OC是∠AOC的平分线且PD⊥AO,PE⊥BO∴PD=PE14、角平分线的判定(垂线段相等推出角相等)角的内部到角的两边的距离相等的点在角平分线上(用HL证明)∵ PD ⊥AO ,PE ⊥BO ,PD =PE ∴点P 在∠A0B 的平分线OC 上15、垂直平分线的性质线段垂直平分线上的点与这条线段两个端点的距离相等(用SAS 证明) ∵L ⊥AB ,CA=CB ∴PA =PB16、垂直平分线的判定与线段两个端点距离相等的点在这条线段的垂直平分线上(用HL 证明) ∵PA =PB∴点P 在AB 的垂直平分线L 上17、对称坐标点(x ,y )关于x 轴对称的点的坐标为(x ,-y ) 点(x,y )关于y 轴对称的点的坐标为(-x ,y ) 关于x 轴称,x 的坐标不变, 关于y 轴称,y 的坐标不变。
北师大版八年级上册几何知识点归纳总结
八年级上册第一章 勾股定理1、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+.我国古代把直角三角形中较短直角边称为勾,较长直角边称为股, 斜边称为弦,因此把此定理称为勾股定理.几何语言:在Rt△ABC 中,△C =90°,由勾股定理得: 222c b a =+(常见书写:222222a c b b c a b a c -=-=+=或或)注意:勾股定理只适合于直角三角形;用勾股定理时要分清直角边和斜边.辨识应用:在Rt△ABC 中,△A =90°,由勾股定理得:222a b c =+2、勾股定理证明:勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变, ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理. 常见方法如下:内弦图模型:△4EFGH S S S ∆+=正方形正方形ABCD ,即:2214()2ab b a c ⨯+-=,∴化简得:222c b a =+.外弦图模型:△大正方形小正方形△S S S =+4,即:()22214b a c ab +=+⨯,△化简得:222c b a =+.总统模型:∵1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,△化简得:222c b a =+.拓展归纳:以直角三角形三边向外作正方形、等边三角形、半圆、等腰直角三角形所得图形面积满足:321S S S =+cb aHG F EDCB A abcc baED C B Abacbac cabcab3、勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形.几何语言:在△ABC 中,若计算得222c b a =+, △△ABC 是直角三角形,△C =90°要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形).(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边).4、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)5、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关.6、勾股定理与勾股定理逆定理的应用(1)圆柱中的最短问题(立体图形转平面图形)①、瘦高型:在Rt△ABC 中,22BC AC AB += ②、矮胖型:最短=AD +BD注:计算此类问题,当无法判断时候,可以两种都计算比较,最后写出最短路径.(2)长方体中的最值问题①若a<c<b,那么表面A到B的最小距离为:()22b=+cd+a②内部A到B的最小距离为:2c22+d+=ab(3)折叠中的方程问题例:在矩形ABCD中AB=8cm,BC=10cm,将△AD E沿AE折叠使得点D落在边BC上的点F上,求CE的长分析:设CE=x cm,其他线段用x表示,在Rt△CEF中,不难用勾股定理得到一个关于x的方程,从而求出未知数.第七章 平行线的证明一、命题、定理、证明 1、命题的概念判断一件事情的语句,叫做命题. 理解:命题的定义包括两层含义:(1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断. 每个命题都是由条件和结论构成,命题通常写出“如果……那么……”的形式,其中如果引出条件,那么引出结论.2、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题. 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题.举反例:在说明一个命题是假命题,举一个满足条件不满足结论的例子,就叫作举反例.3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理. 北师大版选取九条基本事实作为证明的出发点和依据作: (1)两点确定一条直线; (2)两点之间线段最短;(3)同一平面内,过一点有且只有一条直线与已知直线垂直; (4)同位角相等,两直线平行;(5)过直线外一点有且只有一条直线与这条直线平行; (6)两边及其夹角分别相等的两个三角形全等; (7)两角及其夹边分别相等的两个三角形全等; (8)三边分别相等的两个三角形全等;(9)两条直线被一组平行线所截,所得的对应线段成比例.除开上述公理以为:数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据.例如:4、定理用推理的方法判断为正确的命题叫做定理. 