转换与化归思想
六大数学思想之四:转化与化归_最新修正版
六大数学思想之四:转化与化归1.什么是转化与化归?转化与化归思想方法是解决数学问题的一种重要思想方法,转化与化归思想贯穿于整个数学中,掌握这一思想方法,学会用化归与转化的思想方法分析问题、处理问题有着十分重要意义。
化归与转化是通过某种转化过程,把待解决的问题或未知解的问题转化到在已有知识范围内可解的问题或者容易解决的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
2. 转化与化归的主要方式:1、等价转化,2、空间图形问题转化为平面图形问题,3、局部与整体的相互转化,4、特殊与一般的转化,5、非等价转化,6、换元、代换等转化方法的运用,7、正与反的转化,8、数与形的转化,9、相等与不等的转化,10、常量与变量的转化、11、实际问题与数学语言的转化等.3.转化与化归思想的原则:(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.(3)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(4)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面,设法从问题的反面去探讨,使问题获得解决.题型一正难则反的转化:Esp1:已知集合A={x∈R|x2-4mx+2m+6=0},B={x∈R|x<0},若A∩B≠∅,求实数m的取值范围.解 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0}, 即U ={m |m ≤-1或m ≥32}.若方程x 2-4mx +2m +6=0的两根x 1,x 2均为非负,则⎩⎪⎨⎪⎧m ∈U ,x 1+x 2=4m ≥0,⇒m ≥32,x 1x 2=2m +6≥0所以使A ∩B ≠∅的实数m 的取值范围为{m |m ≤-1}.Esp2: 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________. 答案 ⎝ ⎛⎭⎪⎫-373,-5解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立. 由①得3x 2+(m +4)x -2≥0,即m +4≥2x-3x 在x ∈(t,3)上恒成立,所以m +4≥2t-3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.题型二 函数、方程、不等式之间的转化:解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.Esp3: 已知函数f (x )=eln x ,g (x )=1e f (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x-1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1). 取t =1n(n ∈N *)时,则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n )=ln(n +1).即1+12+13+…+1n >ln(n +1).Esp4: 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2-2ln 2+2a.(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).而g(0)=0,从而对任意x∈(0,+∞),都有g(x)>0.即e x-x2+2ax-1>0,故e x>x2-2ax+1.题型三主与次的转化:合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现两个字母:x及a,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量。
化归与转化的思想方法
化归与转化的思想方法随着教育事业的发展,数学教育改革的逐步深入,尤其是在数学新课程标准中十分注重培养学生的思想方法,培养学生应用数学解决问题的能力。
化归作为重要的数学思想方法,在数学教育中加强对化归思想的教育已成为十分重要的工作,这里,我仅就化归思想的核心及其在生活中的作用等问题作一些初步探讨。
一、历史背景化归与转化的思想简介匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的.有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气.再把壶放在煤气灶上.”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去.”但是更让人出乎意料的答案出现了。
数学家会回答:“把水倒掉,方法同上。
”一个有趣的笑话精辟的道出化归的方法的精髓。
二、化归与转化的含义在历史上曾经有不少数学家从各种不同的角度对化归方法作过论述。
例如,笛卡尔曾经提出如下的“万能方法”:①把任何问题都化归为数学问题;②把任何数学问题都化归为代数问题;③把任何代数问题都化归方程式的求解。
由于求解方程的问题被认为是已经能解决的(或者说,是比较容易解决的),因此笛卡尔认为利用这样的方法可解决各类型的问题。
显然他的这一结论并不正确,所谓的“万能方法”也根本不存在,笛卡尔所给出的这一模式毕竟可视为化归方法的一个具体运用,从而产生过具有重要意义的成果。
事实上,笛卡尔创立解析几何学,正是这种重要成果的生动体现。
化归法的一般模式,其形式如下图[4]:转换未知问题(复杂)已知问题(简单)已知理论、方法、技巧解答解答化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决。
转化与化归思想、分类讨论思想
一、转化与化归思想
[思想概述] 转化化归思想的基本内涵是:人们在解决数学问题时,常 常将待解决的数学问题A,通过某种转化手段,归结为另一 问题B,而问题B是相对较容易解决的或已经有固定解决模
式的问题,且通过问题B的解决可以得到原问题A的解.用
框图可直观地表示为:
[规律方法] (1)根据问题的特点转化命题,使原问题转化为与之
相关,易于解决的新问题,是我们解决数学问题的常用思 路. (2)本题把立体几何问题转化为平面几何问题,三维降为二 维,难度降低,易于解答的数学问题分解(或分割)
成若干个基础性问题,通过对基础性问题的解答来实现解决原 问题的思想策略.对问题实行分类与整合,分类标准等于增加 一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论的常见类型:
(1)由数学概念引起的分类讨论:有的概念本身就是分类的,如 绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式的限制引起的分类讨论:有的定理、
公式、性质是分类给出的,在不同的条件下结论不一致,如 等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负, 对数的底数与真数的限制,方程(不等式)的运算与根的大小比
难以入手,因此对参数θ取特殊值,进行推理求解.
