电源电路图详解

合集下载

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

如图1所示大功率可调稳压电源电路图大功率可调稳压电源电路图图1 大功率可调稳压电源电路图其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。

第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。

第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。

第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。

图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。

变压器的功率可根据输出电流灵活掌握,次级电压15V左右。

桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。

调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。

滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。

电源电路图

电源电路图

显示器一次电源电路图:C901、C902、R901、L901组成低通滤波网:滤除交流电中的高频成份,防止电路高频成份干扰电网。

NR901负温度系数的热敏电阻,是用来限制开机瞬间过大的浪涌电流,以保护整流桥堆会因为在开机瞬间电流过大而被烧毁。

电源电路的工作原理:300V直流电压的产生:打开开关电源后220V交流电经过保险F901后,由C901、C902、R901、L901组成的低通滤波网滤波后加到NR901限流后再经D901—D904进行桥式整流,再经C907滤波后得到300V左右的直流电压,在经T901的初级线圈加到Q901的D极。

UC3842的起动供电:当开关闭合后,22V交流电经D909半波整流后在经R925、R924、R923降压限流,使Q904导通,由Q904的C极向E极有电流流过,此电流经R926在次降压限流经C914滤波后再经R922再次降压、限流后给C916充电,当C916两端的电压到达16V时,UC3842内部开始工作,由于提供供电电压电路的电流非常小,不能直接去驱动UC3842工作,所以只能叫做起动供电。

UC3842的振荡过程:当UC3842的七脚供电到达16V时,UC3842内部开始工作由八脚输出一个稳定的5V直流电压,此电压经R904分压后,加到UC3842的四脚。

UC3842的四脚内部为振荡器,在和R940、C924组成振荡电路,产生一个振荡频率。

此频率经UC3842内部图腾柱放大器放大后由六脚输出一个言方波控制信号,此方波信号经过激保护元件后在开关管G极有一个交流控制方波信号,当交流控制信号的高电平到来时Q901导通,电源变压器的初级线圈存储能量,当交流控制信号的低电平到来时Q901截止,变压器初级线圈开始释放能量,在变压器各个次级线圈上感应出相应的电压。

UC3842持续供电电路:当变压器各次级感应出电压时,在变压器二脚和三脚的线圈也感应出相应的电压,此电压经电阻R931限流D911整流、C916滤波后得到一个大概为16V左右的直流电压给UC3842提供一个持续供电。

开关电源电路详细讲解图

开关电源电路详细讲解图

开关电源电路详解图一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。

辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解

开关电源原理及各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器〔EMI〕、整流滤波电路、功率变换电路、PWM掌握器电路、输出整流滤波电路组成。

关心电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。

开关电源的电路组成方框图如下:开关电源电路方框图二、输入电路的原理及常见电路1、AC输入整流滤波电路原理:输入滤波、整流回路原理图①防雷电路:当有雷击,产生高压经电网导入电源时,由 MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进展保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,假设电流过大, F1、F2、F3 会烧毁保护后级电路。

② 输入滤波电路:C1、L1、C2、C3 组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对 C5 充电,由于瞬间电流大,加 RT1〔热敏电阻〕就能有效的防止浪涌电流。

因瞬时能量全消耗在 RT1 电阻上,肯定时间后温度上升后 RT1 阻值减小〔RT1 是负温系数元件〕,这时它消耗的能量格外小,后级电路可正常工作。

③ 整流滤波电路:沟通电压经 BRG1 整流后,经 C5 滤波后得到较为纯洁的直流电压。

假设 C5 容量变小,输出的沟通纹波将增大。

2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进展抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4为安规电容,L2、L3为差模电感。

② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

简单的开关电源电路图

简单的开关电源电路图

(电路图讲解:简单的开关电源电路图)
市电经D1整流及C1滤波后得到约300V的直流电压加在变压器的①脚(L1的上端),同时此电压经R1给V1加上偏置后后使其微微导通,有电流流过L1,同时反馈线圈L2的上端(变压器的③脚)形成正电压,此电压经C4、R3反馈给V1,使其更导通,乃至饱和,最后随反馈电流的减小,V1迅速退出饱和并截止,如此循环形成振荡,在次级线圈L3上感应出所需的输出电压。