5、证明判断一个命题的正确性的推理过程叫做证明. 6、证明的一般步骤(1)根据题意,画出图形.(2)根据题设、结论、结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.()等式性质c b c a b a +=+∴= ()等量代换c a c b b a =∴==,已学定理:(1)同角(等角)的补角相等. 几何语言:(2)同角(等角)的余角相等.几何语言:(3)三角形的任意两边之和大于第三边. 几何语言:(4)对顶角相等. 几何语言:2、平行线的性质与判定(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行.同位角相等,两直线平行.几何语言:△△1=△4,△a △b.(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行.简称:内错角相等,两直线平行.几何语言:△△3=△4,△a △b.(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.简称:同旁内角互补,两直线平行.几何语言:△△4+△2=180°,△a △b.推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.几何语言:△a △b ,c △b,311803118021∠=∠∴︒=∠+∠︒=∠+∠, 31421804318021∠=∠∴∠=∠︒=∠+∠︒=∠+∠,, 3190319021∠=∠∴︒=∠+∠︒=∠+∠, 314290439021∠=∠∴∠=∠︒=∠+∠︒=∠+∠,, .,,c b a c b a ABC >是边长,那么中,在△+2121∠=∠∴∠∠是对顶角与△a△c.4、平行线的性质(1)两直线平行,同位角相等.几何语言:△a△b,△△1=△4.(2)两直线平行,内错角相等.几何语言:△a△b,△△3=△4.(3)两直线平行,同旁内角互补.几何语言:△a△b,△△4+△2=180°.4、三角形的内角和定理及推论(1)三角形的内角和定理:三角形三个内角和等于180°.几何语言:△在△ABC中,△△A+△B+△C=180°.证明方法:构造辅助线(过一顶点作对边平行线),通过平行把角搬运到一平角.(2)推论(由一个基本事实或定理直接推到出的定理):△三角形的一个外角等于和它不相邻的来两个内角的和。
北师大版-数学-八年级上册-《勾股定理》教学分析与建议
北师大版八年级数学(上)第一章勾股定理教学分析与建议一、主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。
它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。
它是几何学中的重要的定理之一。
教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。
当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。
二、评价建议1,关注对探索勾股定理等活动的评价。
一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。
2,关注考查对勾股定理及其逆定理的理解和应用。
注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。
三、教学目标l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。
勾股定理的发现、验证和应用蕴涵着丰富的文化价值。
勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。
八年级数学上册几何定理的表达 与证明
八上数学定理的几何表达一、三角形的三边关系三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
几何表达式:在△ABC中,AB+AC>BC;AB-AC<BC;二、三角形的高线从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线。
几何表达式:(1)∵AH是ΔABC的高∴∠AHC=90°(垂直定义)(2) ∵∠AHC=90°∴AH是ΔABC的高(判定垂直)三、三角形的中线在三角形中,连结一个顶点和它对边中点的线段叫做三角形的中线.几何表达式:(1) ∵AD是三角形的中线∴BD = CD(性质)(2) ∵BD = CD∴AD是三角形的中线(判定)四、三角形的角平分线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.几何表达式:(1)∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义)(2) ∵∠BAD=∠CAD∴AD是∠BAC的平分线(角平分线判定)五、三角形的内角和与外角和(1)三角形的内角和180°;(2)直角三角形的两个锐角互余;(3)三角形的一个外角等于和它不相邻的两个内角的和;(4)三角形的一个外角大于任何一个和它不相邻的内角。
(1)在△ABC中,∠ A+ ∠ B+ ∠ C=180°(2)在Rt△ABC中,∵∠B=90°∴∠A+∠C=90°(3)∠ACD=∠A+∠B(4)∠ACD>∠A∠ACD>∠B六、全等三角形的性质全等三角形的对应边相等,对应角相等。