(2)当问题难以入手时,可以先对特殊情况或简单情形进行 观察、分析,发现问题中特殊的数量或关系结构或部分元 素,然后推广到一般情形,并加以证明.
类型二
换元及常量与变量的转化
【例 2】 已知 f(x)为定义在实数集 R 上的奇函数,且 f(x)在[0,+ π ∞)上是增函数.当 0≤θ≤2时,是否存在这样的实数 m,使 f(cos 2θ-3)+f(4m-2mcos θ)>f(0)对所有的
化归与转化的数学思想解题举例
化归与转化的数学思想解题举例在数学问题中,化归与转化是一种常用的解题思路。
它们可以帮助我们将原问题转化为一个简化的形式,从而更容易得到解答。
本文将通过几个具体的例子来说明化归与转化在数学问题中的应用。
一、化归化归是将一个复杂的问题转化为一个更简单的等价问题的过程。
它通常是通过引入新变量或假设,将原问题转化为一个更易于处理的形式。
例子1:求解一元二次方程的解对于一元二次方程ax^2 + bx + c = 0,如果a不等于0,我们可以通过化归的方法求解其根。
首先,我们可以将方程中的未知数x改写为y = x + p,其中p是一个常数。
这样,我们将原来的方程转化为了ay^2 + dy + e = 0(其中d 和e是和p相关的常数)。
接下来,我们可以通过求解新方程来得到原方程的解。
由于新方程中的y是一个平移的变量,我们可以通过平方完成对y的消除。
最后,我们将得到一个新的一次方程: Cy + F = 0(C和F是和p 相关的常数)。
求解这个一次方程,我们就可以得到原方程的解。
通过化归,我们将原本复杂的问题转化为了一个简单的一次方程的求解问题,从而更容易得到解答。
二、转化转化是将一个问题转换为一个具有相同解的等价问题的思想。
它可以通过改变问题的表述方式或者引入新的概念来实现。
例子2:求解无穷几何级数的和对于一个无穷几何级数a + ar + ar^2 + ar^3 + ...(其中| r | < 1),我们可以使用转化的思想来求它的和。
首先,我们可以将级数的和S表示为S = a + ar + ar^2 + ar^3 + ...,这是一个无穷级数。
接下来,我们将级数的每一项都乘以公比r,得到rS = ar + ar^2 + ar^3 + ar^4 + ...,这是另一个等价的无穷级数。
然后,我们将这两个等式相减,得到(S - rS) = a,进一步化简得到S = a / (1 - r)。
通过这样的转化,我们得到了无穷几何级数的和的数学表达式,简化了求解过程。
转换与化归思想
浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。
这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。
一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。
瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。
专题1第4讲转化与化归思想Word版
四、转化与化归思想转化与化归思想方法,就是在研究和解决相关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:使用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.(5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.(6)构造法:“构造”一个适宜的数学模型,把问题变为易于解决的问题.(7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.(8)类比法:使用类比推理,猜测问题的结论,易于探求.(9)参数法:引进参数,使原问题转化为熟悉的问题实行解决.(10)补集法:假如正面解决原问题有困难,可把原问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 使原问题获得解决,表达了正难则反的原则.[例1] 若椭圆C 的方程为x 25+y 2m =1,焦点在x 轴上,与直线y =kx +1总有公共点,那么m 的取值范围为________.[思维流程]特殊与一般的转化步骤特殊与一般转化法是在解决问题过程中将某些一般问题实行特殊化处理或将某些特殊问题实行一般化处理的方法.这类转化法一般的解题步骤是:第一步:确立需转化的目标问题:一般将要解决的问题作为转化目标.第二步:寻找“特殊元素”与“一般元素”:把一般问题转化为特殊问题时,寻找“特殊元素”;把特殊问题转化为一般问题时,寻找“一般元素”.第三步:确立新目标问题:根据新确立的“特殊元素”或者“一般元素”,明确其与需要解决问题的关系,确立新的需要解决的问题.第四步:解决新目标问题:在新的板块知识背景下用特定的知识解决新目标问题.第五步:回归目标问题.第六步:回顾反思:常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.