L2是反馈线圈,同时也与D4、D3、C3一起组成稳压电路。

当线圈L3经D6整流后在C5上的电压升高后,同时也表现为L2经D4整流后在C3负极上的电压更低,当低至约为稳压管D3(9V)的稳压值时D3导通,使V1有基极短路到地,关断V1,最终使输出电压降低。

电路中R4、D5、V2组成过流保护电路。

当某些原因引起V1的工作电流大太时,R4上产生的电压互感器经D5加至V2基极,V2导通,V1基极电压下降,使V1电流减小。

D3的稳压值理论为9V+~,在实际应用时,若要改变输出电压,只要更换不同稳压值的D3即可,稳压值越小,输出电压越低,反之则越高。

29种彩电开关电源电路图和原理说明(图)

29种彩电开关电源电路图和原理说明(图)

29种彩电开关电源电路图和原理说明(图)2013-07-02 00:39:25作者:中华维修整理53506我要评论编者注:这29种开关电源电路是CRT彩电电源电路的典型代表,搞懂了这些电源原理,那么修彩电开关电源基本上是小试牛刀。

1.A3机芯电源A3机芯电源最早出现在采用三洋公司的LA7680机芯上,故而得名,因其电路简洁、效率高、易扩展、易维修,现在已被各厂家广泛使用。

R520、R521、R522为起动电阻,R519、C514、R524、V513、T501的(1)、(2)绕组组成正反馈回路,C514为振荡电容。

V553及周边元件、VD515、V511、V512组成稳压控制电路。

R552为取样电阻,VD561为V553的发射极提供基准电压,当电源输出电压过高时,V553、VD515、V511、V512均导通程度增加,使开关管V513的基极被分流,输出电压随之下降;反之,若电源输出电压降低时,V553、VD515、V511、V512均导通程度减少,使开关管V513的基极分流减少,输出电压随之上升。

VD518、VD519、R523组成过压保护电路。

另外VD563也为过压保护。

C515的作用:我们来看如果没有C515会怎样?当某一时刻开关变压器的(1)脚相对(2)脚为正时,一方面(1)脚的电压经R519、C514加到V513的基极,欲使V513饱和,但同时,该电压也经R526加到V512的基极,这样一来,V512饱和导通,而V512饱和导通将迫使V513截止,这就有矛盾了。

再来看加入C515的情况:同样当某一时刻开关变压器的(1)脚相对(2)脚为正,欲使V513饱和,这时该电压也经R526加到V512的基极,但由于有C515的存在,C515两端的电压不能突变,需经一定时间的延迟,或者说C515有一个充电过程,才会使V512饱和,这样就不会干扰V513的饱和了。

显然,C515容量的大小决定了延迟的时间,这样也会影响V513基极脉冲的占空比,同样也会影响输出电压的大小,根据这一点,有人误认为C515是振荡电容,这显然是不对的。

几种常见开关电源电路图

几种常见开关电源电路图

uc3842开关电源电路图用UC3842做的开关电源的典型电路见图1。

过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。

当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。

这被称为“打嗝”式(hi ccup)保护。

在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。

仔细调整这个电阻的数值,一般都可以达到满意的保护。

使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。

图2、3、4是常见的电路。

图2采取拉低第1脚的方法关闭电源。

图3采用断开振荡回路的方法。

图4采取抬高第2脚,进而使第1脚降低的方法。

在这3个电路里R3电阻即使不要,仍能很好保护。

注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。

在过载或短路保护时,它也起延时保护的左右。

在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题:1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R 3的数值,给生产造成麻烦;2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。