∵△ABC≌△DEF∴AB=DE, AC=DF, BC=EF∴∠A=∠D, ∠B=∠E, ∠C=∠F.七、全等三角形的判定1. 三边对应相等的两个三角形全等. 边边边(SSS)2. 两边和它们的夹角对应相等的两个三角形全等. 边角边(SAS)3. 两角和它们的夹边对应相等的两个三角形全等. 角边角(ASA)4. 两角和其中一角的对边对应相等的两个三角形全等. 角角边(AAS)5. 斜边和一条直角边对应相等的两个直角三角形全等. 斜边、直角边(HL)(1)在△ABC和△DEF中∴△ABC≌△DEF(SSS)(2)在△ABC和△DEF中AB=DEAC=DFBC=EFAB=DE∴△ABC≌△DEF(SAS)(3)在△ABC和△DEF中∴△ABC≌△DEF(ASA)(4)在△ABC和△DEF中∴△ABC≌△DEF(AAS)(5)在Rt△ABC和Rt△A′B′C′中∴Rt△ABC≌Rt△A′B′C′(HL)或在Rt△ABC和Rt△A′B′C′中∴Rt△ABC≌Rt△A′B′C′(HL)∠A=∠D∠B=∠EAB=DE∠A=∠DBC=EF∠B=∠EAC=A′C′AB=A′B′BC=B′C′AB=A′B′八、角平分线的性质角平分线上的点到角的两边的距离相等。
八年级上册几何证明知识点
八年级上册几何证明知识点几何证明是几何学中的重要内容之一,是数学学习的必修课。
而在八年级上册几何学习中,有些重要的证明知识点需要我们特别注意和掌握。
下面,我们就来一一梳理这些知识点。
1. 直角三角形的性质证明
直角三角形是我们几何学习中最基础的一个知识点,学生们要掌握直角三角形的性质、勾股定理等重要概念,同时也要能熟练地进行证明。
常见的直角三角形证明有“勾股定理证明”、“三角形内角和证明”等。
2. 等腰三角形的性质证明
等腰三角形也是我们几何学习中的一个重点知识点,其性质是指两边相等、两角相等。
在证明过程中,常用的方法有等角、割角、共线等方法,最终要得到等腰三角形的性质。
3. 同位角证明
同位角是指两个角位于平行线同侧且对应相等的角,其证明方法有构造直线也平行于给定平行线、重心定理、余角定理等。
4. 交错角证明
交错角是指两条相交的直线以及这两条直线所夹的四个角中的一对相对角,其证明方法有构造外接圆、平行四边形的证明方法等。
5. 分类讨论证明
分类讨论是几何证明中的常用方法,在具体应用中需要分析情况来进行证明。
例如,在证明二等分线的性质时,我们需要根据三角形种不同的情况进行分析,从而得出最终的结论。
以上就是八年级上册几何证明的一些重要知识点,需要同学们特别注意和掌握。
在学习过程中,需要多加练习和思考,逐渐提高自己的证明能力和水平。
圆幂定理浙教版八年级上册
圆幂定理浙教版八年级上册圆幂定理是几何学中一个重要的定理,出现在我国初中数学教材的八年级上册。
它涉及到圆、线段、角度等几何元素,为我们解决实际问题提供了有力的工具。
下面,我们将详细介绍圆幂定理的相关内容。
一、圆幂定理的定义及意义圆幂定理是指:在同一个圆中,相交弦(非直径)的长度乘以其所对的圆心角的正弦值,等于两弦端点与圆心构成的直角三角形的面积的两倍。
用数学公式表示为:AC × sinA = 2 × △ABC的面积。
这个定理在实际应用中具有很大的价值,可以帮助我们快速计算几何图形的面积、周长等参数。
二、圆幂定理的应用1.求解弦心距:已知弦长和弦所对的圆心角,可以利用圆幂定理求解弦心距。
2.求解三角形面积:已知三角形的一条边和对应的角度,可以利用圆幂定理求解三角形面积。
3.求解圆的半径:在已知弦长和弦所对的圆心角的情况下,可以利用圆幂定理求解圆的半径。
4.求解扇形面积:已知扇形的半径和圆心角,可以利用圆幂定理求解扇形面积。
三、圆幂定理的证明证明圆幂定理的方法有很多,这里我们以向量法为例进行证明。
设圆心为O,弦AB的两端点分别为A、B,圆心角为AOB,弦心距为OC。
根据向量加法、减法及数乘运算,我们可以得到以下关系:1.OA × OB = OC × OA + OC × OB2.OC × OA = △AOC的面积× 23.OC × OB = △BOC的面积× 2将上述三个式子相加,可以得到:OA × OB +OC × OA + OC × OB = 2 × (△AOC的面积+ △BOC的面积)根据向量数量积的性质,我们知道:OA × OB = △AOB的面积× R(R为圆的半径)将上式代入前面的等式,可以得到:△AOB的面积× R + OC × OA + OC × OB = 2 × (△AOC的面积+△BOC的面积)整理后,我们可以得到圆幂定理的公式:AC × sinA = 2 × △ABC的面积四、总结与拓展圆幂定理是几何学中的一个基本定理,掌握它有助于我们更好地解决实际问题。
八年级数学上册 第一章 勾股定理知识点与常见题型总结及练习 (新版)北师大版
第1章 勾股定理一.知识归纳 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bccbaE D CBA3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,那么22c a b =+22b c a -,22a c b - ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比拟,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如假设三角形三边长a ,b ,c 满足222a cb +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕; 2221,22,221n n n n n ++++〔n 为正整数〕 2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕 7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线〔通常作垂线〕,构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比拟,切不可不加思考的用两边的平方和与第三边的平方比拟而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:ABC30°D CB A ADB CCB DA题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴6AC =,8BC =.