对于选择题,当题设在普通条件下都成立时,用特殊值实行探求,可快捷地得到答案;对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,能够把题中变化的量用特殊值代替,即可得到答案.1.已知双曲线C :x 2a 2-y 2b2=1的右支上存有一点P ,使得点P 到双曲线右焦点的距离等于它到直线x =-a 2c(其中c 2=a 2+b 2)的距离,则双曲线C 离心率的取值范围是( ) A .(1, 2 ] B .[2,+∞)C .(1, 2+1] D .[2+1,+∞)[例2] (1)设x ,y 为正实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.(2)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________.[思维流程]函数、方程与不等式间的转化函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数协助,解决函数的问题需要方程、不等式的协助,所以借助于函数、方程、不等式实行转化与化归能够将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.2.已知函数f (x )=13ax 3+bx 2+x +3,其中a ≠0. (1)当a ,b 满足什么条件时,f (x )能取得极值?(2)已知a >0,且f (x )在区间(0,1]上单调递增,试用a 表示出b 的取值范围.[例3] 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.[思维流程]正与反的转化法正难则反,利用补集求得其解,这就是补集思想,一种充分表达对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,所以,间接法多用于含有“至多”“至少”情形的问题中.3.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存有一个值c ,使得f (c )>0,则实数p 的取值范围是________.[例4] 已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.[思维流程]主与次的转化法合情合理的转化是数学问题能否“明朗化”的关键所在,通过变换主元,起到了化繁为简的作用.在不等式中出现了两个字母:x 及a ,关键在于该把哪个字母看成变量,哪个看成常数.显然可将a 视作自变量,则上述问题即可转化为在[-1,1]内关于a 的一次函数小于0恒成立的问题.4.设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,求x 的取值范围.“化归与转化”还有“数与形的转化、数学各分支之间的转化”等,应用时还应遵循以下五条原则:1.熟悉化原则将陌生的问题转化为熟悉的问题,以利于使用熟知的知识和经验来解答问题.2.简单化原则将复杂的问题转化为简单的问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3.和谐化原则转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式,或者转化命题,使其推演有利于使用某种数学方法或符合人们的思维规律.4.直观化原则将比较抽象的问题转化为比较直观的问题来解决.5.正难则反原则当问题正面讨论遇到困难时,应想到考虑问题的反面,设法从问题的反面去探求,使问题获得解决,或证明问题的可能性.总来说之,化归与转化是高中数学的一种重要思想方法,掌握好化归与转化的思想方法的特点、题型、方法、要素和原则对我们学习数学是非常有协助的.一、选择题1.若a >2,则关于x 的方程13x 3-ax 2+1=0在(0,2)上恰好有( ) 个根A .0 B .1 C .2 D .3 2.如下图,已知三棱锥P -ABC ,P A =BC =234,PB =AC =10,PC =AB=241,则三棱锥P -ABC 的体积为( )A .40B .80C .160D .2403.定义运算:(a ⊕b )⊗x =ax 2+bx +2.若关于x 的不等式(a ⊕b )⊗x <0的解集为{x |1<x <2},则关于x 的不等式(b ⊕a )⊗x <0的解集为( )A .(1,2)B .(-∞,1)∪(2,+∞)C.⎝⎛⎭⎫-23,1D.⎝⎛⎭⎫-∞,-23∪(1,+∞) 4.已知OA =(cos θ1,2sin θ1),OB =(cos θ2,2sin θ2),若OA '=(cos θ1,sin θ1),OB '=(cosθ2,sin θ2),且满足OA '·OB '=0,则S △OAB 等于( )A.12 B .1C .2 D .4 5.已知函数f (x )=4sin 2⎝⎛⎭⎫π4+x -23cos 2x +1且给定条件p :“π4≤x ≤π2”,又给定条件q :“|f (x )-m |<2”,且p 是q 的充分条件,则实数m 的取值范围是( )A .(3,5)B .(-2,2)C .(1,3)D .(5,7)6.抛物线y =x 2上的所有弦都不能被直线y =m (x -3)垂直平分,则m 的取值范围是( )A.