六款简单的开关电源电路设计,内附原理图详解

六款简单的开关电源电路设计,内附原理图详解

六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。

输出电压需要稳压。

输出电流可以达到500mA.有效功率8W、效率87%。

其他没有要求就可以正常工作。

简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。

通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。

24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。

这种电路在形式上与单端反激式电路相似,但工作情形不同。

当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。

在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。

为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。

由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。

电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。

简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。

它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。

电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。

(完整版)电源电路图详解

(完整版)电源电路图详解

电源电路图详解!用电路元件符号表示电路连接的图,叫电路图。

电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。

电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF 独石电容,C4选用470µF/35V电解电容。

R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。

V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。

2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

开关电源电路图

开关电源电路图

开关电源电路图一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。

2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。

3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。

4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。

三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。

四、辅助电源提供所有单一电路的不同要求电源。

开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。

可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。

图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。

电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。

在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。

由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。

改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电源电路图详解!用电路元件符号表示电路连接的图,叫电路图。

电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。

电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。

调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。

FU1选用1A,FU2选用3A~5A。

VD1、VD2选用6A02。

RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF 独石电容,C4选用470µF/35V电解电容。

R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。

V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。

2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路,第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。

第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。

第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。

图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4 和R3的电阻值,当然变压器的次级电压也要提高。

变压器的功率可根据输出电流灵活掌握,次级电压15V左右。

桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。

调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。

滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。

最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

二、开关电源1、PWM开关电源集成控制IC-UC3842工作原理下图为UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

UC3842 内部原理框图UC3842是一种性能优异、应用广泛、结构较简单的PWM开关电源集成控制器,由于它只有一个输出端,所以主要用于音端控制的开关电源。

UC3842 7脚为电压输入端,其启动电压范围为16-34V。

在电源启动时,VCC ﹤16V,输入电压施密物比较器输出为0,此时无基准电压产生,电路不工作;当Vcc ﹥16V时输入电压施密特比较器送出高电平到5V蕨稳压器,产生5V基准电压,此电压一方面供销内部电路工作另一方面通过⑧脚向外部提供参考电压。

一旦施密特比较器翻转为高电平(芯片开始工作以后),Vcc可以在10V-34V范围内变化而不影响电路的工作状态。

当Vcc低于10V 时,施密特比较器又翻转为低电平,电路停止工作。

当基准稳压源有5V基准电压输出时,基准电压检测逻辑比较器即达出高电平信号到输出电路。

同时,振荡器将根据④脚外接Rt、Ct参数产生f=/Rt.Ct的振荡信号,此信号一路直接加到图腾柱电路的输入端另一路加到PWM脉宽市制RS触发器的置位端,RS型PWN脉宽调制器的R端接电流检测比较器输出端。

R端为占空调节控制端,当R电压上升时,Q端脉冲加宽,同时⑥脚送出脉宽也加宽(占空比增多);当R端电压下降时,Q端脉冲变窄,同时⑥脚送出脉宽也变变窄(占空比减小)。