求AB 的长 ⑵17AB =,15AC =,求BC 的长 分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+⑵228BC AB AC =- 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵直角三角形的两直角边长之比为3:4,斜边长为15,那么这个三角形的面积为 ⑶直角三角形的周长为30cm ,斜边长为13cm ,那么这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解 解:⑴224AC AB BC -, 2.4AC BCCD AB⋅== DBAC⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,那么17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21DCBA分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD == 在BDE ∆中2290,2BED BE BD DE ∠=︒-=Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影局部面积BC答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,那么6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得2210AD AE DE + 答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:DCBAAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=一、 选择题1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,那么以下结论中恒成立的是 ( )A 、2ab<c 2B 、2ab ≥c 2C 、2ab>c 2D 、2ab ≤c22、x 、y 为正数,且│x 2-4│+〔y 2-3〕2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为〔 〕A 、5B 、25C 、7D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,那么满足要求的直角三角形共有〔 〕A 、4个B 、5个C 、6个D 、8个4、以下命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,〔a>b=c 〕,那么a 2∶b 2∶c 2=2∶1∶1。
几何证明(4个概念2个性质3个判定2个定理2个应用2种思想方法1个轨迹)八年级数学上册沪教版
2 个性质3个判定
考点05 线段的垂直平分线
7.在锐角三角形ABC内一点P,,满足PA=PB=PC,则点P是△ABC
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三边垂直平分线的交点
(D )
8.已知: 如图,QA=QB.
求证: 点Q在线段AB的垂直平分线上.
(2)区别:定义、公理、定理都是真命题,都可以作为进一步判断其
他命题真假的依据,只不过公理是最原始的依据;而命题不一定是真
命题,因而不能作为进一步判断其他命题真假的依据.
考点04 互逆定理
6. [2022·江苏无锡宜兴市二模]下列命题的逆命题成立的是
①同旁内角互补,两直线平行
①④ .
②等边三角形是锐角三角形
证明:过点Q作MN⊥AB,垂足为点C,
故∠QCA=∠QCB=90°.
在Rt△QCA 和Rt△QCB中,
∵QA=QB,QC=QC,
∴Rt△QCA≌Rt△QCB(H.L.).
∴AC=BC.
∴点Q在线段AB的垂直平分线上.
你能根据分析
中后一种添加辅
助线的方法,写
出它的证明过程
吗?
考点06 角 平 分 线
AB=CB,
∴Rt△ABE≌Rt△CBF(HL).
15.如图,点B,E,F,C在同一条直线上,AE⊥BC,DF⊥BC,
AB=DC,BE=CF.试判断AB与CD的位置关系,并证明.
A
解:AB//CD,理由如下:
∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°
B
F
∵在Rt△ABE和Rt△DCF中, AB=DC,
八年级上册几何知识点总结
几何部分一.全等三角形1、能完全重合的图像叫做全等图形。
两个图形全等,它们的形状和大小都相同。
2、两个能重合的三角形叫全等三角形。
3、全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。