⎣⎡⎭⎫-12,+∞B.⎝⎛⎭⎫-3,-12C.⎝⎛⎭⎫-12,+∞ D .(-1,+∞) 二、填空题7. 若x ,y ∈R ,集合A ={(x ,y )|x 2+y 2=1},B =⎩⎨⎧⎭⎬⎫(x ,y ) x a -y b =1,a >0,b >0,当A ∩B 有且只有一个元素时,a ,b 满足的关系式是________.8.已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎡⎦⎤1a 1+1+1a 2+1+…+1a 2 013+1=________. 9.在各棱长都等于1的正四面体OABC 中,若点P 满足OP =x OA +y OB +z OC (x +y+z =1),则|OP |的最小值等于________.三、解答题10.(2013·海淀模拟)在四棱锥P -ABCD 中,P A ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,又∠CAD =30°,P A=AB =4,点N 在线段PB 上,且PN NB =13. (1)求证:BD ⊥PC ;(2)求证:MN ∥平面PDC ;(3)设平面P AB ∩平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.11.已知函数f (x )=x -1x,g (x )=a ln x ,其中x >0,a ∈R ,令函数h (x )=f (x )-g (x ). (1)若函数h (x )在(0,+∞)上单调递增,求a 的取值范围;(2)当a 取(1)中的最大值时,判断方程h (x )+h (2-x )=0在(0,1)上是否有解,并说明理由.12.已知直线l 1:4x -3y +6=0和直线l 2:x =-p 2(p >0).若抛物线C :y 2=2px 上的点到直线l 1和直线l 2的距离之和的最小值为2.(1)求抛物线C 的方程;(2)若以抛物线上任意一点M 为切点的直线l 与直线l 2交于点N .试问x 轴上是否存在定点Q ,使点Q 在以MN 为直径的圆上?若存在,求出点Q 的坐标,若不存在,请说明理由.。
第二讲转化与化归思想
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问 题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂 的 函数、方程、不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通 过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目 的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问 题,结论适合原问题.
方法二:(看成不等式的解集)∵a,b为正数,
∴a+b≥2 ab,又ab=a+b+3,
∴ab≥2 ab+3.
即( ab)2-2 ab-3≥0,
解得 ab≥3或 ab≤-1(舍去),∴ab≥9. ∴ab的取值范围是[9,+∞). 方法三:若设ab=t,则a+b=t-3, ∴a,b可看成方程x2-(t-3)x+t=0的两个正根.
则当且仅当gg-1=1= x2+x2-x≥x+0,2≥0, 解之,得x≥0或x≤-1. 即实数x的取值范围是x≤-1或x≥0. 拓展提升——开阔思路 提炼方法 通过以上两种方法的比较可以看出,若按常规方法求解,问题 较麻烦;若将变量与参数变更关系,a为主元,转换思考的角度,使解 答变得容易.这种处理问题的思想即为转化与化归的思想.
转化与化归思想使用的根本目的,是为了能更加有效地解答我们所遇到 的问题.转化与化归,不是盲目地转化给出的条件,无论是哪种转化, 都是为了使问题更好地获解,以下几条原则我们在解题中常要遵循,可 对使用这一思想方法起到提示的作用. (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知 的知识、经验来解决问题.
2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)
新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。
转换与化归思想的应用
( )在 同一直角 坐标 内作 出函数 ) y lgx 2 和 =oJ l 的图像 ,如 图 1由图易知 , . ) y l 4 l 图像 与 =o l的 gx
在 l1 ,0 _ 0 ]有 两个 交 点 ,在 [, 1]内有 9个 交 0 0
(2 由 已 知 易 求 I ) x
、 + ,a A,所 以 I~2  ̄ 3 / 8 ∈ x I = . 1 I m
、( /" ) 乱l i — :i
于此有 () m+m 2 m + m - ) ( ∈【1 1) : t - = t( 2 ≥0 - ,]
恒成 立 lp 目
一
问题 ,不等 式有解或恒成立问题常转化为求函数 的最
值 问题等等. : ∈ ,】 如 Vx 6
的等价性.