UC3842各点时序如图所示,只有当E点为高电平时才有信号输出,并且a、b点全为高电平时,d点才送出高电平,c点送出低电平,否则d点送出低电平,c点送出高电平。

②脚一般接输出电压取样信号,也称反馈信号。

当②脚电压上升时,①脚电压将下降,R端电压亦随之下降,于是⑥脚脉冲变窄;反之,⑥脚脉冲变宽。

③脚为电流传感端,通常在功率管的源极或发射极串入一小阻值取样电阻,将流过开关管的电流转为电压,并将此电压引入境脚。

当负载短路或其它原因引起功率管电流增加,并使取样电阻上的电压超过1V时,⑥脚就停止脉冲输出,这样就可以有效的保护功率管不受损坏。

2、TOP224P构成的12V、20W开关直流稳压电源电路由TOP224P构成的12V、20W开关直流稳压电源电路如图所示。

电路中使用两片集成电路:TOP224P型三端单片开关电源(IC1),PC817A 型线性光耦合器(IC2)。

交流电源经过UR和Cl整流滤波后产生直流高压Ui,给高频变压器T的一次绕组供电。

VDz1和VD1能将漏感产生的尖峰电压钳位到安全值,并能衰减振铃电压。

VDz1采用反向击穿电压为200V的P6KE200型瞬态电压抑制器,VDl选用1A/600V的UF4005型超快恢复二极管。

二次绕组电压通过V砬、C2、Ll和C3整流滤波,获得12V输出电压Uo。

Uo值是由VDz2稳定电压Uz2、光耦中LED的正向压降UF、R1上的压降这三者之和来设定的。

改变高频变压器的匝数比和VDz2的稳压值,还可获得其他输出电压值。

R2和VDz2五还为12V输出提供一个假负载,用以提高轻载时的负载调整率。

反馈绕组电压经VD3和C4整流滤波后,供给TOP224P所需偏压。

由R2和VDz2来调节控制端电流,通过改变输出占空比达到稳压目的。

共模扼流圈L2能减小由一次绕组接D端的高压开关波形所产生的共模泄漏电流。

C7为保护电容,用于滤掉由一次、二次绕组耦合电容引起的干扰。

C6可减小由一次绕组电流的基波与谐波所产生的差模泄漏电流。

C5不仅能滤除加在控制端上的尖峰电流,而且决定自启动频率,它还与R1、R3一起对控制回路进行补偿。

本电源主要技术指标如下:•交流输人电压范围:u=85~265V;•输入电网频率:fLl=47~440Hz;•输出电压(Io=1.67A):Uo=12V;•最大输出电流:IOM=1.67A;•连续输出功率:Po=20W(TA=25℃,或15W(TA=50℃);•电压调整率:η=78%;•输出纹波电压的最大值:±60mV;•工作温度范围:TA=0~50℃。

三、DC-DC电源1、3V转+5V、+12V的电路图由电池供电的便携式电子产品一般都采用低电源电压,这样可减少电池数量,达到减小产品尺寸及重量的目的,故一般常用3~5V作为工作电压,为保证电路工作的稳定性及精度,要求采用稳压电源供电。

若电路采用5V工作电压,但另需一个较高的工作电压,这往往使设计者为难。

本文介绍一种采用两块升压模块组成的电路可解决这一难题,并且只要两节电池供电。

该电路的特点是外围元件少、尺寸小、重量轻、输出+5V、+12V都是稳定的,满足便携式电子产品的要求。

+5V电源可输出60mA,+12V电源最大输出电流为5mA。

该电路如上图所示。

它由AH805升压模块及FP106升压模块组成。

AH805是一种输入1.2~3V,输出5V的升压模块,在3V供电时可输出100mA电流。

FP106是贴片式升压模块,输入4~6V,输出固定电压为29±1V,输出电流可达40mA,AH805及FP106都是一个电平控制的关闭电源控制端。

两节1.5V碱性电池输出的3V电压输入AH805,AH805输出+5V电压,其一路作5V输出,另一路输入FP106使其产生28~30V电压,经稳压管稳压后输出+12V电压。

从图中可以看出,只要改变稳压管的稳压值,即可获得不同的输出电压,使用十分灵活。

FP106的第⑤脚为控制电源关闭端,在关闭电源时,耗电几乎为零,当第⑤脚加高电平》2.5V时,电源导通;当第⑤脚加低电平<0.4V时,电源被关闭。

可以用电路来控制或手动控制,若不需控制时,第⑤脚与第⑧脚连接。

2、用MC34063做3.6V电转9V电路图工作状态:•无负载:输入:3.65V、18uA(相当600mAH的电池待机三年多)•有负载:输出:9.88V、50.2mA,输入:3.65V、186.7mA,效率为72%工作原理:•无负载时,IC的6脚没有电,停止工作,输入端3.65V工作电流只有18uA (相当600mAH的电池待机三年多)!•当有负载时(Q1有Ieb电流)8550的EC极导通,IC得电工作。

相关文档
最新文档