2)有两边与其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3)有两角与其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4)有两角与其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5)三条中线(或高、角平分线)分别对应相等的两个三角形全等。
5、直角三角形全等的判定:1)斜边和一条直角边对应相等的两个直角三角形全等(简称HL或“斜边直角边”)。
2)以上判定方法对于直角三角形全部适用。
二.轴对称图形(一)轴对称与轴对称图形1.轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,则这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,则这个图形叫做轴对称图形,这条直线叫做对称轴。
3.轴对称和轴对称图形的区别和联系:区别: ①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
联系:①两部分都完全重合,都有对称轴,都有对称点。
②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。
4.常见的轴对称图形:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等,正多边形等。
(分别指出这些图形的对称轴的条数)5.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。
(平面直角坐标系内的点关于坐标轴以与一些特殊的直线的对称)6.轴对称的性质:⑴成轴对称的两个图形全等。
沪教版八年级上册 几何证明的总结与练习资料
精品文档几何证明知识整理第十九章一、知识梳理:、有关概念:1命题、公理、定理命题:判断一件事情的句子叫做命题。
(1) 结论)。
命题的形式:如果…(题设),那么…( 命题中,结论正确的是真命题,结论错误的是假命题。
(2)公理:人们从长期的实践中总结出来的真命题叫做公理。
(3)定理:用推理的方法证明为真命题,且可作为判断其他命题真假的依据的真命题叫做定理。
(4)逆命题和逆定理在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,其中一个叫做原命题,另一个就叫做它的逆命题。
如果两个定理是互逆命题,那称它们为互逆定理,其中一个叫做另一个的逆定理。
M2、重要定理:P★线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
B A AB垂直平分线段∵MN如图:NPA=PB∴逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
PA=PB∵如图:A 的垂直平分线上在线段AB ∴点P ★角平分线D 定理:在角平分线上的点到这个角的两边的距离相等。
P OBPE⊥AOB PD⊥OA,如图:∵OP平分∠OPD=PE ∴B E逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点,在这个角的平分线上。
OB ⊥,⊥OAPE如图:∵PD=PE PDAOB平分∠∴OP ★直角三角形的全等判定直角三角形的全等:如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。
)(H.L这SSSSAS、⊿,才能应用本判定定理;以前所学的ASA、AAS、RT(注意:必须先证明两个三角形都是)四条判定定理对于直角三角形全等的判定仍然适用。
A ★直角三角形的性质及判定 A 1:直角三角形的两个锐角互余。
定理°A+∠B=90C=90如图:∵∠°∴∠定理2:直角三角形斜边上的中线等于斜边的一半。
DB C(直角、中点→想一半) AB的中点DACB=90如图:∵∠°,且点是A1BABCD?C∴2°,那么它所对的直角边等:在直角三角形中,如果一个锐角等于301推论于斜边的一半。
八年级数学上册 第五章 几何证明初步 5.4 平行线的性质定理和判定定理课件
内容(nèiróng)总结
5.4 平行线的性质定理和判定定理。2.了解互逆命题、互逆定理的概念。互逆命题、原命题、逆命题、逆定理。1.指出定理的条件和结论,并画出图形,结合图形写出已知、求证.。2. 说说你的证明思路,试着写出证明过程.。你会 证明“平行线的性质定理3:两条直线被第三条直线所截,同旁内角互补”吗。做一做。∴∠2=∠1(两直线平行,。∴∠2+∠3=180°(两直线平行,同旁内角互补)。∠1=∠3 (对顶角相等).。祝同学(tóng xué)们学习进步
∵∠1=73° (已知)
∴∠2=73°(等量代换(dài ) huàn)
∵a ∥b (已知)
∴∠2+∠3=180°(两直线平行,同旁内角互补)
∴∠3=180°-∠ 2 (等式的性质)
∴∠3=180°-73 °=107 °(等量代换)
第九页,共二十一页。
a b
平行线判定定理1:
两条直线 被第三条直线 所截,如 (zhíxiàn)
注:先确定命题的条件(tiáojiàn)和结论,然后再确定逆命题。
第十六页,共二十一页。
已知:如图,DE ∥BC, ∠ADE=55 °,
∠C=54 °,求∠B和∠DEC的度数(dù shu)
A D B
E C
注: 在以后的证明问题中,括号(kuòhào)及括号(kuòhào)里的依据可以不写。
第十七页,共二十一页。