) ≥0
) 一≥0 ;
∈
、
a bd x ≥0 ,] () 仁 ) I 一≥O解答这 类问题 时 , . 注意转化
化过程 中前因后果是充分必要的 ,才保证转化后的结 果仍为原问题的结果.非等价转 化其过程是充分或必 要的 , 要对结论进行必要 的修正. 因此在应用转换化归 时一定要注意转化 的等价性与非等价性 的不 同要 求 ,
二
(,) A( ,) 00和点 11的距离之和, 出其最小值为x 2. 易求 / 注: ①此题也可直接利用三角形不等式求解 ; ②变
是正四面体的高的}.
l J 点评 一般性 与特 殊性既相 互依存 ,又 可以相互
转 化 ,一 般 性 寓 于 特 殊 性 中 ,特 殊 性 又 离 不 开 一 般
u[, ∞) 2+ .
浅谈转换与化归思想(精)
浅谈转换与化归思想转化思想是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。
这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。
一、 转换思想(1)转换思想的内涵转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。
看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。
高中数学基本数学思想
高中数学基本数学思想1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想;补集思想;归纳与递推思想;对称思想;逆反思想;类比思想;参变数思想有限与无限的思想;特殊与一般的思想。
转化与化归思想ppt完美课件 通用
b=(1+sin2x+cos 2x,0),
∴f(x)=a·b=(1-tan x)(1+sin 2x+cos 2x)
cosxsinx•(2cos2 x2sinxcosx) cosx
2(cos2 xsin2 x) 2cos2x.
定义域为 xx
k
2,kz.
(2)因f ( ) 2cos(2 ) 2,
8
转 化 与 化 归 思想pp t完美课 件 通 用
转 化 与 化 归 思想pp t完美课 件 通 用
故有
f f
((2)2)0,0.即2(21(1x2x)2)
2x 1 2x 1
0, 0.
解得 7 1 x 3 1.
2
2
从而实数x的取值范围是( 7 1, 3 1). 22
【例2】(2008·南通调研)已知向量a=(1-
待解决的问题A
应用 问题A的解
观察、分析 类比、联想
容易解决的问题B
还原
解决 问题B的解
其中的问题B是化归目标或化归方向,转化的手段 是化归策略. 2.化归与转化思想的核心是将生疏的问题转化为熟 知的问题,解题的过程就是一个缩小已知与求解 之间差异的过程,是未知向已知转化的过程,也 是目标向问题靠拢的过程.
tanx,1),b=(1+sin 2x+cos 2x,0),记f(x)=a·b.
(1)求f(x)的解析式并指出它的定义域;
(2 )若 f( )2 ,且 (0 ,)求 ,f( ).
85
2
转 化 与 化 归 思想pp t完美课 件 通 用
转 化 与 化 归 思想pp t完美课 件 通 用
解 (1)∵a=(1-tan x,1),
化归与转化的思想
化归与转化的思想第4讲化归与转化的思想一、转化与转化思想概论匈牙利著名数学家罗莎彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。
有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。
”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。
”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。
“倒出水”,这是还原法,这是数学家常用的方法。
谈到数学的发展史,有无数的例子。
笛卡尔称赞它是一种“普遍的方法”。
他在《指导思想的规律》一书中指出:第一,把任何问题转化为数学问题;第二,将任何数学问题转化为代数问题;第三,将任何代数问题转化为方程的解。
其实所谓化归思想,一般就是指人们将待解决或难以解决的问题通过某种转化过程,归结到一类已经解决或比较容易解决的问题中去,最终求得原问题的解答的一种手段和方法。
化归与转化思想的实质是揭示联系,实现转化。
化归与转化的思想是解决数学问题的根本思想,实质是转化矛盾的思想方法,其遵循“运动――转化――解决”的基本思想。
数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。
这种思想方法可分为①多维化归方法,如:换元法、恒等变换法、反证法、构造法、待定系数法、数学归纳法;②二维化归法,如解析法、三角代换法、向量法;③单维化归法,如:复数法、代入法、加减法、判别式法、曲线系数法、坐标变换法。
第二部分第3讲 分类讨论思想、转化与化归思想课件
第3讲 分类讨论思想、转化与化归思想
内
容
索
引
01
一、分类讨论思想
02
二、转化化归思想
一、分类讨论思想
思想方法诠释
1.分类讨论的思想含义
分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象
按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类
结果得到整个问题的结果.实质上,分类讨论是“化整为零,各个击破,再积零
1- < 0,
由①得-1<q<0,或0<q<1,由②得q>1.
综上,可得q的取值范围是(-1,0)∪(0,+∞).
思维升华1.在中学数学中,一次函数、二次函数、指数函数、对数函数的
单调性,基本不等式,等比数列的求和公式等在不同的条件下有不同的结论,
或者在一定的限制条件下才成立,应根据题目条件确定是否进行分类讨论.
又因为|PF1|+|PF2|=6,|F1F2|=2 5,
14
4
解得|PF1|= ,|PF2|= ,
3
3
所以
1
2
=
7
.
2
若∠F1PF2=90°,
则|F1F2|2=|PF1|2+|PF2|2,
所以|PF1|2+(6-|PF1|)2=20,
所以|PF1|=4,|PF2|=2,
所以
1
2
综上知,
(1 + ) + (2 + ) = ,
(1 + )·(2 + ) =
1
.
2
1 + 2 = -,
1 ·2 =
1
转化与化归思想
3.直观化原则 将比较抽象的问题转化为比较直观的问题来解决. 4.正难则反原则 当问题正面讨论遇到困难时,应想到考虑问题的反面, 设法从问题的反面去探求,使问题获得解决,或证明问题的 可能性. 总之,化归与转化是高中数学的一种重要思想方法,掌 握好化归与转化的思想方法的特点、题型、方法、要素、原 则对我们学习数学是非常有帮助的.
返回
返回
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
返回
正向与逆向的转化
[例3] 某射手射击1次击中目标的概率是0.9他连续射击4 次且他各次射击是否击中目标是相互独立的,则他至少击中 目标1次的概率为 ________.
返回
2.转化与化归的常见方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式 或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂 等,把较复杂的函数、方程、不等式问题转化为易于解决的基 本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形 式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价问题, 以达到化归的目的.
同一区间,故a=1.
返回
“化归与转化”还有“数与形的转化、数学各分支之间的转 化”等,应用时还应遵循以下四条原则:
1.熟悉化原则 将陌生的问题转化为熟悉的问题,以利于运用熟知的知识 和经验来解答问题. 2.简单化原则 将复杂的问题转化为简单的问题,通过对简单问题的解决, 达到解决复杂问题的目的,或获得某种解题的启示和依据.
高中数学-化归与转化思想
一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化有等价转化与不等价转化。
等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。
应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。
3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。
4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。
5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。
6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。
7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;(Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈转换与化归思想
转化思想是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。
这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。
一、 转换思想
(1)转换思想的内涵
转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用
转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。
看这样一个问题: 已知:11122=-+-a b b a ,求证:12
2=+b a 。
[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点
令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα
化简得1cos cos sin sin =+αααα
所以0sin ≥=αa ,0cos ≥=αb
则 1cos sin 2222=+=+ααb a
[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现
三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。
转换思想对思维要求确实很高,但这一点还是能够做到的。
因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。
典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下
对代数与几何分别有了研究,高中时不但分别进行了深化,更把两门学科合而为一,更多地注重两者之间的对比联系的研究。