1.指出定理(dìnglǐ)的条件和结论,并画出图形,结合 图形写出已知、求证. 2. 说说你的证明(zhèngmíng)思路,试着写出证明过程.
第五页,共二十一页。
已知:如图,直线(zhíxiàn)AB∥CD,AB,CD被直线EF所截,∠1和∠2
是内错角.
八年级数学上册第5章《几何证明初步》知识回顾(青岛版)
《几何证明初步》知识回顾“平行线的有关证明”一章是证明的初步,主要涉及命题、公理、定理的有关概念,以及与平行线、三角形的内角和等有关的简单的证明.通过本章的复习,要掌握证明的格式,能利用学过的公理、定理等进行简单问题的证明或计算.一、定义与命题1.定义:对术语和名称的含义加以描述,作出明确的规定,也就是给出它们的定义.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离的定义.2.命题:判断一件事情的句子叫做命题,每个命题都是由条件和结论两部分组成,条件是已知事项,结论是由已知事项推断出的事项.命题一般写成“如果……,那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论.3.真命题、假命题与反例真命题:正确的命题称为真命题.假命题:不正确的命题称为假命题.反例:要说明一个命题是假命题,通常可以举出一二例子,使之具有命题的条件,而不具有命题的结论,这个例子称为反例.4.公理、定理、证明公理:人们公认的真命题称为公理.定理:经过证明了的真命题称为定理.证明:推理的过程称为证明.例1在下列命题中,真命题是().A.两个钝角三角形一定相似B.两个等腰三角形一定相似C.两个直角三角形一定相似D.两个等边三角形一定相似析解:本题是和三角形相似的有关命题的识别,真命题就是条件成立,结论正确的命题.两个三角形是否相似,主要看是否满足下列相似的条件之一:①有两组对应角相等的两个三角形相似;②两边对应成比例,且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似.所给的选项中只有两个等边三角形满足以上条件.所以选(D ).说明:和命题有关的试题,多以选择题的形式出现,以判断真假命题类型题为主要形式.二、平行线的判定和性质1.平行线的判定公理:同位角相等,两直线平行.2.平行线的判定定理1:同旁内角互补,两直线平行.3.平行线的判定定理2:内错角相等,两直线平行.平行线的性质公理:两直线平行,同位角相等.4.平行线的性质定理1:两直线平行,内错角相等.平行线的性质定理2:两直线平行,同旁内角互补.注意:对于平行线的判定与性质,一定不要混淆它们的条件和结论,平行线的条件是由角的数量关系来确定直线的位置关系,平行线的性质是由平行线的位置关系来确定角的数量关系.对平行线的判定而言,“两直线平行”是结论,对平行线的性质而言,“两直线平行”是条件.因此,不能随便说“同位角相等”“同旁内角互补”.例2 如图1,AB CD ∥,EF 分别交AB CD ,于M N ,,50EMB =o ∠,MG 平分BMF ∠,MG 交CD 于G .求∠1的度数.分析:要求∠1的度数,根据两直线平行可得1BMG =∠∠,所以只要根据已知条件求出BMG ∠的度数即可.解:因为AB CD ∥,所以1BMG =∠∠(两直线平行,内错角相等).又50EMB =o ∠,MG 平分BMF ∠, 所以11(18050)6522BMG FMB ==-=o o o ∠∠. 所以165=o ∠.说明:根据平行条件求角的度数,一般借助平行线的性质(两直线平行,同位角相等,内错角相等或同旁内角互补)解决问题,有时还要用到三角形的外角性质等.三、三角形内角和定理探究三角形内角和定理时,将三角形的三个内角“凑”在一起,拼成一个平角,从而得到三角形的内角和等于180°,这里体现了一种重要的数学思想——转化思想.三角形内角和定理的证明方法较多,除了转化为平角证明外,还可以利用“构造周角”的方法以及“两直线平行,同旁内角互补”的方法解析证明.例3 如图2,已知ABC △中,90BAC =o ∠,AD BC ⊥于D ,E 是AD 上一点.求证:BED C >∠∠.分析:BED ∠与C ∠没有直接的联系,但BED ∠、C ∠都与BAC ∠有关,因此可以用BAC ∠作中间量进行过渡.证明:在ABC △中,90ABC C +=o ∠∠,因为AD BC ⊥,所以90ADB =o ∠,在ABD △中,90ADB =o ∠,所以90ABC BAD +=o ∠∠,所以C BAD =∠∠.因为BED BAD >∠∠(三角形的一个外角大于任何一个和它不相邻的内角), 所以BED C >∠∠.说明:证明角的不等关系式时一般用到三角形的外角与三角形的内角的关系:三角形的一个外角大于任何一个和它不相邻的内角.四、三角形的外角三角形内角和定理的两个推论是:推论1 三角形的一个外角等于和它不相邻的两个内角的和.推论2 三角形的一个外角等于任何一个和它不相邻的内角.关于三角形外角的重要结论是三角形内角和定理的推论.第一个推论反映了一个外角与它不相邻的两个的相等关系,应用在证明或计算内角与外角的大小问题中;第二个推论反映了一个外角与它不相邻的内角的不等关系,用于证明和三角形有关的角的不等关系问题中.例4 如图3,点P 是△ABC 内的一点,连接BP 、CP.求证:∠BPC>∠BAC.分析:要求证明∠BPC>∠BAC ,通常有两种方法:一是找到第三个角,利用不等式的传递性得证;二是将∠BPC 和∠BAC 都分成两个角,利用同向不等式的和所得不等式仍然成立来证明.证法一:如图3(1)所示,延长BP 交AC 于点D.由于∠BPC 是△DPC 的外角,所以∠BPC>∠CDP.由于∠CDP 是△ABD 的外角,所以∠CDP>∠BAC.所以∠BPC>BAC.证法二:如图3(2)所示,连接AP 并延长AP.因为∠1是△ABP 的外角,所以∠1>∠3.因为∠2是△APC 的外角,所以∠2>∠4.所以∠1+∠2>∠3+∠4.又因为∠1+∠2=∠BPC ,∠3+∠4=∠BAC ,所以∠BPC>∠BAC.点评:要证角的不等关系,一般地将大角转化为某三角形的外角,将小角转化为某三角形的内角.解决本题的关键是通过添加辅助线以达到此目的.练习1、写出下列命题的条件和结论.(1)如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.(2)对顶角相等.2、如图,在△AFD 和△BEC 中,点A ,E ,F ,C 在同一直线上,有下面4个论断:①AD=CB ;②BE=DF ;③∠B=∠D ;④AD//BC.请用其中三个作为条件,余下一个作为结论,写出一个真命题,并证明.AC P D(1)(2) 图3 B4 1 323、在△ABC 中,∠B-∠C=40°,∠A=80°,求∠A 、∠B 、∠C 的度数,并判断△ABC 的形状?4、如图,已知∠1=100°,∠2=140°,那么∠3=______.参考答案1、解析:(1)命题一般写成“如果A,那么B”的形式,A部分为条件,B部分为结论,所以(1)中的条件“一个三角形中有两条边相等”,结论为“这个三角形是等腰三角形”.(2)对于命题本身不含“如果”,“那么”词语,此时需将其改写成“如果……,那么……”的形式,再找条件和结论,便不易错,所以(2)中可改成“如果两个角是对顶角,那么这两个角相等”,故条件为“两个角是对顶角”,结论为“这两个角相等”.2、分析:本题是一道开放性问题,在写命题时,要根据题意找一个比较简单的,这样解答起来也较容易.解:如,已知:BE=DF,∠B=∠D,AD=CB.求证:AD//BC.证明:因为AD=CB,∠B=∠D,BE=DF,所以△ADF≌△CBE.所以∠A=∠C,所以AD//BC.3、分析:利用隐含条件:三角形的三个内角和等于180°.构造方程求解.解:因为∠A+∠B+∠C=180°,∠A=80°,所以∠B+∠C=100°,又∠B-∠C=40°,所以∠B=70°,∠C=30°,所以△ABC为锐角三角形.4、分析:观察图形可知,欲求∠3的度数,可先求∠4的度数,这只要利用三角形的外角等于与它不相邻的两个内角的和即可.解:因为∠1=100°,所以∠4=1800°-∠1=70°.又∠2=∠3+∠4.所以∠3=∠2-∠4=140°-70°=70°.。
沪教版(上海)八年级数学第一学期-第十九章 几何证明 复习课件-
知识梳理: 定义
概念
几 何 证 明
命题 真命题 假命题 基本事实 定理 互逆命题
几何证明
证明步骤
平行线 三角形内角和 全等三角形 等腰三角形 等边三角形 角平分线 垂直平分线 直角三角形
知识回顾
定义:用来说明一个名词含义的语句叫做定义。 命题:判断一件事情的句子,叫做命题。
轴对称图形,有三条对称轴
知识梳理: 等边三角形的判定:
名称
图形
判定
等
边
三条边都相等的三角形
三
角
A
三个角都等于60°的三角形
形
B
C 有一个角等于60°的等腰
三角形
知识梳理: 角平分线
定理:角平分线上的点到这个角的两边距离相等。 逆定理:在一个角的内部,且到角的两边距离相等
的点,在这个角的平分线上。 定理:三角形的三条角平分线相交于一点,并且这
精讲点拨
例 已知:如图,在△ABC中,∠1是它的一个外角,E为边
AC上一点,延长BC到D,连接DE。
D 2
求证:∠1>∠2。 C
证明:∵∠1是△ABC的一个外角(已知),
∴∠1>∠3(
)。
E5
3
∵∠3是△CDE的一个外角,
4
∴∠3>∠2(
)。 A
1 BF
∴∠1>∠2(
)。
把你所悟到的证明真命题的方法,步骤,书写格
)。
),
), )。
谢谢
一点到三边的距离相等(这个交点叫做三角形的内 心)。 三角形一个内角和与它不相邻的两个外角的平分线 交于一点,这个的点到三边所在直线的距离相等。 这样点有三个。
沪教版数学八年级上册19.3《勾股定理》教学设计
沪教版数学八年级上册19.3《勾股定理》教学设计一. 教材分析勾股定理是数学中的重要定理之一,对于八年级学生来说,是学习几何的重要基础。
沪教版数学八年级上册19.3《勾股定理》一课,通过介绍勾股定理的来历、证明及应用,使学生了解并掌握这一定理。
教材内容主要包括:勾股定理的定义,勾股定理的证明,勾股定理的应用以及勾股定理在实际问题中的应用。
二. 学情分析学生在学习本课之前,已经掌握了相似三角形的性质、三角形面积计算等知识,但对于勾股定理的理解和应用还需进一步引导。
学生应具备观察、分析、推理的能力,能够运用勾股定理解决实际问题。
三. 教学目标1.知识与技能:使学生了解勾股定理的来历、证明及应用,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、分析、推理等方法,引导学生发现并证明勾股定理。
3.情感态度价值观:培养学生对数学的兴趣,激发学生探究数学规律的热情。
四. 教学重难点1.重点:使学生掌握勾股定理的定义、证明及应用。
2.难点:引导学生理解并证明勾股定理。
五. 教学方法1.情境教学法:通过设置有趣的问题情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探究,培养学生的分析问题和解决问题的能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教学PPT:制作含有丰富图片、动画和例题的教学PPT。
2.教学素材:准备一些与勾股定理相关的实际问题作为教学素材。