高中的《平面解析几何》的实质就是用“解析法”即“代数的方法”解决几何问题,已经体现了几何到代数的转换,比如介绍某些代数形式的几何表示(绝对值、不等式、方程的几何意义),引入几何图形中圆锥曲线(圆、椭圆、抛物线)的方程,都是为培养思维在数与形之间的跳跃作了准备。
再比如物理学科中有“电场”与“磁场”的分别研究,也有对“电磁场”的综合研究。
所以学生在同学科内部的思维转换应该能够做到游刃有余。
(3)转换思想在不同学科中的应用
转换思想也可以是在同一学习领域的不同学科之间进行跳跃性变换,解决问题时采用不同的思维方式。
比如解决数学问题时,可以在代数与几何之间的互相转换,另外,物理中的行程问题、化学中的浓度问题都可以转换到数学模型来解决。
化学中典型的浓度问题:
a 克糖溶于水中形成
b 克糖水,其浓度为
b
a ;若加入m 克溶质糖,虽然溶质溶液的质量同时增加,但可以得到加糖后的浓度m
b m a ++必然要大于原来溶液的浓度b a 。
这个结论完全可以由数学学科中《不等式》部分的知识加以证明: 根据实际情况:0>>a b ,0>m ,
)
()()(m b b m a b m b b am ab bm ab b a m b m a +-=+--+=-++, 因为 0>>a b ,0>m , 所以0)()()(>+-=+--+=-++m b b m a b m b b am ab bm ab b a m b m a 即b
a m
b m a >++ 同样,物理中的匀加速运动:
物体初始速度为0v 米/秒,加速度为a 米/秒2,则经过t 秒后的即时速度为202
1at t v v t +=。
这公式稍加变形就是数学中的函数t v t a v t 02
)21(+=,当0=a 时,它是一次函数,图象为一条直线,当0≠a 时,它是二次函数,图象为一条抛物线,完全可以脱离物理,用研究函数的方法来研究物体的即时速度t v 什么时刻最大,是怎样变化的。
可以说,转换思想最重要的作用应该就是在不同学科之间的跳跃性思维,这也是目前高中学生比较薄弱的环节,比如数学、物理、化学,虽然学生们分别学习了三门学科,但对它们的联系却缺少研究,所以学科渗透类问题都是比较令学生头疼的,也是应用题总显得那么高深莫测的原因,更使理论与实际应用脱离,学不能致用。
由此,高中新课程改革中把课程整合放在了很重要的地位。
二、 化归思想 (1)化归思想的内涵
化归思想相对转换来说,是在解决问题时改变问题的形式,用一些技巧性的处理方法和手段把问题变得更显化明了、更熟悉常见、更和谐统一,但并没有改变问题所属的领域。
化归思想包括三要素:化归的对象、化归的原则、化归的方法。
所以掌握化归思想必须:抓住化归的对象也就是当前需要解决的问题;化归时应遵循简单化、熟悉化、和谐化的基本原则;中学常用的化归方法有①恒等变换法:包括分解法、配方法、代定系数法等;②映射反演法:包括换元法、对数法、坐标法、仿射法等。
(2)实施化归的关键
为了有效地实施化归,我们首先必须实现问题的“规范化”,即掌握一些“常规性问题”。
这里“常规性问题”就是指我们课堂上所说的具有确定的解题方法和解题程序的问题,或者可以说是模式型问题。
然后再把其他问题“规范化”,一般我们采用的化归方向是:化未知为已知、化难为易、化繁为简、化一般为特殊、化抽象为具体、正难则化反、化新知识到旧知识、化不熟悉到熟悉等等。
1.在《三角函数》中,对于角α有六个三角函数αsin 、αcos 、αtan 、αcot 、αsec 、αcsc 。
但我们研究其中众多的公式时并不需要同时研究六个,只需要研究αsin 、αcos 、αtan 三个就可以,其余三个可以利用它们之间的倒数关系进行化归;在解题时的“切割化弦”思想也是把后四个函数都化为αsin 、αcos 来解决。
2.在《立体几何》中,点、线、面之间的复杂关系是让人很头疼的 ,我们也采用了化归的思想使得需要考虑的问题更少更简单。
下面是立体几何中常用几种的化归方法。
方法一:位置关系互化。
正方体 ABCD-A 1B 1C 1D 1是我们研究的典型空间图形之一,它内部各种面对角线、体对角线与各表面、对角面形成的线线距离、线面距离、面面距离我们都作了深入研究,所以涉及到正方体中的各种距离问题我们就尽量向上述距离问题化归。
方法二:化高维到低维。
例:如右图,直三棱柱ABC-A 1B 1C 1,∠BCA=900
,点
D 1、F 1分别是棱A 1B 1、A 1C 1的中点,若BC=CA=CC 1,
求异面直线BD 1与AF 1所成的角。
[分析]本题中的直线BD 1与AF 1是三维空间内的异面直线,常用的化归方法就是把直线经过平移变为二维空间内两条相交直线,即在平面内求两直线所成角。
作法:如右图,沿平面BCB 1C 1补出一个与ABC-A 1B 1C 1完全全等的图形,最终构成一个正方体
ABCE-A 1B 1C 1E 1,取B 1E 1的中点G 1,连接BG 1,则AF 1∥BG 1。
所以,异面直线BD 1与AF 1所成的角即为平面BD 1G 1内两条相交直线BD 1与BG 1所成角∠D 1BG 1,
然后在△D 1BG 1中求此角。
这是把三维空间内的问题降维化归到二维平面内的问题来解决,是立体几何中常用的化归思想。
当然,我们既然总是说“转化”,那就意味着转换与化归在本质区别的同时也是紧密联系的,既有宏观上学科之间的转化,也有微观上学科内部各模块之间的转化。
化归在各个学科内部,在各模块内部都有体现和运用,在模块内部应用更是有多向性、层次性、重复性,是操作细节方面的问题,但却为思维跳跃性的转换提供了基础和经验,因此不能割裂看待。