3.板书设计:提前准备好勾股定理的板书设计。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。
2.呈现(10分钟)介绍勾股定理的来历,如古希腊数学家毕达哥拉斯的故事,引导学生了解勾股定理的历史背景。
3.操练(10分钟)引导学生通过观察、分析、推理等方法,发现并证明勾股定理。
可以分组讨论,每组选取一个实例进行证明。
八年级上册学勾股吗知识点
八年级上册学勾股吗知识点学习勾股定理是八年级上册数学中的一个重要学习内容。
勾股定理是古希腊数学家毕达哥拉斯所发现的,也是三角学中应用最广泛的定理之一。
下面我们将深入探讨勾股定理的知识点。
一、勾股定理的历史在公元前6世纪,古希腊国家毕达哥拉斯在研究数学学科时,发现了勾股定理:直角三角形斜边上的平方等于直角两边上平方的和。
这个定理在他所创建的毕达哥拉斯学派中被广泛研究和应用,成为古希腊数学学派中的重要成就之一。
二、勾股定理的概念勾股定理是指在一个直角三角形中,斜边的长度(即斜边上点与直角的两个点间的距离)等于两直角边的长度平方的和。
即:c² = a² + b²其中a、b为直角三角形的两条直角边,c为三角形的斜边。
三、勾股定理的应用勾股定理在实际生活和各个学科中均有广泛应用。
其中,最常见的莫过于在建筑和工程设计中的应用,例如房屋建筑、道路建设和桥梁设计等。
同时,在科学和技术领域中,勾股定理也有重要的应用,例如测距、导弹制导和地震学等领域。
四、勾股定理的证明方法勾股定理有多种证明方法,其中比较简单的有三种:1.几何证明法:在右三角形中做辅助线,利用几何性质证明勾股定理成立。
2.代数证明法:将直角三角形的斜边平方展开后,利用代数方法证明勾股定理成立。
3.类比证明法:通过画图将三角形分割成若干个相似的三角形,从而证明勾股定理成立。
五、勾股定理的常见应用题1.已知直角三角形的两条直角边长度,求斜边长度。
2.已知直角三角形的两条直角边长度和斜边长度中的一条,求另一条直角边长度。
3.已知任意两条边长度,求第三条边长度。
4.已知三角形内的角度,求三角形内任意一条边长度。
以上就是八年级上册学习勾股定理的主要知识点,相信通过对这些知识的学习,同学们会更加深入地了解勾股定理的应用,并能够在实际题目中熟练地应用勾股定理解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册几何证明的重要定理
1、互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
(传递性)
3、平行的性质①两直线平行,同位角相等;②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
4、平行的判定①同位角相等,两直线平行;②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。
(3)平行线的定义:不相交的两条直线叫做平行线。
5、临补角互补,对顶角相等。
6、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
7、同一平面内,两条直线的位置关系:相交或平行。
8、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.(可以判断三边是否能够成三角形)
9、三角形的内角和:三角形的内角和为180°
10、三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.(用于角度计算中)性质2:三角形的一个外角大于任何一个和它不相邻的内角.(用于证明两个角度比较大小)
11、多边形内角和公式:n边形的内角和等于(2)n ·180°
12、多边形的外角和:多边形的外角和为360°.
13、多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n 条对角线,把多边形分成(2)n 个三角形.②n
边形共有(3) 2nn 条对角线.
14、正多边形每个内角度数:用(2)n ·180°除以n,每个外角度数:360°除以n。
15、全等三角形的性质:全等三角形的对应边相等,对应角相等.
16、全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.
17、角平分线:⑴画法:(课本48页,必须要掌握)
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
18、轴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.
②对称的图形都全等.
19、线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
20、等腰三角形的性质:①等腰三角形两腰相等.
②等腰三角形两底角相等(等边对等角).、
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).
21、等边三角形的性质:①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
22、等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
23、等边三角形的判定:
①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
24、直角三角形中,30°角所对的直角边等于斜边的一半。